

MALDIVES CIVIL AVIATION AUTHORITY Republic of Maldives

CIVIL AVIATION ADSORY PUBLICATIONS

MCAR-AIRCREW

ACCEPTABLE MEANS OF COMPLIANCE (AMC) AND GUIDANCE MATERIAL (GM)

I. LOG OF AMENDMENTS

Amendment No.:	Page No.:	Issue date:	Date Inserted:	Inserted By:	Date Removed:	Removed By:
Initial Issue	All	01-3-15	01-3-15	MCAA		•
Initial Issue	All	01-3-13	01-3-13	MCAA		

II. LIST OF EFFECTIVE PAGES

Section	Page	Amendment No.	Date
Log of Amendments	LOA-1	Initial Issue	01 March 2016
List of Effective Pages	LEP-1to 2	Initial Issue	01 March 2016
Table of Contents	TOC-1	Initial Issue	01 March 2016
Introduction	IV-1	Initial Issue	01 March 2016
ACM and GM to Annex I PART - FCL	ITOC 01 to 3	Initial Issue	01 March 2016
	I A- 01 to 13	Initial Issue	01 March 2016
	I B- 01 to 41	Initial Issue	01 March 2016
	I C- 01 to 53	Initial Issue	01 March 2016
	I D- 01 to 6	Initial Issue	01 March 2016
	I F- 01	Initial Issue	01 March 2016
	I G- 01 to 43	Initial Issue	01 March 2016
	I H- 01 to 20	Initial Issue	01 March 2016
	I I- 01 to 11	Initial Issue	01 March 2016
	I J- 01 to 121	Initial Issue	01 March 2016
	I K 01 to 7	Initial Issue	01 March 2016
	I App- 01 to 33	Initial Issue	01 March 2016
ACM and GM to Annex IVPART - MED	IV-01 to 10	Initial Issue	01 March 2016
	IV-11 to 20	Initial Issue	01 March 2016
	IV-21 to 30 IV-31 to	Initial Issue	01 March 2016
	40	Initial Issue	01 March 2016
ACM and GM to Annex V PART - CC	IV-41 to 46	Initial Issue	01 March 2016
	V-01	Initial Issue	01 March 2016
ACM and GM to Annex VI PART - ARA	VI-01 to 10	Initial Issue	01 March 2016
	VI -11 to 20	Initial Issue	01 March 2016
	VI -21 to 30	Initial Issue	01 March 2016
	VI -31 to 40	Initial Issue	01 March 2016
	VI -41	Initial Issue	01 March 2016

ACM and GM to Annex VII PART - ORA	VII-01 to 10	Initial Issue	01 March 2016
	VII-11 to 20	Initial Issue	01 March 2016
	VII-21 to 30	Initial Issue	01 March 2016
ACM and GM to Annex VII PART - ORA	VII-31 to 40	Initial Issue	01 March 2016
	VII-41 to 50	Initial Issue	01 March 2016
	VII-51 to 53	Initial Issue	01 March 2016

III-TABLE OF CONTENTS

- I Log of Ammendments
- II List of Effective Pages
- III Table of Contents
- IV Introduction
- 1 AMC and GM to Annex I Flight Crew Licensing (PART-FCL)
- 2 AMC and GM to Annex II Conditions for the conversion of existing licences and ratings
- 3 AMC and GM to Annex III Conditions for the acceptance of licences issued by third countries
- 4 AMC and GM to Annex IV Medical requirements (PART-MED)
- 5 AMC and GM to Annex V Qualification of cabin crew (PART-CC)
- 6 AMC and GM to Annex VI Authority requirements for aircrew (PART-ARA)
- 7 AMC and GM to Annex VII Organisation requirements for aircrew (PART-ORA)

IV - INTRODUCTION

CIVIL AVIATION ADVISORY PUBLICATIONS AIRCREW

CIVIL AVIATION ADVISORY PUBLICATIONS-AIRCREW (CAAP-AIRCREW) of 1 January 2015 laying down non-binding Acceptable Means of Compliance (AMC), Guidance Material (GM) and other advisory materials adopted by MCAA to illustrate means to establish compliance with MALDIVES CIVIL AVIATION REGULATION - AIRCREW.

Where an AMC or GM is not available as a means to comply with the MCARs, operators may use EASA AMCs and GMs provided that they are used in a manner which do not conflict with MCARs.

Alternative means of compliance to those adopted by MCAA may be used by an operator to establish compliance with these Regulations. However when an operator subject to certification wishes to use an alternative means of compliance to the acceptable means of compliance (AMC) adopted by MCAA to establish compliance with these Regulations, it shall, prior to implementing it, provide MCAA with a full description of the alternative means of compliance. The description shall include any revisions to manuals or procedures that may be relevant, as well as an assessment demonstrating that the Implementing Rules are met. The operator may implement these alternative means of compliance subject to prior approval by MCAA and upon receipt of the notification as prescribed in PART-ARA.

Done at Male', 28th February 2015.

For the MCAA Chief Executive HUSSAIN JALEEL

ACCEPTABLE MEANS OF COMPLIANCE (AMC) AND GUIDANCE MATERIAL (GM) TO ANNEX I (PART-FCL)

TABLE OF CONTENTS

SUBPART A — GENERAL REQUIREMENTS

GM1 FCL.005 Scope GM1 FCL.010 Definitions AMC1 FCL.015 Application and issue of licences, ratings and certificates AMC1 FCL.025 Theoretical knowledge examinations for the issue of licences AMC1 FCL.050 Recording of flight time AMC1 FCL.055 Language proficiency AMC2 FCL.055 Language proficiency AMC3 FCL.055 Language proficiency AMC1 FCL.060 (b)(1) Recent experience GM1 FCL.060 (b)(1) Recent experience AMC1 FCL.060 (b)(5) Recent experience

SUBPART B — LIGHT AIRCRAFT PILOT LICENCE — LAPL

AMC1 FCL.115; FCL.120 AMC1 FCL.120; FCL.125 AMC1 FCL.125 LAPL - Skill test AMC2 FCL.125 LAPL - Skill test AMC1 FCL.125; FCL.235 AMC2 FCL.125; FCL.235 AMC1 FCL.110.A LAPL (A) - Experience requirements and crediting AMC2 FCL.110.A LAPL (A) - Experience requirements and crediting GM1 FCL.135.A; FCL.135.H AMC1 FCL.110.H LAPL (H) - Experience requirements and crediting AMC2 FCL.110.H LAPL (H) — Experience requirements and crediting AMC1 FCL.110.S LAPL(S) — Experience requirements and crediting AMC1 FCL.110.S; FCL.210.S AMC1 FCL.135.S; FCL.205.S (a) AMC1 FCL.110.B LAPL (B) - Experience requirements and crediting AMC1 FCL.110.B; FCL.210.B AMC1 FCL.130.B; FCL.220.B AMC1 FCL.135.B; FCL.225.B AMC2 FCL.135.B; FCL.225.B AMC3 FCL.135.B; FCL.225.B

SUBPART C — PRIVATE PILOT LICENCE (PPL), SAILPLANE PILOT LICENCE (SPL) AND BALLOON PILOT LICENCE (BPL) 115

AMC1 FCL.210; FCL.215 115 AMC2 FCL.210; FCL.215 160 AMC3 FCL.210; FCL.215 164 AMC1 FCL.215; FCL.235 165 AMC1 FCL.235 Skill test 166 AMC2 FCL.235 Skill test 171 AMC3 FCL.235 Skill test 175 AMC1 FCL.210.A PPL (A) — Experience requirements and crediting AMC1 FCL.210.H PPL (H) — Experience requirements and crediting AMC1 FCL.210.As PPL (As) — Experience requirements and crediting AMC1 FCL.210.As PPL (As) — Experience requirements and crediting AMC1 FCL.205.S (b) SPL — Privileges and conditions AMC1 FCL.205.B (b) BPL — Privileges and conditions AMC1 FCL.205.B (b) BPL — Extension of privileges to another balloon class or group

SUBPART D — COMMERCIAL PILOT LICENCE — CPL

AMC1 FCL.310; FCL.515 (b); FCL.615 (b)

SUBPART F — AIRLINE TRANSPORT PILOT LICENCE — ATPL

AMC1 FCL.510.A (b)(1) ATPL(A) — Prerequisites, experience and crediting AMC1 FCL.520.A; FCL.520.H

SUBPART G — INSTRUMENT RATING — IR

AMC1 FCL.615 (b) IR – Theoretical knowledge and flight instruction AMC2 FCL.615 (b) IR – Theoretical knowledge and flight instruction AMC3 FCL.615 (b) IR – Theoretical knowledge and flight instruction AMC4 FCL.615 (b) IR – Theoretical knowledge and flight instruction AMC5 FCL.615 (b) IR – Theoretical knowledge and flight instruction AMC6 FCL.615 (b) IR – Theoretical knowledge and flight instruction AMC7 FCL.615 (b) IR – Theoretical knowledge and flight instruction AMC8 FCL.615 (b) IR – Theoretical knowledge and flight instruction AMC8 FCL.615 (b) IR – Theoretical knowledge and flight instruction AMC8 FCL.615 (b) IR – Theoretical knowledge and flight instruction AMC1 FCL.615 (c) IR – Theoretical knowledge and flight instruction

SUBPART H — CLASS AND TYPE RATINGS

GM1 FCL.700 Circumstances in which class or type ratings are required

GM1 FCL.710 Class and type ratings — variants

AMC1 FCL.725 (a) Requirements for the issue of class and type ratings

AMC2 FCL.725 (a) Requirements for the issue of class and type ratings

AMC1 FCL.740 (b)(1) Validity and renewal of class and type ratings

AMC1 FCL.720.A (b)(2)(i) Experience requirements and prerequisites for the issue of class or type ratings (A)

AMC2 FCL.720.A (b)(2)(i) Experience requirements and prerequisites for the issue of class or type ratings (A)

AMC1 FCL.725.A (b) Theoretical knowledge and flight instruction for the issue of class and type ratings (A)

AMC1 FCL.735.A; FCL.735.H; FCL.735.As

AMC1 FCL.740.H (a)(3) Revalidation of type ratings — helicopters

GM1 FCL.720.PL Experience requirements and prerequisites for the issue of type ratings — powered-lift aircraft

SUBPART I — ADDITIONAL RATINGS

AMC1 FCL.800 Aerobatic rating AMC1 FCL.805 Sailplane towing and banner towing rating AMC1 FCL.810 (b) Night rating AMC1 FCL.815 Mountain rating AMC2 FCL.815 Mountain rating AMC1 FCL.820 Flight test rating AMC1 FCL.825 (a) En Route instrument rating (EIR) AMC1 FCL.825(c) En route instrument rating (EIR) AMC1 FCL.825 (d) En route instrument rating (EIR) AMC2 FCL.825 (d) En route instrument rating (EIR) AMC3 FCL.825 (d) En route instrument rating (EIR) GM1 FCL.825 (d) En route instrument rating (EIR) AMC1 FCL.825 (e); (g) En route instrument rating (EIR) AMC1 FCL.825 (g)(2)) En route instrument rating (EIR) AMC1 FCL.825 (h) En route instrument rating (EIR) AMC2 FCL.825 (h) En route instrument rating (EIR) AMC1 FCL.825 (i) En route instrument rating (EIR) AMC1 FCL.830 Sailplane Cloud Flying Rating AMC2 FCL.830 Sailplane Cloud Flying Rating

SUBPART J — INSTRUCTORS

GM1 FCL.900 Instructor certificates AMC1 FCL.920 Instructor competencies and assessment AMC1 FCL.925 Additional requirements for instructors for the MPL AMC2 FCL.925 (d)(1) Additional requirements for instructors for the MPL GM1 FCL.925 Additional requirements for instructors for the MPL AMC1 FCL.935 Assessment of competence AMC2 FCL.935 Assessment of competence AMC3 FCL.935 Assessment of competence AMC4 FCL.935 Assessment of competence AMC5 FCL.935 Assessment of competence AMC1 FCL.930.FI FI — Training course AMC2 FCL.930.FI FI — Training course AMC1 FCL.940.FI (a)(2) FI - Revalidation and renewal GM1 FCL.940.FI (a)(2) FI - Revalidation and renewal AMC1 FCL.930.TRI TRI — Training course AMC2 FCL.930.TRI TRI — training course AMC1 FCL.930.CRI CRI — Training course AMC1 FCL.940.CRI CRI - Revalidation and renewal AMC1 FCL.930.IRI IRI - Training course AMC1 FCL.930.MCCI MCCI — Training course

SUBPART K — EXAMINERS

GM1 FCL.1000 Examiner certificates
GM1 FCL.1005 (b) Limitation of privileges in case of vested interests
AMC1 FCL.1010 Prerequisites for examiners
AMC1 FCL.1015 Examiner standardisation
AMC2 FCL.1015 Examiner standardisation
GM1 FCL.1015 Examiner standardisation
AMC1 FCL.1020 Examiner standardisation

APPENDICES

AMC1 to Appendix 3 Training courses for the issue of a CPL and an ATPL GM1 to Appendix 3; Appendix 6; FCL.735.H

GM1 to Appendix 5 Integrated MPL training course

AMC1 to Appendix 6 Modular training course for the IR AMC2 to Appendix 6 Modular training course for the IR AMC3 to Appendix 6 Modular training courses for the IR AMC4 to Appendix 6 Modular training courses for the IR AMC5 to Appendix 6 Modular training courses for the IR AMC6 to Appendix 6 Modular training courses for the IR AMC7 to Appendix 6 Modular training courses for the IR AMC8 to Appendix 6 Modular training courses for the IR AMC8 to Appendix 6 Modular training courses for the IR AMC9 to Appendix 6 Modular training courses for the IR

GM1 to Appendix 7 IR skill test AMC1 to Appendix 7 IR skill test

AMC1 to Appendix 9 Training, skill test and proficiency check for MPL, ATPL, type and class ratings, and proficiency check for IRs

AMC2 to Appendix 9 Training, skill test and proficiency check for MPL, ATPL, type and class ratings, and proficiency check for IRs

SUBPART A — GENERAL REQUIREMENTS

GM1 FCL.005 Scope INTERPRETATIVE MATERIAL

- (a) Whenever licences, ratings, approvals or certificates are mentioned in Part-FCL, these are meant to be valid licences, ratings, approvals or certificates issued in accordance with Part-FCL. In all other cases, these documents are specified.
- (b) Reserved
- (c) Whenever 'or' is used as an inclusive 'or', it should be understood in the sense of 'and/or'.

GM1 FCL.010 Definitions

ABBREVIATIONS

The following abbreviations apply to the Acceptable Means of Compliance and Guidance Material to Part-FCL:

- A Aeroplane
- AC Alternating Current
- ACAS Airborne Collision Avoidance System
- ADF Automatic Direction Finding
- ADS Aeronautical Design Standard
- AFCS Automatic Flight Control System
- AFM Aircraft Flight Manual
- AGL Above Ground Level
- AIC Aeronautical Information Circular
- AIP Aeronautical Information Publication
- AIRAC Aeronautical Information regulation and control
- AIS Aeronautical Information Services
- AMC Acceptable Means of Compliance
- AeMC Aero-medical Centre
- AME Aero-medical Examiner
- AOM Aircraft Operating Manual
- APU Auxiliary Power Unit
- As Airship
- ATC Air Traffic Control
- ATIS Automatic Terminal Information Service
- ATO Approved Training Organisation
- ATP Airline Transport Pilot
- ATPL Airline Transport Pilot Licence
- ATS Air Traffic Service
- AUM All Up Mass
- B Balloon
- BCAR British Civil Airworthiness Requirement
- BEM Basic Empty Mass
- BITD Basic Instrument Training Device
- BPL Balloon Pilot Licence
- CAS Calibrated Air Speed
- CAT Clear Air Turbulence
- CB-IR Competency-based training course for instrument rating
- CDI Course Deviation Indicator
- CFI Chief Flying Instructor
- CG Centre of Gravity
- CGI Chief Ground Instructor
- CP Co-pilot
- CPL Commercial Pilot Licence
- CRE Class Rating Examiner
- CRI Class Rating Instructor
- CRM Crew Resource Management
- CS Certification Specification

- CQB Central Question Bank
- DC Direct Current
- DF Direction Finding
- DME Distance Measuring Equipment
- DPATO Defined Point After Take-off
- DPBLDefined Point Before LandingDRDead Reckoning navigation
- EFIS Electronic Flight Instrument System
- EIR En route instrument rating
- EOL Engine Off Landings
- ERPM Engine Revolution Per Minute
- ETA Estimated Time of Arrival
- ETOPS Extended-range Twin-engine Operation Performance Standard
- FAF Final Approach Fix
- FAR Federal Aviation Regulations
- FCL Flight Crew Licensing
- FE Flight Examiner
- F/E Flight Engineer
- FEM Flight Examiner Manual
- FFS Full Flight Simulator
- FI Flight Instructor
- FIE Flight Instructor Examiner
- FIS Flight Information Service
- FMC Flight Management Computer
- FMS Flight Management System
- FNPT Flight and Navigation Procedures Trainer
- FS Flight Simulator
- FSTD Flight Simulation Training Device ft feet
- FTD Flight Training Device
- G Gravity forces
- GLONASS Global Orbiting Navigation Satellite System
- GM Guidance Material
- GNSS Global Navigation Satellite Systems
- GPS Global Positioning System
- H Helicopter
- HF High Frequency
- HOFCS High Order Flight Control System
- HPA High Performance Aeroplane hrs Hours
- HUMS Health and Usage Monitoring System
- HT Head of Training
- IAS Indicated Air Speed
- ICAO International Civil Aviation Organisation
- IGE In Ground Effect
- IFR Instrument Flight Rules
- ILS Instrument Landing System
- IMC Instrument Meteorological Conditions
- IR Instrument Rating
- IRE Instrument Rating Examiner
- IRI Instrument Rating Instructor
- ISA International Standard Atmosphere
- JAR Joint Aviation Requirements
- kg Kilogram

m

LAPL Light Aircraft Pilot Licence LDP Landing Decision Point LMT Local Mean Time LO Learning Objectives LOFT Line Orientated Flight Training Meter MCC Multi-Crew Cooperation MCCI Multi-Crew Cooperation Instructor ME Multi-engine Minimum Equipment List MEL MEP Multi-engine Piston Multi-engine Turboprop MET METAR Meteorological Aerodrome Report Mountain Rating Instructor MI MP Multi-pilot Multi-pilot Aeroplane MPA Multi-crew Pilot Licence MPL. MPH Multi-pilot Helicopter MTOM Maximum Take-off Mass Non-directional Beacon NDB NM Nautical Miles NOTAM Notice To Airmen NOTAR No Tail Rotor OAT Outside Air Temperature OBS **Omni Bearing Selector** OEI One Engine Inoperative Out of Ground Effect OGE Operational Multi-pilot Limitation OML OSL **Operational Safety Pilot Limitation** OTD Other Training Devices PAPI Precision Approach Path Indicator PF Pilot Flying PIC Pilot-In-Command PICUS Pilot-In-Command Under Supervision PL Powered-lift PNF **Pilot Not Flying** Private Pilot Licence PPL QDM Magnetic heading Atmospheric pressure at aerodrome elevation QFE QNH Altimeter sub-scale setting to obtain elevation when on the ground RNAV Radio Navigation **Revolution Per Minute** RPM **RRPM** Rotor Revolution Per Minute R/T Radiotelephony Sailplane SATCOM Satellite communication SE Single-engine SEP Single-engine Piston SET Single-engine Turboprop SFE Synthetic Flight Examiner Synthetic Flight Instructor SFI SID Standard Instrument Departure SIGMET Significant Meteorological Weather

S

- SLPC Single Lever Power Control
- SOP Standard Operating Procedure
- SP Single-pilot
- SPA Single-pilot Aeroplane
- SPH Single-pilot Helicopter
- SPIC Student PIC
- SPL Sailplane Pilot Licence
- SSR Secondary Surveillance Radar
- STI Synthetic Training Instructor
- TAF (Terminal Area Forecasts) Aerodrome Forecast
- TAS True Air Speed
- TAWS Terrain Awareness Warning System
- TDP Take-off Decision Point
- TEM Threat and Error Management
- TK Theoretical knowledge
- TMG Touring Motor Glider
- TORA Take-off Run Available
- TODA Take-off Distance Available
- TR Type Rating
- TRE Type Rating Examiner
- TRI Type Rating Instructor
- UTC Coordinated Universal Time
- V Velocity
- VASI Visual Approach Slope Indicator
- VFR Visual Flight Rules
- VHF Very High Frequency
- VMC Visual Meteorological Conditions
- VOR VHF Omni-directional Radio Range

ZFTT Zero Flight Time Training

ZFM Zero Fuel Mass

AMC1 FCL.015 Application and issue of licences, ratings and certificates APPLICATION AND REPORT FORMS

Common application and report forms can be found:

- (a) For skill tests, proficiency checks for issue, revalidation or renewal of LAPL, BPL, SPL, PPL, CPL and IR in AMC1 to Appendix 7.
- (b) For training, skill tests or proficiency checks for ATPL, MPL and class and type ratings, in AMC1 to Appendix 9.
- (c) For assessments of competence for instructors, in AMC5 FCL.935

AMC1 FCL.025 Theoretical knowledge examinations for the issue of licences **TERMINOLOGY**

The meaning of the following terms used in FCL.025 should be as follows:

- (a) 'Entire set of examinations': an examination in all subjects required by the licence level.
- (b) 'Examination': the demonstration of knowledge in one or more examination papers.
- (c) 'Examination paper': a set of questions to be answered by a candidate for examination.
- (d) 'Attempt': a try to pass a specific paper.

(e) 'Sitting': a period of time established by the competent authority within which a candidate can take an examination. This period should not exceed 10 consecutive days. Only one attempt at each examination paper is allowed in one sitting..

AMC1 FCL.050 Recording of flight time GENERAL

- (a) The record of the flights flown should contain at least the following information:
 - (1) personal details: name(s) and address of the pilot;
 - (2) for each flight:
 - (i) name(s) of PIC;
 - (ii) date of flight;
 - (iii) place and time of departure and arrival;
 - (iv) type, including make, model and variant, and registration of the aircraft;
 - (v) indication if the aircraft is SE or ME, if applicable;
 - (vi) total time of flight; (vii) accumulated total time of flight.
 - (3) for each FSTD session, if applicable:
 - (i) type and qualification number of the training device;
 - (ii) FSTD instruction;
 - (iii) date;
 - (iv) total time of session;
 - (v) accumulated total time.
 - (4) details on pilot function, namely PIC, including solo, SPIC and PICUS time, co-pilot, dual, FI or FE;
 - (5) Operational conditions, namely if the operation takes place at night, or is conducted under instrument flight rules.

(b) Logging of time:

- (1) PIC flight time:
 - (i) the holder of a licence may log as PIC time all of the flight time during which he or she is the PIC;
 - (ii) the applicant for or the holder of a pilot licence may log as PIC time all solo flight time, flight time as SPIC and flight time under supervision provided that such SPIC time and flight time under supervision are countersigned by the instructor;
 - (iii) the holder of an instructor certificate may log as PIC all flight time during which he or she acts as an instructor in an aircraft;
 - (iv) the holder of an examiner's certificate may log as PIC all flight time during which he or she occupies a pilot's seat and acts as an examiner in an aircraft;
 - (v) a co-pilot acting as PICUS on an aircraft on which more than one pilot is required under the type certification of the aircraft or as required by operational requirements provided that such PICUS time is countersigned by the PIC;
 - (vi) if the holder of a licence carries out a number of flights upon the same day returning on each occasion to the same place of departure and the interval between successive flights does not exceed 30 minutes, such series of flights may be recorded as a single entry.
- (2) co-pilot flight time: the holder of a pilot licence occupying a pilot seat as co-pilot may log all flight time as co-pilot flight time on an aircraft on which more than one pilot is required under the type certification of the aircraft, or the regulations under which the flight is conducted;
- (3) cruise relief co-pilot flight time: a cruise relief co-pilot may log all flight time as co-pilot when occupying a pilot's seat;
- (4) instruction time: a summary of all time logged by an applicant for a licence or rating as flight instruction, instrument flight instruction, instrument ground time, etc., may be logged if certified by the appropriately rated or authorised instructor from whom it was received;
- (5) PICUS flight time: provided that the method of supervision is acceptable to MCAA, a co-pilot may log as PIC flight time flown as PICUS when all the duties and functions of PIC on that flight were carried out in such a way that the intervention of the PIC in the interest of safety was not required.
- (c) Format of the record:
 - details of flights flown under commercial air transport may be recorded in a computerised format maintained by the operator. In this case an operator should make the records of all flights operated by the pilot, including differences and familiarisation training, available upon request to the flight crew member concerned;

(2) for other types of flight, the pilot should record the details of the flights flown in the following logbook format. For sailplanes and balloons, a suitable format should be used that contains the relevant items mentioned in (a) and additional information specific to the type of operation.

PILOT LOGBOOK	
Holder's name(s)	
Holder's licence number	

HOLDER'S ADDRESS:	
	[space for address change]
[space for address change]	[space for address change]
[space for address change]	[space for address change]

1	2	2	3			4		1	5		(6	7		8
DATE	DEPAF	RTURE	ARRI	VAL		AIRCRAFT			SINGLE- PILOT TIME MULTI- PILOT			ΓAL ME	NAME OF	LANI	DINGS
DATE	PLACE	TIME	PLACE	TIME	MAKE, MODEL, VARIANT	REGISTRATION	SE	ME		PILOT TIME)F GHT	PIC	DAY	NIGHT
												-			
						TOTAL THIS PAGE									
						TOTALVFROM PREVIOUS PAGE									
						TOTAL TIME									

	9		10									11			12		
OPERA CONDIT			PILOT FUNCTION TIME								FSTD SESSION				REMARKS AND ENDORSEMENTS		
NIGHT	IFF	2	PIC	2	CO- PILO		DUA	DUAL		INSTRUCTOR		DATE TYPE TOTAL TIME OF SESSION		OF			
	_																
	_																
	_																
	+																
															I certify that the entries in this log are true.		
															tins log are true.		
															PILOT'S SIGNATURE		

INSTRUCTIONS FOR USE

- (d) FCL.050 requires holders of a pilot licence to record details of all flights flown. This logbook enables pilot licence holders to record flying experience in a manner which will facilitate this process while providing a permanent record of the licence holders flying. Pilots who fly regularly aeroplanes and helicopters or other aircraft categories are recommended to maintain separate logbooks for each aircraft category.
- (e) Flight crew logbook entries should be made as soon as practicable after any flight undertaken. All entries in the logbook should be made in ink or indelible pencil.
- (f) The particulars of every flight in the course of which the holder of a flight crew licence acts as a member of the operating crew of an aircraft are to be recorded in the appropriate columns using one line for each flight, provided that if an aircraft carries out a number of flights upon the same day returning on each occasion to the same place of departure and the interval between successive flights does not exceed 30 minutes, such series of flights may be recorded as a single entry.
- (g) Flight time is recorded:
 - (1) for aeroplanes, touring motor gliders and powered-lift aircraft, from the moment an aircraft first moves to taking off until the moment it finally comes to rest at the end of the flight;
 - (2) for helicopters, from the moment a helicopter's rotor blades start turning until the moment the helicopter finally comes to rest at the end of the flight, and the rotor blades are stopped;
 - (3) for airships, from the moment an airship is released from the mast to taking off until the moment the airship finally comes to rest at the end of the flight, and is secured on the mast;
- (h) When an aircraft carries two or more pilots as members of the operating crew, one of them shall, before the flight commences, be designated by the operator as the aircraft PIC, according to operational requirements, who may delegate the conduct of the flight to another suitably qualified pilot. All flying carried out as PIC is entered in the logbook as 'PIC'. A pilot flying as 'PICUS' or 'SPIC' enters flying time as 'PIC' but all such entries are to be certified by the PIC or FI in the 'Remarks' column of the logbook.
- (i) Notes on recording of flight time:
 - (1) column 1: enter the date (dd/mm/yy) on which the flight commences;
 - (2) column 2 or 3: enter the place of departure and destination either in full or the internationally recognised three or four letter designator. All times should be in UTC;
 - (3) column 5: indicate whether the operation was SP or MP, and for SP operation whether SE or ME;

1		2	3			4		:	5			6	7		8
DATE	DEPA	RTURE	ARRI	VAL	AIR	CRAFT	SINGLE- PILOT TIME MULTI- PILOT				TAL ME	NAME	LANDINGS		
DATE	PLACE	TIME	PLACE	TIME	MAKE, MODEL, VARIANT	REGISTRATION	SE	ME	TIME		OF FLIGHT		OF PIC	DAY	NIGHT
08/04/12	LFA C	102 5	EGB J	12 40	PA34- 250	G-SENE					2	15	SEL F	1	
09/0 4/12	EG BJ	181 0	EG BJ	19 30	C152	G-NONE					1	20	SEL F		2
11/0 4/12	LW G	164 5	LA X	02 25	B747- 400	G-ABCD			9	40	9	40	NAME OF PIC		1
						TOTAL THIS PAGE									
						TOTALVFROM PREVIOUS PAGE									
						TOTAL TIME									

(4) column 6: total time of flight may be entered in hours and minutes or decimal notation as desired;

- (5) column 7: enter the name(s) of PIC or SELF as appropriate;
- (6) column 8: indicate the number of landings as pilot flying by day or night;
- (7) column 9: enter flight time undertaken at night or under instrument flight rules if applicable;

- (8) column 10: pilot function time:
 - (i) enter flight time as PIC, SPIC and PICUS as PIC;
 - (ii) all time recorded as SPIC or PICUS is countersigned by the aircraft PIC/FI in the 'remarks' (column 12);
 - (iii) instructor time should be recorded as appropriate and also entered as PIC.
- (9) column 11: FSTD:
 - (i) for any FSTD enter the type of aircraft and qualification number of the device. For other flight training devices enter either FNPT I or FNPT II as appropriate;
 - (ii) total time of session includes all exercises carried out in the device, including pre- and after-flight checks;
 - (iii) enter the type of exercise performed in the 'remarks' (column 12), for example operator proficiency check, revalidation.
- (10) column 12: the 'remarks' column may be used to record details of the flight at the holder's discretion. The following entries, however, should always be made:
 - (i) instrument flight time undertaken as part of the training for a licence or rating;
 - (ii) details of all skill tests and proficiency checks;
 - (iii) signature of PIC if the pilot is recording flight time as SPIC or PICUS;
 - (iv) signature of instructor if flight is part of an SEP or TMG class rating revalidation.
- (j) When each page is completed, accumulated flight time or hours should be entered in the appropriate columns and certified by the pilot in the 'remarks' column.

	9							10					11			12
_	ERAT DITI(PILO	OT FU	JNCT	ION	TIME		FSTD SESSION				REMARKS AND ENDORSEMENTS
NIGH	T	IFR	2	PIC	7	CO- PIL		DUAL		INSTRUCTOR		DATE	TYPE	TOTA TIME SESS	E OF	
		2	15	2	15						_					
1	20			1	20			-		1	20					Night rating training
												10/04	B74	4	10	Revalidation proficiency check
8	10	9	40	9	40											PIC(US): signature of NAME(S) PIC
																I certify that the entries in this log are true.
																PILOT'S SIGNATURE

AMC1 FCL.055 Language proficiency

GENERAL

- (a) The language proficiency assessment should be designed to reflect a range of tasks undertaken by pilots but with specific focus on language rather than operational procedures.
- (b) The assessment should determine the applicant's ability to:
 - (1) communicate effectively using standard R/T phraseology;
 - (2) deliver and understand messages in plain language in both usual and unusual situations that necessitate departure from standard R/T phraseology.

Note: Refer to the 'Manual on the Implementation of ICAO Language Proficiency Requirements' (ICAO Doc 9835), Appendix A Part III and Appendix B for further guidance.

ASSESSMENT

- (c) The assessment may be subdivided into three elements, as follows:
 - (1) listening: assessment of comprehension;
 - (2) speaking: assessment of pronunciation, fluency, structure and vocabulary;
 - (3) interaction.
- (d) The three elements mentioned above may be combined and they can be covered by using a wide variety

of means or technologies.

- (e) Where appropriate, some or all of these elements may be achieved through the use of the R/T testing arrangements.
- (f) When the elements of the testing are assessed separately, the final assessment should be consolidated in the language proficiency endorsement issued by MCAA.
- (g) The assessment may be conducted during one of the several existing checking or training activities, such as licence issue or rating issue and revalidation, line training, operator line checks or proficiency checks.
- (h) MCAA may use its own resources in developing or conducting the language proficiency assessment, or may delegate this task to language assessment bodies.
- (i) MCAA would establish an appeal procedure for applicants.
- (j) The holder of a licence should receive a statement containing the level and validity of the language endorsements.
- (k) Where the assessment method for the English language established by MCAA is equivalent to that established for the assessment of use of the English language in accordance with AMC2 FCL.055, the same assessment may be used for both purposes.

BASIC ASSESSMENT REQUIREMENTS

- (1) The aim of the assessment is to determine the ability of an applicant for a pilot licence or a licence holder to speak and understand the language used for R/T communications.
 - (1) The assessment should determine the ability of the applicant to use both:
 - (i) standard R/T phraseology;
 - (ii) plain language, in situations when standardised phraseology cannot serve an intended transmission.
 - (2) The assessment should include:
 - (i) voice-only or face-to-face situations;
 - (ii) common, concrete and work-related topics for pilots.
 - (3) The applicants should demonstrate their linguistic ability in dealing with an unexpected turn of events, and in solving apparent misunderstandings.
 - (4) The assessment should determine the applicant's speaking and listening abilities. Indirect assessments, of grammatical knowledge, reading and writing, are not appropriate.
 - (5) The assessment should determine the language skills of the applicant in the following areas:
 - (i) pronunciation:
 - (A) the extent to which the pronunciation, stress, rhythm and intonation are influenced by the applicant's first language or national variations;
 - (B) how much they interfere with ease of understanding.
 - (ii) structure:
 - (A) the ability of the applicant to use both basic and complex grammatical structures;
 - (B) the extent to which the applicant's errors interfere with the meaning.
 - (iii) vocabulary:
 - (A) the range and accuracy of the vocabulary used;
 - (B) the ability of the applicant to paraphrase successfully when lacking vocabulary.
 - (iv) fluency:
 - (A) tempo;
 - (B) hesitancy;
 - (C) rehearsed versus spontaneous speech;
 - (D) use of discourse markers and connectors.
 - (v) comprehension:
 - (A) on common, concrete and work-related topics;
 - (B) when confronted with a linguistic or situational complication or an unexpected turn of events.

Note: the accent or variety of accents used in the test material should be sufficiently intelligible for an international community of users.

(vi) interactions:

- (A) quality of response (immediate, appropriate, and informative);
- (B) the ability to initiate and maintain exchanges:
 - (i) on common, concrete and work-related topics;
 - (ii) when dealing with an unexpected turn of events.
- (C) the ability to deal with apparent misunderstandings by checking, confirming or clarifying.

Note: The assessment of the language skills in the areas mentioned above is conducted using the rating scale in AMC2 FCL.055.

(6) When the assessment is not conducted in a face-to-face situation, it should use appropriate technologies for the assessment of the applicant's abilities in listening and speaking, and for enabling interactions (for example: simulated pilot or controller communication).

ASSESSORS

- (m) It is essential that the persons responsible for language proficiency assessment ('assessors') are suitably trained and qualified. They should be either aviation specialists (for example current or former flight crew members or air traffic controllers), or language specialists with additional aviation-related training. An alternative approach would be to form an assessment team consisting of an operational expert and a language expert.
 - (1) The assessors should be trained on the specific requirements of the assessment.
 - (2) The assessors should not test applicants to whom they have given language training.

CRITERIA FOR THE ACCEPTABILITY OF LANGUAGE ASSESSMENT BODIES

- (n) To ensure an impartial assessment process, the language assessment should be independent of the language training.
 - (1) To be accepted, the language assessment bodies should demonstrate:
 - (i) appropriate management and staffing;
 - (ii) quality system established and maintained to ensure compliance with, and adequacy of, assessment requirements, standards and procedures.
 - (2) The quality system established by a language assessment body should address the following:
 - (i) management;
 - (ii) policy and strategy;
 - (iii) processes;
 - (iv) the relevant provisions of ICAO or Part-FCL, standards and assessment procedures;
 - (v) organisational structure;
 - (vi) responsibility for the development, establishment and management of the quality system;
 - (vii) documentation;
 - (viii) quality assurance programme;
 - (ix) human resources and training (initial and recurrent);
 - (x) assessment requirements;
 - (xi) customer satisfaction.
 - (3) The assessment documentation and records should be kept for a period of time determined by MCAA and made available, on request.
 - (4) The assessment documentation should include at least the following:
 - (i) assessment objectives;
 - (ii) assessment layout, time scale, technologies used, assessment samples, voice samples;
 - (iii) assessment criteria and standards (at least for the levels 4, 5 and 6 of the rating scale mentioned in AMC2 FCL.055);
 - (iv) documentation demonstrating the assessment validity, relevance and reliability;
 - (v) assessment procedures and responsibilities:
 - (A) preparation of individual assessment;
 - (B) administration: location(s), identity check and invigilation, assessment discipline, confidentiality or security;
 - (C) reporting and documentation provided to MCAA or to the applicant, including sample certificate;
 - (D) retention of documents and records.

Note: Refer to the 'Manual on the Implementation of ICAO Language Proficiency Requirements' (ICAO Doc 9835) for further guidance.

AMC2 FCL.055 Language proficiency

RATING SCALE

The following table describes the different levels of language proficiency:

LEVEL	PRONUNCIATION	STRUCTURE	VOCABULARY	FLUENCY	COMPREHENSION	INTERACTIONS
	Assumes a dialect or accent intelligible to the aeronautical community	Relevant grammatical structures and sentence patterns are determined by language functions appropriate to the task				
Expert (Level 6)	Pronunciation, stress, rhythm, and intonation, though possibly influenced by the first language or regional variation, almost never interfere with ease of understanding	Both basic and complex grammatical structures and sentence patterns are consistently well controlled.	Vocabulary range and accuracy are sufficient to communicate effectively on a wide variety of familiar and unfamiliar topics. Vocabulary is idiomatic, nuanced and sensitive to register.	Able to speak at length with a natural, effortless flow. Varies speech flow for stylistic effect, for example to emphasise a point. Uses appropriate discourse markers and connectors spontaneously	Comprehension is consistently accurate in nearly all contexts and includes omprehension of linguistic and cultural subtleties	Interacts with ease in nearly all situations. Is sensitive to verbal and non-verbal cues, and responds to them appropriately.
Extended (Level 5)	Pronunciation, stress, rhythm, and intonation, though influenced by the first language or regional variation, rarely interfere with ease of understanding.	Basic grammatical structures and sentence patterns are consistently well controlled. Complex structures are attempted but with errors which sometimes interfere with meaning.	Vocabulary range and accuracy are sufficient to communicate effectively on common, concrete, and work- related topics. Paraphrases consistently and successfully. Vocabulary is sometimes idiomatic.	Able to speak at length with relative case on familiar topics, but may not vary speech flow as a stylistic device. Can make use of appropriate discourse markers or connectors.	Comprehension is accurate on common, concrete, and work- related topics and mostly accurate when the speaker is confronted with a linguistic or situational complication or an unexpected turn of events. Is able to comprehend a range of speech varieties (dialect or accent) or registers.	Responses are immediate, appropriate, and informative. Manages the speaker or listener relationship effectively.
Operatio-nal (Level 4)	Pronunciation, stress, rhythm, and intonation are influenced by the first language or regional variation but only sometimes interfere with ease of understanding.	Basic grammatical structures and sentence patterns are used creatively and are usually well controlled. Errors may occur, particularly in unusual or unexpected circumstances, but rarely interfere with meaning.	Vocabulary range and accuracy are usually sufficient to communicate effectively on common, concrete, and work- related topics. Can often paraphrase successfully when lacking vocabulary particularly in unusual or unexpected circumstances.	Produces stretches of language at an appropriate tempo. There may be occasional loss of fluency on transition from rehearsed or formulaic speech to spontaneous interaction, but this does not prevent effective communication. Can make limited use of discourse markers and connectors. Fillers are not distracting.	Comprehension is mostly accurate on common, concrete, and work-related topics when the accent or variety used is sufficiently intelligible for an international community of users. When the speaker is confronted with a linguistic or situational complication or an unexpected turn of events, comprehension may be slower or require clarification strategies.	Responses are usually immediate, appropriate, and informative. Initiates and maintains exchanges even when dealing with an unexpected turn of events. Deals adequately with apparent misunderstandings by checking, confirming, or clarifying.
Pre- Operational (Level 3)	Pronunciation, stress, rhythm, and intonation are influenced by the first language or regional variation and frequently interfere with ease of understanding.	Basic grammatical structures and sentence patterns associated with predictable situations are not always well controlled. Errors frequently interfere with meaning.	Vocabulary range and accuracy are often sufficient to communicate effectively on common, concrete, and work- related topics but range is limited and the word choice often inappropriate. Is often unable to paraphrase successfully when lacking vocabulary.	Produces stretches of language, but phrasing and pausing are often inappropriate. Hesitations or slowness in language processing may prevent effective communication. Fillers are sometimes distracting.	Comprehension is often accurate on common, concrete, and work-related topics when the accent or variety used is sufficiently intelligible for an international community of users. May fall to understand a linguistic or situational complication or an unexpected turn of events.	Responses are sometimes immediate, appropriate, and informative. Can initiate and maintain exchanges with reasonable ease on familiar topics and in predictable situations. Generally inadequate when dealing with an unexpected turn of events.
Elementary (Level 2)	Pronunciation, stress, rhythm, and intonation are heavily influenced by the first language or regional variation and usually interfere with ease of understanding.	Shows only limited control of few simple memorised grammatical structures and sentence patterns.	Limited vocabulary range consisting only of isolated words and memorised phrases.	Can produce very short, isolated, memorised utterances with frequent pausing and a distracting use of fillers to search for expressions and articulate less familiar words.	Comprehension is limited to isolated, memorised phrases when they are carefully and slowly articulated.	Response time is slow, and often inappropriate. Interaction is limited to simple routine exchanges.
Pre- Elementary (Level 1)	Performs at a level below the elementary level.	Performs at a level below the elementary level.	Performs at a level below the elementary level.	Performs at a level below the elementary level.	Performs at a level below the elementary level.	Performs at a level below the elementary level.

Note: Operational Level (Level 4) is the minimum required proficiency level for *R*/*T* communication. Levels 1 through 3 describe pre-elementary, elementary and pre-operational levels of language proficiency respectively, all of which describe a level below the language proficiency requirement. Levels 5 and 6 describe extended and expert levels at levels of proficiency more advanced than the minimum required standard.

AMC3 FCL.055 Language proficiency SPECIFIC REQUIREMENTS FOR HOLDERS OF AN IR

USE OF ENGLISH LANGUAGE

- (a) The requirement of FCL.055(d) includes the ability to use the English language for the following purposes:
 - (1) flight: R/T relevant to all phases of flight, including emergency situations.
 - (2) ground: all information relevant to the accomplishment of a flight:
 - (i) be able to read and demonstrate an understanding of technical manuals written in English, for example an operations manual, a helicopter flight manual, etc.;
 - (ii) pre-flight planning, weather information collection, NOTAMs, ATC flight plan, etc.;
 - (iii) use of all aeronautical en-route, departure and approach charts and associated documents written in English.
 - (3) communication: be able to communicate with other crew members in English during all phases of flight, including flight preparation.
- (b) Alternatively, the items in (a) above may be demonstrated:
 - (1) by having passed a specific examination given by MCAA after having undertaken a course of training enabling the applicant to meet all the objectives listed in (a) above; or
 - (2) the item in (a)(1) above is considered to be fulfilled, if the applicant has passed an IR, MPL or ATPL skill test and proficiency check during which the two-way R/T communication is performed in English;
 - (3) the item in (a)(2) above is considered to be fulfilled if the applicant has graduated from an IR, MPL or ATP course given in English or if he or she has passed the theoretical IR or ATPL examination in English;
 - (4) the item in (a)(3) above is considered to be fulfilled, if the applicant for or the holder of an IR has graduated from an MCC course given in English and is holding a certificate of satisfactory completion of that course or if the applicant has passed a MP skill test and proficiency check for the issue of a class or type rating during which the two-way R/T communication and the communication with other crew members are performed in English.
- (c) Where the examination methods referred to above are equivalent to those established for the language proficiency requirements in accordance with AMC1 FCL.055, the examination may be used to issue a language proficiency endorsement.

AMC1 FCL.060 (b)(1) Recent experience

When a pilot needs to carry out one or more flights with an instructor or an examiner to comply with the requirement of FCL.060(b)(1) before the pilot can carry passengers, the instructor or examiner on board those flights will not be considered as a passenger.

GM1 FCL.060 (b)(1) Recent experience

AEROPLANES, HELICOPTERS, POWERED-LIFT, AIRSHIPS AND SAILPLANES

If a pilot or a PIC is operating under the supervision of an instructor to comply with the required three take-offs, approaches and landings, no passengers may be on board.

AMC1 FCL.060 (b)(5) Recent experience NON-COMPLEX HELICOPTERS

Grouping of non-complex helicopters with similar handling and operational characteristics:

- (a) Group 1: Bell 206/206L, Bell 407;
- (b) Group 2: Hughes 369, MD 500N, MD 520N, MD 600;
- (c) Group 3: SA 341/342, EC 120;
- (d) Group 4: SA 313/318, SA 315/316/319, AS 350, EC 130;
- (e) Group 5: all types listed in AMC1 FCL.740.H (a)(3) and R 22 and R 44.

SUBPART B – LIGHT AIRCRAFT PILOT LICENCE – LAPL

AMC1 FCL.115; FCL.120 SYLLABUS OF THEORETICAL KNOWLEDGE FOR THE LAPL

- (a) The training and examination should cover aspects related to non-technical skills in an integrated manner, taking into account the particular risks associated with the licence and the activity. The theoretical knowledge instruction provided by the ATO should include a certain element of formal classroom work but may also include other methods of delivery for example interactive video, slide or tape presentation, computer-based training and other media distance learning courses. The training organisation responsible for the training has to check if all the appropriate elements of the training course of theoretical knowledge instruction have been completed to a satisfactory standard before recommending the applicant for the examination.
- (b) The following tables contain the syllabi for the courses of theoretical knowledge, as well as for the theoretical knowledge examinations for the LAPL (B) and LAPL(S). The syllabi for the theoretical knowledge instruction and examination for the PPL (A) and PPL (H) in AMC1 FCL.210 and FCL.215 should be used for the LAPL (A) and the LAPL (H), respectively.

I. COMMON SUBJECTS [FOR LAPL(S) AND LAPL (B)]

1. AIR LAW AND ATC PROCEDURES

- 1.1. International law: conventions, agreements and organisations
- 1.2. Airworthiness of aircraft
- 1.3. Aircraft nationality and registration marks
- 1.4. Personnel licensing
- 1.5. Rules of the air
- 1.6. Procedures for air navigation: aircraft operations
- 1.7. Air traffic regulations: airspace structure
- 1.8. ATS and air traffic management
- 1.9. AIS
- 1.10. Aerodromes, external take-off sites
- 1.11. Search and rescue
- 1.12. Security
- 1.13. Accident reporting
- 1.14. National law

2. HUMAN PERFORMANCE

- 2.1. Human factors: basic concepts
- 2.2. Basic aviation physiology and health maintenance
- 2.3. Basic aviation psychology

3. METEOROLOGY

- 3.1. The atmosphere
- 3.2. Wind
- 3.3. Thermodynamics
- 3.4. Clouds and fog
- 3.5. Precipitation
- 3.6. Air masses and fronts
- 3.7 Pressure systems
- 3.8. Climatology
- 3.9. Flight hazards
- 3.10. Meteorological information

4. COMMUNICATIONS

- 4.1. VFR communications
- 4.2. Definitions
- 4.3. General operating procedures
- 4.4. Relevant weather information terms (VFR)
- 4.5. Action required to be taken in case of communication failure
- 4.6. Distress and urgency procedures
- 4.7. General principles of VHF propagation and allocation of frequencies

II. ADDITIONAL SUBJECTS FOR EACH CATEGORY

II.A. SAILPLANES

5. PRINCIPLES OF FLIGHT - SAILPLANE

- 5.1. Aerodynamics (airflow)
- 5.2. Flight mechanics
- 5.3. Stability
- 5.4. Control
- 5.5. Limitations (load factor and manoeuvres)
- 5.6. Stalling and spinning

6. OPERATIONAL PROCEDURES - SAILPLANE

- 6.1. General requirements
- 6.2. Launch methods
- 6.3. Soaring techniques
- 6.4. Circuits and landing
- 6.5. Outlanding
- 6.6. Special operational procedures and hazards
- 6.7. Emergency procedures

7. FLIGHT PERFORMANCE AND PLANNING - SAILPLANE

- 7.1. Verifying mass and balance
- 7.2. Speed polar of sailplanes or cruising speed
- 7.3. Flight planning and task setting
- 7.4. ICAO flight plan (ATS flight plan)
- 7.5. Flight monitoring and in-flight re-planning

8. AIRCRAFT GENERAL KNOWLEDGE, AIRFRAME AND SYSTEMS AND EMERGENCY EQUIPMENT – SAILPLANE

8.1. Airframe

- 8.2. System design, loads and stresses
- 8.3. Landing gear, wheels, tyres and brakes
- 8.4. Mass and balance
- 8.5. Flight controls
- 8.6. Instruments
- 8.7. Manuals and documents
- 8.8. Airworthiness and maintenance

9. NAVIGATION – SAILPLANE

- 9.1. Basics of navigation
- 9.2. Magnetism and compasses
- 9.3. Charts
- 9.4. Dead reckoning navigation
- 9.5. In-flight navigation
- 9.6. Global navigation satellite systems

II.B. BALLOONS

5. PRINCIPLES OF FLIGHT – BALLOON

- 5.1. Principles of flight
- 5.2. Aerostatics
- 5.3. Loading limitations
- 5.4. Operational limitations

6. **OPERATIONAL PROCEDURES – BALLOON**

- 6.1. General requirements
- 6.2. Special operational procedures and hazards (general aspects)
- 6.3. Emergency procedures

7. FLIGHT PERFORMANCE AND PLANNING – BALLOON

- 7.1. Mass
- 7.1.1. Purpose of mass considerations
- 7.1.2. Loading
- 7.2. Performance
- 7.2.1. Performance: general
- 7.3. Flight planning and flight monitoring
- 7.3.1. Flight planning: general
- 7.3.2. Fuel planning
- 7.3.3. Pre-flight preparation
- 7.3.4. ICAO flight plan (ATS flight plan)
- 7.3.5. Flight monitoring and in-flight re-planning

8. AIRCRAFT GENERAL KNOWLEDGE, ENVELOPE AND SYSTEMS AND EMERGENCY EQUIPMENT – BALLOON

- 8.1. System design, loads, stresses and maintenance
- 8.2. Envelope
- 8.3. Burner (hot-air balloon and hot-air airship)
- 8.4. Fuel cylinders (hot-air balloon or hot-air airship)
- 8.5. Basket or gondola
- 8.7. Burning gas (hot-air balloon or hot-air airship)
- 8.8. Ballast (gas balloon)
- 8.9. Engine (hot-air airship only)
- 8.10. Instruments
- 8.11. Emergency equipment

9. NAVIGATION – BALLOON

- 9.1. General navigation
- 9.2. Basics of navigation
- 9.3. Magnetism and compasses
- 9.4. Charts
- 9.5. Dead reckoning navigation
- 9.6. In-flight navigation
- 9.7. GNSS

AMC1 FCL.120; FCL.125 THEORETICAL KNOWLEDGE EXAMINATION AND SKILL TEST FOR THE LAPL

- (a) Theoretical knowledge examination
 - (1) The examinations should be in written form and should comprise a total of 120 multiple-choice questions covering all the subjects.
 - (2) For the subject 'communication' practical classroom testing may be conducted.
 - (3) The competent authority should inform applicants of the language(s) in which the examinations will be conducted.
- (b) Skill test

Further training may be required following any failed skill test or part thereof. There should be no limit to the number of skill tests that may be attempted.

- (c) Conduct of the test
 - (1) If the applicant chooses to terminate a skill test for reasons considered inadequate by the FE, the applicant should retake the entire skill test. If the test is terminated for reasons considered adequate by the FE, only those sections not completed should be tested in a further flight.
 - (2) Any manoeuvre or procedure of the test may be repeated once by the applicant. The FE may stop the test at any stage if it is considered that the applicant's demonstration of flying skill requires a complete retest.
 - (3) An applicant should be required to fly the aircraft from a position where the PIC functions can be performed and to carry out the test as if there is no other crew member. Responsibility for the flight should be allocated in accordance with national regulations.

AMC1 FCL.125 LAPL — Skill test

CONTENTS OF THE SKILL TEST FOR THE ISSUE OF A LAPL (A)

- (a) The route to be flown for the skill test should be chosen by the FE. The route should end at the aerodrome of departure or at another aerodrome. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board. The navigation section of the test should have a duration of at least 30 minutes which allows the pilot to demonstrate his/her ability to complete a route with at least two identified waypoints and may, as agreed between applicant and FE, be flown as a separate test.
- (b) An applicant should indicate to the FE the checks and duties carried out, including the identification of radio facilities. Checks should be completed in accordance with the flight manual or the authorised checklist for the aeroplane or TMG on which the test is being taken. During pre-flight preparation for the test the applicant should be required to determine power settings and speeds. Performance data for take-off, approach and landing should be calculated by the applicant in compliance with the operations manual or flight manual for the aeroplane or TMG used.

FLIGHT TEST TOLERANCE

- (c) The applicant should demonstrate the ability to:
 - (1) operate the aeroplane or TMG within its limitations;
 - (2) complete all manoeuvres with smoothness and accuracy;
 - (3) exercise good judgment and airmanship;
 - (4) apply aeronautical knowledge;
 - (5) maintain control of the aeroplane or TMG at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.
- (d) The following limits are for general guidance. The FE should make allowance for turbulent conditions and the handling qualities and performance of the aeroplane or TMG used:

± 150 ft
+15/-5 knots
± 15 knots

CONTENT OF THE SKILL TEST

(e) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a LAPL(A):

SECTION 1 PRE-FLIGHT OPERATIONS AND DEPARTURE

Use of checklist, airmanship, control of aeroplane or TMG by external visual reference, anti/de-icing procedures, etc. apply in all sections.

- a Pre-flight documentation, NOTAM and weather briefing
- b Mass and balance and performance calculation
- c Aeroplane or TMG inspection and servicing

- d Engine starting and after starting procedures
- e Taxiing and aerodrome procedures, pre-take-off procedures f Take-off and after take-off checks
- g Aerodrome departure procedures
- h ATC liaison: compliance

SECTION 2 GENERAL AIRWORK

- a ATC liaison
- b Straight and level flight, with speed changes
- c Climbing:
 - i. best rate of climb;
 - ii. climbing turns;
 - iii. levelling off.
- d Medium (30° bank) turns, look-out procedures and collision avoidance
- e Steep (45 ° bank) turns
- f Flight at critically low air speed with and without flaps
- g Stalling:
 - i. clean stall and recover with power;
 - ii. approach to stall descending turn with bank angle 20 °, approach configuration;
 - iii. approach to stall in landing configuration.
- h Descending:
 - i. with and without power;
 - ii. descending turns (steep gliding turns);
 - iii. levelling off.

SECTION 3 EN-ROUTE PROCEDURES

- a Flight plan, dead reckoning and map reading
- b Maintenance of altitude, heading and speed
- c Orientation, airspace structure, timing and revision of ETAs, log keeping
- d Diversion to alternate aerodrome (planning and implementation)
- e Flight management (checks, fuel systems, carburettor icing, etc.)
- f ATC liaison: compliance

SECTION 4 APPROACH AND LANDING PROCEDURES

- a Aerodrome arrival procedures
- b Collision avoidance (look-out procedures)
- c Precision landing (short field landing) and crosswind, if suitable conditions available
- d Flapless landing (if applicable)
- e Approach to landing with idle power
- f Touch and go
- g Go-around from low height
- h ATC liaison
- i Actions after flight

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

This section may be combined with Sections 1 through 4

- a Simulated engine failure after take-off
- b * Simulated forced landing
- c * Simulated precautionary landing
- d Simulated emergencies
- e Oral questions
 - * These items may be combined, at the discretion of the FE.

AMC2 FCL.125 LAPL — Skill test

CONTENTS OF THE SKILL TEST FOR THE ISSUE OF A LAPL (H)

- (a) The area and route to be flown for the skill test should be chosen by the FE. The route should end at the aerodrome of departure or at another aerodrome. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board. The navigation section of the test should consist of at least two legs, each leg of a minimum duration of 10 minutes. The skill test may be conducted in two flights.
- (b) An applicant should indicate to the FE the checks and duties carried out, including the identification of radio facilities. Checks should be completed in accordance with the flight manual or the authorised checklist or pilot operating handbook for the helicopter on which the test is being taken. During pre-flight preparation for the test the applicant should be required to determine power settings and speeds. Performance data for take-off, approach and landing should be calculated by the applicant in compliance with the operations manual or flight manual for the helicopter used.

FLIGHT TEST TOLERANCE

- (c) The applicant should demonstrate the ability to:
 - (1) operate the helicopter within its limitations;
 - (2) complete all manoeuvres with smoothness and accuracy;
 - (3) exercise good judgment and airmanship;
 - (4) apply aeronautical knowledge;
 - (5) maintain control of the helicopter at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.
- (d) The following limits are for general guidance. The FE should make allowance for turbulent conditions and the handling qualities and performance of the helicopter used:
 (1) height:

(1)	neight.	
	(i) normal forward flight	±150 ft
	(ii) with simulated major emergency	±200 ft
	(iii) hovering IGE flight	±2 ft
(2)	speed:	
	(i) take-off approach	+15 knots /-10 knots
	(ii) all other flight regimes	±15 knots
(3)	round drift:	
	(i) take-off hover IGE	± 3 ft
	(ii) landing	no sideways or backwards movement

CONTENT OF THE SKILL TEST

(e) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a LAPL(H):

SECTION 1 PRE-FLIGHT OR POST-FLIGHT CHECKS AND PROCEDURES

Use of checklist, airmanship, control of helicopter by external visual reference, anti/de-icing procedures, etc. apply in all sections.

- a Helicopter knowledge (for example technical log, fuel, mass and balance, performance), flight planning, NOTAM, and weather briefing
- b Pre-flight inspection or action, location of parts and purpose
- c Cockpit inspection, starting procedure
- d Communication and navigation equipment checks, selecting and setting frequencies
- e Pre-take-off procedure and ATC liaison
- f Parking, shutdown and post-flight procedure

SECTION 2 HOVER MANOEUVRES, ADVANCED HANDLING AND CONFINED AREAS

- a Take-off and landing (lift off and touch down)
- b Taxi and hover taxi
- c Stationary hover with head, cross and tail wind
- d Stationary hover turns, 360 ° left and right (spot turns)
- e Forward, sideways and backwards hover manoeuvring
- f Simulated engine failure from the hover
- g Quick stops into and downwind
- h Sloping ground or unprepared sites landings and take-offs
- i Take-offs (various profiles)
- j Crosswind and downwind take-off (if practicable)
- k Take-off at maximum take-off mass (actual or simulated)
- 1 Approaches (various profiles)
- m Limited power take-off and landing
- n Autorotations (FE to select two items from the following: basic, range, low speed, and 360 ° turns)
- o Autorotative landing
- p Practice forced landing with power recovery
- q Power checks, reconnaissance technique, approach and departure technique

SECTION 3 NAVIGATION AND EN-ROUTE PROCEDURES

- a Navigation and orientation at various altitudes or heights and map reading
- b Altitude or height, speed, heading control, observation of airspace and altimeter setting
- c Monitoring of flight progress, flight-log, fuel usage, endurance, ETA, assessment of track error, reestablishment of correct track and instrument monitoring
- d Observation of weather conditions and diversion planning
- e Collision avoidance (look-out procedures)
- f ATC liaison with due observance of regulations

SECTION 4 FLIGHT PROCEDURES AND MANOEUVRES

- a Level flight, control of heading, altitude or height and speed
- b Climbing and descending turns to specified headings
- c Level turns with up to 30 $^{\circ}$ bank, 180 $^{\circ}$ to 360 $^{\circ}$ left and right

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES (SIMULATED WHERE APPROPRIATE)

Note: The FE selects 4 items from the following:

- a. Engine malfunctions, including governor failure, carburettor or engine icing and oil system, as appropriate
- b. Fuel system malfunction
- c. Electrical system malfunction
- d. Hydraulic system malfunction, including approach and landing without hydraulics, as applicable
- e. Main rotor or anti-torque system malfunction (FFS or discussion only)
- f. Fire drills, including smoke control and removal, as applicable
- g. Other abnormal and emergency procedures as outlined in appropriate flight manual

AMC1 FCL.125; FCL.235

CONTENTS OF THE SKILL TEST FOR THE ISSUE OF A LAPL(S) AND OF AN SPL

- (a) An applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board.
- (b) The applicant should indicate to the FE the checks and duties carried out. Checks should be completed in accordance with the flight manual or the authorised checklist for the sailplane on which the test is being taken.

FLIGHT TEST TOLERANCE

- (c) The applicant should demonstrate the ability to:
 - (1) operate the sailplane within its limitations;
 - (2) complete all manoeuvres with smoothness and accuracy;
 - (3) exercise good judgment and airmanship;
 - (4) apply aeronautical knowledge;
 - (5) maintain control of the sailplane at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

CONTENT OF THE SKILL TEST

(d) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a LAPL(S) and of an SPL:

SECTION 1 PRE-FLIGHT OPERATIONS AND DEPARTURE

Use of checklist, airmanship (control of sailplane by external visual reference), look-out. Apply in all sections.

- (a) Pre-flight sailplane (daily) inspection, documentation, NOTAM and weather briefing
- (b) Verifying in-limits mass and balance and performance calculation
- (c) Sailplane servicing compliance
- (d) Pre-take-off checks

SECTION 2 LAUNCH METHOD

Note: at least for one of the three launch methods all the mentioned items are fully exercised during the skill test

SECTION 2 (A) WINCH OR CAR LAUNCH

- a Signals before and during launch, including messages to winch driver
- b Adequate profile of winch launch
- c Simulated launch failure
- d Situational awareness

SECTION 2 (B) AEROTOW LAUNCH

- a Signals before and during launch, including signals to or communications with tow plane pilot for any problems
- b Initial roll and take-off climb
- c Launch abandonment (simulation only or 'talk-through')
- d Correct positioning during straight flight and turns
- e Out of position and recovery
- f Correct release from tow
- g Look-out and airmanship through whole launch phase

SECTION 2 (C) SELF-LAUNCH

(powered sailplanes only)

- a ATC compliance (if applicable)
- b Aerodrome departure procedures
- c Initial roll and take-off climb
- d Look-out and airmanship during the whole take-off
- e Simulated engine failure after take-off
- f Engine shut down and stowage

SECTION 3 GENERAL AIRWORK

- a Maintain straight flight: attitude and speed control
- b Coordinated medium (30 ° bank) turns, look-out procedures and collision avoidance
- c Turning on to selected headings visually and with use of compass
- d Flight at high angle of attack (critically low air speed)
- e Clean stall and recovery
- f Spin avoidance and recovery
- g Steep (45 ° bank) turns, look-out procedures and collision avoidance
- h Local area navigation and awareness

SECTION 4 CIRCUIT, APPROACH AND LANDING

- a Aerodrome circuit joining procedure
- b Collision avoidance: look-out procedures
- c Pre-landing checks
- d Circuit, approach control and landing
- e Precision landing (simulation of out-landing and short field)
- f Crosswind landing if suitable conditions available

AMC2 FCL.125; FCL.235

CONTENTS OF THE SKILL TEST FOR THE ISSUE OF A LAPL (B) AND A BPL

- (a) The take-off site should be chosen by the applicant depending on the actual meteorological conditions, the area which has to be over flown and the possible options for suitable landing sites. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board.
- (b) An applicant should indicate to the FE the checks and duties carried out. Checks should be completed in accordance with the flight manual or the authorised checklist for the balloon on which the test is being taken. During pre-flight preparation for the test the applicant should be required to perform crew and passenger briefings and demonstrate crowd control. The load calculation should be performed by the applicant in compliance with the operations manual or flight manual for the balloon used.

FLIGHT TEST TOLERANCE

- (c) The applicant should demonstrate the ability to:
 - (1) operate the balloon within its limitations;
 - (2) complete all manoeuvres with smoothness and accuracy
 - (3) exercise good judgment and airmanship;
 - (4) apply aeronautical knowledge;
 - (5) maintain control of the balloon at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

CONTENT OF THE SKILL TEST

(d) The skill test contents and sections set out in this paragraph should be used for the skill test for the issue of a LAPL(B) (hot-air balloon) and a BPL (hot-air balloon):

SECTION 1 PRE-FLIGHT OPERATIONS, INFLATION AND TAKE-OFF

Use of checklist, airmanship, control of balloon by external visual reference, look-out procedures, etc. apply in all sections.

- a Pre-flight documentation, flight planning, NOTAM and weather briefing
- b Balloon inspection and servicing
- c Load calculation
- d Crowd control, crew and passenger briefings
- e Assembly and layout
- f Inflation and pre-take-off procedures

- g Take-off
- h ATC compliance(if applicable)

SECTION 2 GENERAL AIRWORK

- a Climb to level flight
- b Level flight
- c Descent to level flight
- d Operating at low level
- e ATC compliance (if applicable)

SECTION 3 EN-ROUTE PROCEDURES

- a Dead reckoning and map reading
- b Marking positions and time
- c Orientation and airspace structure
- d Maintenance of altitude
- e Fuel management
- f Communication with retrieve crew
- g ATC compliance

SECTION 4 APPROACH AND LANDING PROCEDURES

- a Approach from low level, missed approach and fly on
- b Approach from high level, missed approach and fly on
- c Pre-landing checks
- d Passenger pre-landing briefing
- e Selection of landing field
- f Landing, dragging and deflation
- g ATC compliance (if applicable)
- h Actions after flight

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

- a Simulated fire on the ground and in the air
- b Simulated pilot light and burner failures
- c Other abnormal and emergency procedures as outlined in the appropriate flight manual.
- d Oral questions
- (e) The skill test contents and sections set out in this paragraph should be used for the skill test for the issue of a LAPL(B) (gas balloon) and a BPL (gas balloon):

SECTION 1 PRE-FLIGHT OPERATIONS, INFLATION AND TAKE-OFF

Use of checklist, airmanship, control of balloon by external visual reference, look-out procedures, etc. apply in all sections.

- a Pre-flight documentation, flight planning, NOTAM and weather briefing
- b Balloon inspection and servicing
- c Load calculation
- d Crowd control, crew and passenger briefings
- e Assembly and layout
- f Inflation and pre-take-off procedures
- g Take-off
- h ATC compliance (if applicable)

SECTION 2 GENERAL AIRWORK

- a Climb to level flight
- b Level flight
- c Descent to level flight
- d Operating at low level
- e ATC compliance (if applicable)

SECTION 3 EN-ROUTE PROCEDURES

- a Dead reckoning and map reading
- b Marking positions and time
- c Orientation and airspace structure
- d Maintenance of altitude
- e Ballast management
- f Communication with retrieve crew
- g ATC compliance

SECTION 4 APPROACH AND LANDING PROCEDURES

- a. Approach from low level, missed approach and fly on
- b. Approach from high level, missed approach and fly on
- c. Pre-landing checks
- d. Passenger pre-landing briefing
- e. Selection of landing field
- f. Landing, dragging and deflation
- g. ATC compliance (if applicable)
- h. Actions after flight

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

- a Simulated closed appendix during take-off and climb
- b Simulated parachute or valve failure
- c Other abnormal and emergency procedures as outlined in the appropriate flight manual
- d Oral questions

AMC1 FCL.110.A LAPL (A) — Experience requirements and crediting

FLIGHT INSTRUCTION FOR THE LAPL (A)

(a) Entry to training

Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

- (b) Flight instruction
 - (1) The LAPL (A) flight instruction syllabus should take into account the principles of threat and error management and also cover:
 - (i) pre-flight operations, including mass and balance determination, aircraft inspection and servicing;
 - (ii) aerodrome and traffic pattern operations, collision avoidance precautions and procedures;
 - (iii) control of the aircraft by external visual reference;
 - (iv) flight at critically low air speeds, recognition of, and recovery from, incipient and full stalls;
 - (v) flight at critically high air speeds, recognition of, and recovery from, spiral dive;
 - (vi) normal and crosswind take-offs and landings;
 - (vii)maximum performance (short field and obstacle clearance) take-offs, short-field landings;
 - (viii) cross-country flying using visual reference, dead reckoning and radio navigation aids;
 - (ix) emergency operations, including simulated aeroplane equipment malfunctions;
 - (x) operations to, from and transiting controlled aerodromes, compliance with air traffic services procedures and communication procedures.
 - (2) Before allowing the applicant to undertake his/her first solo flight, the FI should ensure that the applicant can operate the required systems and equipment.

- (c) Syllabus of flight instruction
 - (1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 - (i) the applicant's progress and ability;
 - (ii) the weather conditions affecting the flight;
 - (iii) the flight time available;
 - (iv) instructional technique considerations;
 - (v) the local operating environment;
 - (vi) applicability of the exercises to the aeroplane or TMG type.
- (2) Each of the exercises involves the need for the applicant to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.
 - (i) Exercise 1a: Familiarisation with the aeroplane or TMG:
 - (A) characteristics of the aeroplane or TMG;
 - (B) cockpit layout;
 - (C) systems;
 - (D) checklists, drills and controls.
 - (ii) Exercise 1b: Emergency drills:
 - (A) action if fire on the ground and in the air;
 - (B) engine cabin and electrical system fire;
 - (C) systems failure;
 - (D) escape drills, location and use of emergency equipment and exits.
 - (iii) Exercise 2: Preparation for and action after flight:
 - (A) flight authorisation and aeroplane or TMG acceptance;
 - (B) serviceability documents;
 - (C) equipment required, maps, etc.;
 - (D) external checks;
 - (E) internal checks;
 - (F) harness, seat or rudder panel adjustments;
 - (G) starting and warm-up checks;
 - (H) power checks;
 - (I) running down system checks and switching off the engine;
 - (J) parking, security and picketing (for example tie down);
 - (K) completion of authorisation sheet and serviceability documents.
 - (iv) Exercise 3: Air experience: flight exercise.
 - (v) Exercise 4: Effects of controls:
 - (A) primary effects when laterally level and when banked;
 - (B) further effects of aileron and rudder;
 - (C) effects of:
 - (a) air speed;
 - (b) slipstream;
 - (c) power;
 - (d) trimming controls;
 - (e) flaps;
 - (f) other controls, as applicable.
 - (D) operation of:
 - (a) mixture control;
 - (b) carburettor heat;
 - (c) cabin heating or ventilation.
 - (vi) Exercise 5a: Taxiing:
 - (A) pre-taxi checks;
 - (B) starting, control of speed and stopping;
 - (C) engine handling;
 - (D) control of direction and turning;
 - (E) turning in confined spaces;
 - (F) parking area procedure and precautions;
 - (G) effects of wind and use of flying controls;
 - (H) effects of ground surface;

- (I) freedom of rudder movement;
- (J) marshalling signals;
- (K) instrument checks;
- (L) air traffic control procedures.
- (vii) Exercise 5b: Emergencies: brake and steering failure.
- (viii) Exercise 6: Straight and level:
 - (A) at normal cruising power, attaining and maintaining straight and level flight;
 - (B) flight at critically high air speeds;
 - (C) demonstration of inherent stability;
 - (D) control in pitch, including use of trim;
 - (E) lateral level, direction and balance, trim;
 - (F) at selected air speeds (use of power);
 - (G) during speed and configuration changes;
 - (H) use of instruments for precision.
- (ix) Exercise 7: Climbing:
 - (A) entry, maintaining the normal and max rate climb, levelling off;
 - (B) levelling off at selected altitudes;
 - (C) en-route climb (cruise climb);
 - (D) climbing with flap down;
 - (E) recovery to normal climb;
 - (F) maximum angle of climb;
 - (G) use of instruments for precision.
- (x) Exercise 8: Descending:
 - (A) entry, maintaining and levelling off;
 - (B) levelling off at selected altitudes;
 - (C) glide, powered and cruise descent (including effect of power and air speed);
 - (D) side slipping (on suitable types);
 - (E) use of instruments for precision flight.
- (xi) Exercise 9: Turning:
 - (A) entry and maintaining medium level turns;
 - (B) resuming straight flight;
 - (C) faults in the turn (in correct pitch, bank and balance);
 - (D) climbing turns;
 - (E) descending turns;
 - (F) slipping turns (for suitable types);
 - (G) turns onto selected headings, use of gyro heading indicator and compass;
 - (H) use of instruments for precision.
- (xii)Exercise 10a: Slow flight:
- Note: the objective is to improve the student's ability to recognise inadvertent flight at critically low speeds and provide practice in maintaining the aeroplane or TMG in balance while returning to normal air speed.
 - (A) safety checks;
 - (B) introduction to slow flight;
 - (C) controlled flight down to critically slow air speed;
 - (D) application of full power with correct attitude and balance to achieve normal climb speed.
- (xiii) Exercise 10b: Stalling:
 - (A) safety checks;
 - (B) symptoms;
 - (C) recognition;
 - (D) clean stall and recovery without power and with power;
 - (E) recovery when a wing drops;
 - (F) approach to stall in the approach and in the landing configurations, with and without power and recovery at the incipient stage.
- (xiv) Exercise 11: Spin avoidance:
 - (A) safety checks;
 - (B) stalling and recovery at the incipient spin stage (stall with excessive wing drop, about 45°);
 - (C) instructor induced distractions during the stall.

(xv) Exercise 12: Take-off and climb to downwind position:

- (A) pre-take-off checks;
- (B) into wind take-off;
- (C) safeguarding the nose wheel (if applicable);
- (D) crosswind take-off;
- (E) drills during and after take-off;
- (F) short take-off and soft field procedure or techniques including performance calculations;
- (G) noise abatement procedures.
- (xvi) Exercise 13: Circuit, approach and landing:
 - (A) circuit procedures, downwind and base leg;
 - (B) powered approach and landing;
 - (C) safeguarding the nose wheel (if applicable);
 - (D) effect of wind on approach and touchdown speeds and use of flaps;
 - (E) crosswind approach and landing;
 - (F) glide approach and landing;
 - (G) short landing and soft field procedures or techniques;
 - (H) flapless approach and landing;
 - (I) wheel landing (tail wheel aeroplanes);
 - (J) missed approach and go-around;
 - (K) noise abatement procedures.
- (xvii) Exercise 12/13: Emergencies:
 - (A) abandoned take-off;
 - (B) engine failure after take-off;
 - (C) mislanding and go-around;
 - (D) missed approach.
- Note: in the interests of safety, it will be necessary for pilots trained on nose wheel aeroplanes or TMGs to undergo dual conversion training before flying tail wheel aeroplanes or TMGs, and vice versa.
- (xviii) Exercise 14: First solo:
 - (A) instructor's briefing including limitations;
 - (B) use of required equipment;
 - (C) observation of flight and de-briefing by instructor.

Note: during flights immediately following the solo circuit consolidation the following should be revised:

- (A) procedures for leaving and rejoining the circuit;
- (B) the local area, restrictions, map reading;
- (C) use of radio aids for homing;
- (D) turns using magnetic compass, compass errors.
- (xix) Exercise 15: Advanced turning:
 - (A) steep turns (45 $^{\circ}$), level and descending;
 - (B) stalling in the turn and recovery;
 - (C) recoveries from unusual attitudes, including spiral dives.

(xx) Exercise 16: Forced landing without power:

- (A) forced landing procedure;
- (B) choice of landing area, provision for change of plan;
- (C) gliding distance;
- (D) descent plan;
- (E) key positions;
- (F) engine cooling;
- (G) engine failure checks;
- (H) use of radio;
- (I) base leg;
- (J) final approach;
- (K) landing;
- (L) actions after landing.
- (xxi) Exercise 17: Precautionary landing:
 - (A) full procedure away from aerodrome to break-off height;
 - (B) occasions necessitating a precautionary landing;
 - (C) in-flight conditions;
 - (D) landing area selection:

- (a) normal aerodrome;
- (b) disused aerodrome;
- (c) ordinary field.
- (E) circuit and approach;
- (F) actions after landing.(xxii) Exercise 18a: Navigation:
 - (A) flight planning:
 - (a) weather forecast and actuals;
 - (b) map selection and preparation:
 - (1) choice of route;
 - (2) airspace structure;
 - (3) safety altitudes.
 - (c) calculations:
 - (1) magnetic heading(s) and time(s) en-route;
 - (2) fuel consumption;
 - (3) mass and balance;
 - (4) mass and performance.
 - (d) flight information:
 - (1) NOTAMs, etc.;
 - (2) radio frequencies;
 - (3) selection of alternate aerodromes.
 - (e) aeroplane or TMG documentation;
 - (f) notification of the flight:
 - (1) pre-flight administrative procedures;
 - (2) flight plan form.
 - (B) departure:
 - (a) organisation of cockpit workload;
 - (b) departure procedures:
 - (1) altimeter settings;
 - (2) ATC liaison in regulated airspace;
 - (3) setting heading procedure;
 - (4) noting of ETAs.
 - (c) maintenance of altitude and heading;
 - (d) revisions of ETA and heading;
 - (e) log keeping;
 - (f) use of radio;
 - (g) minimum weather conditions for continuation of flight;
 - (h) in-flight decisions;
 - (i) transiting controlled or regulated airspace;
 - (j) diversion procedures;
 - (k) uncertainty of position procedure;
 - (l) lost procedure.
 - (C) arrival and aerodrome joining procedure:
 - (a) ATC liaison in regulated airspace;
 - (b) altimeter setting;
 - (c) entering the traffic pattern;
 - (d) circuit procedures;
 - (e) parking;
 - (f) security of aeroplane or TMG;
 - (g) refuelling;
 - (h) closing of flight plan, if appropriate;
 - (i) post-flight administrative procedures.
- (xxiii) Exercise 18b: Navigation problems at lower levels and in reduced visibility:
 - (A) actions before descending;
 - (B) hazards (for example obstacles, and terrain);
 - (C) difficulties of map reading;
 - (D) effects of wind and turbulence;
 - (E) vertical situational awareness (avoidance of controlled flight into terrain);
 - (F) avoidance of noise sensitive areas;

- (G) joining the circuit;
- (H) bad weather circuit and landing.
- (xxiv) Exercise 18c: Radio navigation (basics):
 - (A) use of GNSS or VOR/ADF:
 - (a) selection of waypoints or stations;
 - (b) to or from indications and orientation;
 - (c) error messages.
 - (B) use of VHF/DF:
 - (a) availability, AIP and frequencies;
 - (b) R/T procedures and ATC liaison;
 - (c) obtaining a QDM and homing.
 - (C) use of en-route or terminal radar:
 - (a) availability and AIP;
 - (b) procedures and ATC liaison;
 - (c) pilot's responsibilities;
 - (d) secondary surveillance radar:
 - (1) transponders;
 - (2) code selection;
 - (3) interrogation and reply.
- (xxv) Exercise 19: Stopping and restarting the engine (in the case of TMGs only):
 - (A) engine cooling;
 - (B) switching-off procedure;
 - (C) restarting of the engine.

AMC2 FCL.110.A LAPL (A) — Experience requirements and crediting CREDITING: PRE-ENTRY FLIGHT TEST

The pre-entry flight test referred to in FCL.110.A(c) should cover the total content of the syllabus of flight instruction for the issuance of the LAPL (A), in accordance with AMC1 FCL.110.A.

GM1 FCL.135.A; FCL.135.H

DIFFERENCES AND FAMILIARISATION TRAINING

- (a) Differences training requires the acquisition of additional knowledge and training on an appropriate training device or the aircraft.
- (b) Familiarisation training requires the acquisition of additional knowledge.

AMC1 FCL.110.H LAPL (H) — **Experience requirements and crediting** FLIGHT INSTRUCTION FOR THE LAPL (H)

(a) Entry to training

Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

- (b) Flight instruction
 - (1) The LAPL(H) flight instruction syllabus should take into account the principles of threat and error management and also cover:
 - (i) pre-flight operations, including mass and balance determination, helicopter inspection and servicing;
 - (ii) aerodrome and traffic pattern operations, collision avoidance precautions and procedures;
 - (iii) control of the helicopter by external visual reference;
 - (iv) take-offs, landings, hovering, look-out turns and normal transitions from and to the hover;
 - (v) emergency procedures, basic autorotations, simulated engine failure and ground resonance recovery if relevant to type;
 - (vi) sideways and backwards flight and turns on the spot;
 - (vii) incipient vortex ring recognition and recovery;
 - (viii) touchdown autorotations, simulated engine-off landings, practice forced landings. Simulated equipment malfunctions and emergency procedures relating to malfunctions of engines, controls, electrical and hydraulic circuits;

(ix) steep turns;

- (x) transitions, quick stops, out of wind manoeuvres, sloping ground landings and take-offs;
- (xi) limited power and confined area operations including selection of and operations to and from unprepared sites;
- (xii)cross-country flying by using visual reference, dead reckoning and, where available and radio navigation aids;
- (xiii) operations to and from aerodromes; compliance with air traffic services procedures and communication procedures.
- (2) Before allowing the applicant to undertake his/her first solo flight, the FI should ensure that the applicant can operate the required systems and equipment.
- (c) Syllabus of flight instruction
 - (1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 - (i) the applicant's progress and ability;
 - (ii) the weather conditions affecting the flight;
 - (iii) the flight time available;
 - (iv) instructional technique considerations;
 - (v) the local operating environment;
 - (vi) applicability of the exercises to the helicopter type.
 - (2) Each of the exercises involves the need for the applicant to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.
 - (i) Exercise 1a: Familiarisation with the helicopter:
 - (A) characteristics of the helicopter, external features;
 - (B) cockpit layout;
 - (C) systems;
 - (D) checklists, procedures, controls.
 - (ii) Exercise 1b: Emergency procedures:
 - (A) action if fire on the ground and in the air;
 - (B) engine, cabin and electrical system fire;
 - (C) systems failures;
 - (D) escape drills, location and use of emergency equipment and exits.
 - (iii) Exercise 2: Preparation for and action after flight:
 - (A) flight authorisation and helicopter acceptance;
 - (B) serviceability documents;
 - (C) equipment required, maps, etc.;
 - (D) external checks;
 - (E) internal checks;
 - (F) seat, harness and flight controls adjustments;
 - (G) starting and warm-up checks clutch engagement and starting rotors;
 - (H) power checks;
 - (I) running down system checks and switching off the engine;
 - (J) parking, security and picketing;
 - (K) completion of authorisation sheet and serviceability documents.
 - (iv) Exercise 3: Air experience:
 - (A) to introduce the student to rotary wing flight;
 - (B) flight exercise.
 - (v) Exercise 4: Effects of controls:
 - (A) function of flight controls, primary and secondary effect;
 - (B) effect of air speed;
 - (C) effect of power changes (torque);
 - (D) effect of yaw (sideslip);
 - (E) effect of disc loading (bank and flare);
 - (F) effect on controls of selecting hydraulics on/off;
 - (G) effect of control friction;
 - (H) instruments;
 - (I) use of carburettor heat or anti-icing control.

- (vi) Exercise 5: Power and attitude changes:
 - (A) relationship between cyclic control position, disc attitude, fuselage attitude and air speed;
 - (B) flapback;
 - (C) power required diagram in relation to air speed;
 - (D) power and air speed changes in level flight;
 - (E) use of instruments for precision;
 - (F) engine and air speed limitations.
- (vii)Exercise 6a: Straight and level:
 - (A) at normal cruising power, attaining and maintaining straight and level flight;
 - (B) control in pitch, including use of control friction or trim;
 - (C) maintaining direction and balance, (ball or yawstring use);
 - (D) setting power for selected air speeds and speed changes;
 - (E) use of instruments for precision.
- (viii) Exercise 6b: Climbing:
 - (A) optimum climb speed, best angle or rate of climb from power required diagram;
 - (B) initiation, maintaining the normal and maximum rate of climb, levelling off;
 - (C) levelling off at selected altitudes or heights;
 - (D) use of instruments for precision.
- (ix) Exercise 6c: Descending:
 - (A) optimum descent speed and best angle or rate of descent from power required diagram;
 - (B) initiation, maintaining and levelling off;
 - (C) levelling off at selected altitudes or heights;
 - (D) descent (including effect of power and air speed);
 - (E) use of instruments for precision.
- (x) Exercise 6d: Turning:
 - (A) initiation and maintaining medium level turns;
 - (B) resuming straight flight;
 - (C) altitude, bank and coordination;
 - (D) climbing and descending turns and effect on rate of climb or descent;
 - (E) turns onto selected headings, use of gyro heading indicator and compass;
 - (F) use of instruments for precision.
- (xi) Exercise 7: Basic autorotation:
 - (A) safety checks, verbal warning and look-out;
 - (B) entry, development and characteristics;
 - (C) control of air speed and RRPM, rotor and engine limitations;
 - (D) effect of AUM, IAS, disc loading, G-forces and density altitude
 - (E) re-engagement and go-around procedures (throttle over-ride or ERPM control);
 - (F) vortex condition during recovery;
 - (G) gentle and medium turns in autorotation;
 - (H) demonstration of variable flare simulated engine off landing.
- (xii)Exercise 8a: Hovering:
 - (A) demonstrate hover IGE, importance of wind effect and attitude, ground cushion, stability in the hover, effects of over controlling;
 - (B) student holding cyclic stick only;
 - (C) student handling collective lever (and throttle) only;
 - (D) student handling collective lever, (throttle) and pedals;
 - (E) student handling all controls;
 - (F) demonstration of ground effect;
 - (G) demonstration of wind effect;
 - (H) demonstrate gentle forward running touchdown;
 - (I) specific hazards, for example snow, dust and litter.
- (xiii) Exercise 8b: Hover taxiing and spot turns:
 - (A) revise hovering;
 - (B) precise ground speed and height control;
 - (C) effect of wind direction on helicopter attitude and control margin;
 - (D) control and coordination during spot turns;
 - (E) carefully introduce gentle forward running touchdown.
- (xiv) Exercise 8c: Hovering and taxiing emergencies:
 - (A) revise hovering and gentle forward running touchdown, explain (demonstrate where applicable) effect of hydraulics failure in the hover;

- (B) demonstrate simulated engine failure in the hover and hover taxi.
- (C) demonstrate dangers of mishandling and over-pitching.
- (xv) Exercise 9: Take-off and landing
 - (A) pre-take-off checks or drills;
 - (B) look-out;
 - (C) lifting to hover;
 - (D) after take-off checks;
 - (E) danger of horizontal movement near ground;
 - (F) danger of mishandling and overpitching;
 - (G) landing (without sideways or backwards movement);
 - (H) after landing checks or drills;
 - (I) take-off and landing crosswind and downwind.
- (xvi) Exercise 10: Transitions from hover to climb and approach to hover:
 - (A) look-out;
 - (B) revise take-off and landing;
 - (C) ground effect, translational lift and its effects;
 - (D) flapback and its effects;
 - (E) effect of wind speed and direction during transitions from or to the hover;
 - (F) the constant angle approach;
 - (G) demonstration of variable flare simulated engine off landing.
- (xvii) Exercise 11a: Circuit, approach and landing:
 - (A) revise transitions from hover to climb and approach to hover;
 - (B) circuit procedures, downwind and base leg;
 - (C) approach and landing with power;
 - (D) pre-landing checks;
 - (E) effect of wind on approach and IGE hover
 - (F) crosswind approach and landing;
 - (G) go-around;
 - (H) noise abatement procedures.
- (xviii) Exercise 11b: Steep and limited power approaches and landings:
 - (A) revise the constant angle approach;
 - (B) the steep approach (explain danger of high sink rate and low air speed);
 - (C) limited power approach (explain danger of high speed at touch down);
 - (D) use of the ground effect;
 - (E) variable flare simulated engine off landing.
- (xix) Exercise 11c: Emergency procedures:
 - (A) abandoned take-off;
 - (B) missed approach and go-around;
 - (C) hydraulic off landing (if applicable);
 - (D) tail rotor control or tail rotor drive failure (briefing only);
 - (E) simulated emergencies in the circuit to include:
 - (F) hydraulics failure;
 - (G) simulated engine failure on take-off, crosswind, downwind and base leg;
 - (H) governor failure.
- (xx) Exercise 12: First solo:
 - (A) instructor's briefing, observation of flight and debriefing;
 - (B) warn of change of attitude from reduced and laterally displaced weight;
 - (C) warn of low tail, low skid or wheel during hover and landing;
 - (D) warn of dangers of loss of RRPM and overpitching;
 - (E) pre-take-off checks;
 - (F) into wind take-off;
 - (G) procedures during and after take-off;
 - (H) normal circuit, approaches and landings;
 - (I) action if an emergency.
- (xxi) Exercise 13: Sideways and backwards hover manoeuvring:
 - (A) manoeuvring sideways flight heading into wind;
 - (B) manoeuvring backwards flight heading into wind;
 - (C) combination of sideways and backwards manoeuvring;
 - (D) manoeuvring sideways and backwards, heading out of wind;
 - (E) stability and weather cocking;

- (F) recovery from backwards manoeuvring, (pitch nose down);
- (G) groundspeed limitations for sideways and backwards manoeuvring.
- (xxii) Exercise 14: Spot turns:
 - (A) revise hovering into wind and downwind;
 - (B) turn on spot through 360°:
 - (a) around pilots position;
 - (b) around tail rotor;
 - (c) around helicopter geometric centre;
 - (d) square and safe visibility clearing turn.
 - (C) rotor RPM control, torque effect, cyclic limiting stops due to CG position and wind speed and direction.
- (xxiii) Exercise 15: Hover OGE and vortex ring:
 - (A) establishing hover OGE;
 - (B) drift, height or power control;
 - (C) demonstration of incipient stage of vortex ring, recognition and recovery (from a safe altitude);
 - (D) loss of tail rotor effectiveness.
- (xxiv) Exercise 16: Simulated EOL:
 - (A) the effect of weight, disc loading, density attitude and RRPM decay;
 - (B) revise basic autorotation entry;
 - (C) optimum use of cyclic and collective to control speed or RRPM;
 - (D) variable flare simulated EOL;
 - (E) demonstrate constant attitude simulated EOL;
 - (F) demonstrate simulated EOL from hover or hover taxi;
 - (G) demonstrate simulated EOL from transition and low level.
- (xxv) Exercise 17: Advanced autorotation:
 - (A) over a selected point at various height and speed;
 - (B) revise basic autorotation: note ground distance covered;
 - (C) range autorotation;
 - (D) low speed autorotation;
 - (E) constant attitude autorotation (terminate at safe altitude);
 - (F) 'S' turns;
 - (G) turns through 180° and 360° ;
 - (H) effects on angles of descent, IAS, RRPM and effect of AUM.
- (xxvi) Exercise 18: Practice forced landings:
 - (A) procedure and choice of the forced landing area;
 - (B) forced landing checks and crash action;
 - (C) re-engagement and go-around procedures.
- (xxvii) Exercise 19: Steep turns:
 - (A) steep (level) turns (30° bank);
 - (B) maximum rate turns (45° bank if possible);
 - (C) steep autorotative turns;
 - (D) faults in the turn: balance, attitude, bank and coordination;
 - (E) RRPM control and disc loading;
 - (F) vibration and control feedback;
 - (G) effect of wind at low level.
- (xxviii) Exercise 20: Transitions:
 - (A) revise ground effect, translational lift and flapback;
 - (B) maintaining constant height, (20–30 ft AGL):
 - (C) transition from hover to minimum 50 knots IAS and back to hover;
 - (D) demonstrate effect of wind.
- (xxix) Exercise 21: Quick stops:
 - (A) use of power and controls;
 - (B) effect of wind;
 - (C) quick stops into wind;
 - (D) quick stops from crosswind and downwind terminating into wind;
 - (E) danger of vortex ring;
 - (F) danger of high disc loading.
- (xxx) Exercise 22a: Navigation:
 - (A) Flight planning:

- (a) weather forecast and actuals;
- (b) map selection and preparation and use:
 - (1) choice of route;
 - (2) controlled airspace, danger and prohibited areas;
 - (3) safety altitudes and noise abatement considerations.
- (c) calculations:
 - (1) magnetic heading(s) and time(s) en-route;
 - (2) fuel consumption;
 - (3) mass and balance.
- (d) flight information:
 - (1) NOTAMs, etc.;
 - (2) radio frequencies;
 - (3) selection of alternate landing sites.
- (e) helicopter documentation;
- (f) notification of the flight:
 - (1) pre-flight administrative procedures;
 - (2) flight plan form (where appropriate).
- (B) Departure:
 - (a) organisation of cockpit workload;
 - (b) departure procedures:
 - (1) altimeter settings;
 - (2) ATC liaison in regulated airspace;
 - (3) setting heading procedure;
 - (4) noting of ETAs.
 - (c) maintenance of height or altitude and heading;
 - (d) revisions of ETA and heading:
 - (1) 10° line, double track, track error and closing angle;
 - (2) 1 in 60 rule;
 - (3) amending an ETA.
 - (e) log keeping;
 - (f) use of radio;
 - (g) minimum weather conditions for continuation of flight;
 - (h) in-flight decisions;
 - (i) transiting controlled or regulated airspace;
 - (j) uncertainty of position procedure;
 - (k) lost procedure.
- (C) Arrival and aerodrome joining procedure:
 - (a) ATC liaison in regulated airspace;
 - (b) altimeter setting;
 - (c) entering the traffic pattern;
 - (d) circuit procedures;
 - (e) parking;
 - (f) security of helicopter;
 - (g) refuelling;
 - (h) closing of flight plan, (if appropriate);
 - (i) post-flight administrative procedures.
- (xxxi) Exercise 22b: Navigation problems at low heights and in reduced visibility:
 - (A) actions before descending;
 - (B) hazards (for example obstacles and other aircraft);
 - (C) difficulties of map reading;
 - (D) effects of wind and turbulence;
 - (E) avoidance of noise sensitive areas;
 - (F) joining the circuit;
 - (G) bad weather circuit and landing;
- (H) appropriate procedures and choice of landing area for precautionary landings.
- (xxxii) Exercise 22c: Radio navigation (basics):
 - (A) Use of GNNS or VOR/NDB:
 - (a) selection of waypoints;
 - (b) to or from indications or orientation;
 - (c) error messages.

- (B) Use of VHF/DF:
 - (a) availability, AIP and frequencies;
 - (b) R/T procedures and ATC liaison;
 - (c) obtaining a QDM and homing.
- (C) Use of en-route or terminal radar:
 - (a) availability and AIP;
 - (b) procedures and ATC liaison;
 - (c) pilot's responsibilities;
 - (d) secondary surveillance radar:
 - (1) transponders;
 - (2) code selection;
 - (3) interrogation and reply.
- (xxxiii) Exercise 23: Advanced take-off, landings and transitions:
 - (A) landing and take-off out of wind (performance reduction);
 - (B) ground effect, translational lift and directional stability variation when out of wind;
 - (C) downwind transitions;
 - (D) vertical take-off over obstacles;
 - (E) reconnaissance of landing site;
 - (F) running landing;
 - (G) zero speed landing;
 - (H) crosswind and downwind landings;
 - (I) steep approach;
 - (J) go-around.
- (xxxiv) Exercise 24: Sloping ground:
 - (A) limitations and assessing slope angle;
 - (B) wind and slope relationship: blade and control stops;
 - (C) effect of CG when on slope;
 - (D) ground effect on slope and power required;
 - (E) right skid up slope;
 - (F) left skid up slope;
 - (G) nose up slope;
 - (H) avoidance of dynamic roll over, dangers soft ground and sideways movement on touchdown;
 - (I) danger of striking main or tail rotor by harsh control movement near ground.
- (xxxv) Exercise 25: Limited power:
 - (A) take-off power check;
 - (B) vertical take-off over obstacles;
 - (C) in-flight power check;
 - (D) unning landing;
 - (E) zero speed landing;
 - (F) approach to low hover;
 - (G) approach to hover;
 - (H) approach to hover OGE;
 - (I) steep approach;
 - (J) go-around.
- (xxxvi) Exercise 26: Confined areas:
 - (A) landing capability and performance assessment;
 - (B) locating landing site and assessing wind speed and direction;
 - (C) reconnaissance of landing site;
 - (D) select markers;
 - (E) select direction and type of approach;
 - (F) circuit;
 - (G) approach to committed point and go-around;
 - (H) approach;
 - (I) clearing turn;
 - (J) landing;
 - (K) power check and performance assessment in and OGE;
 - (L) normal take-off to best angle of climb speed;
 - (M) vertical take-off from hover.

AMC2 FCL.110.H LAPL (H) — Experience requirements and crediting CREDITING: PRE-ENTRY FLIGHT TEST

The pre-entry flight test referred to in FCL.110.H (b) should cover the total content of the syllabus of flight instruction for the issuance of the LAPL (H), in accordance with AMC1 FCL.110.H.

AMC1 FCL.110.S LAPL(S) — Experience requirements and crediting

CREDITING: PRE-ENTRY FLIGHT TEST

The pre-entry flight test referred to in FCL.110.S(c) should cover the total content of the syllabus of flight instruction for the issuance of the LAPL(S), in accordance with AMC1 FCL.110.S and FCL.210.S.

AMC1 FCL.110.S; FCL.210.S

FLIGHT INSTRUCTION FOR THE LAPL(S) AND THE SPL

(a) Entry to training

Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

- (b) Flight instruction
 - (1) The LAPL (S) and SPL flight instruction syllabus should take into account the principles of threat and error management and also cover:
 - (i) pre-flight operations, including verifying mass and balance, aircraft inspection and servicing, airspace and weather briefing;
 - (ii) aerodrome and traffic pattern operations, collision avoidance precautions and procedures;
 - (iii) control of the aircraft by external visual reference;
 - (iv) flight at high angle of attack (critically low air speeds), recognition of, and recovery from, incipient and full stalls and spins;
 - (v) flight at critically high air speeds, recognition of, and recovery from spiral dive;
 - (vi) normal and crosswind take-offs in respect with the different launch methods;
 - (vii)normal and crosswind landings;
 - (viii) short field landings and outlandings: field selection, circuit and landing hazards and precautions;
 - (ix) cross-country flying using visual reference, dead reckoning and available navigation aids;
 - (x) soaring techniques as appropriate to site conditions;
 - (xi) emergency actions;
 - (xii) compliance with air traffic services procedures and communication procedures.
 - (2) Before allowing the applicant to undertake his/her first solo flight, the FI should ensure that the applicant can operate the required systems and equipment.
- (c) Syllabus of flight instruction
 - (1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 - (i) the applicant's progress and ability;
 - (ii) the weather conditions affecting the flight;
 - (iii) the flight time available;
 - (iv) instructional technique considerations;
 - (v) the local operating environment;
 - (vi) applicability of the exercises to the sailplane type.
 - (2) At the discretion of the instructors some of the exercises may be combined and some other exercises may be done in several flights.
 - (3) At least the exercises 1 to 12 have to be completed before the first solo flight.
 - (4) Each of the exercises involves the need for the applicant to be aware of the needs for good airmanship and look-out, which should be emphasised at all times.
 - (i) Exercise 1: Familiarisation with the sailplane:
 - (A) characteristics of the sailplane;

- (B) cockpit layout: instruments and equipment;
- (C) light controls: stick, pedals, airbrakes, flaps and trim;
- (D) cable release and undercarriage;
- (E) checklists, drills and controls.
- (ii) Exercise 2: Procedures if emergencies:
 - (A) use of safety equipment (parachute);
 - (B) action if system failures;
 - (C) bail-out procedures.
- (iii) Exercise 3: Preparation for flight:
 - (A) pre-flight briefings;
 - (B) required documents on board;
 - (C) equipment required for the intended flight;
 - (D) ground handling, movements, tow out, parking and security;
 - (E) pre-flight external and internal checks;
 - (F) verifying in-limits mass and balance;
 - (G) harness, seat or rudder panel adjustments;
 - (H) passenger handling;
 - (I) pre-launch checks.
- (iv) Exercise 4: Initial air experience:
 - (A) area familiarisation;
 - (B) look-out procedures.
- (v) Exercise 5: Effects of controls:
 - (A) look-out procedures;
 - (B) use of visual references;
 - (C) primary effects when laterally level and when banked;
 - (D) reference attitude and effect of elevator;
 - (E) relationship between attitude and speed;
 - (F) effects of:
 - (a) flaps (if available);
 - (b) airbrakes.
- (vi) Exercise 6: Coordinated rolling to and from moderate angles of bank:
 - (A) look-out procedures;
 - (B) further effects of aileron (adverse yaw) and rudder (roll);
 - (C) coordination;
 - (D) rolling to and from moderate angles of bank and return to straight flight.
- (vii) Exercise 7: Straight flying:
 - (A) look-out procedures;
 - (B) maintaining straight flight;
 - (C) flight at critically high air speeds;
 - (D) demonstration of inherent pitch stability;
 - (E) control in pitch, including use of trim;
 - (F) lateral level, direction and balance and trim;
 - (G) air speed: instrument monitoring and control.
- (vii)Exercise 8: Turning:
 - (A) look-out procedures;
 - (B) demonstration and correction of adverse yaw;
 - (C) entry to turn (medium level turns);
 - (D) stabilising turns;
 - (E) exiting turns;
 - (F) faults in the turn (slipping and skidding);
 - (G) turns on to selected headings and use of compass;
 - (H) use of instruments (ball indicator or slip string) for precision.

(ix) Exercise 9a: Slow flight:

- Note: the objective is to improve the student's ability to recognise inadvertent flight at critically low speeds (high angle of attack) and to provide practice in maintaining the sailplane in balance while returning to normal attitude (speed).
 - (A) safety checks;
 - (B) introduction to characteristics of slow flight;
 - (C) controlled flight down to critically high angle of attack (slow air speed).

- (x) Exercise 9b: Stalling:
 - (A) safety checks;
 - (B) pre-stall symptoms, recognition and recovery;
 - (C) stall symptoms, recognition and recovery;
 - (D) recovery when a wing drops;
 - (E) approach to stall in the approach and in the landing configurations;
 - (F) recognition and recovery from accelerated stalls.
- (xi) Exercise 10: Spin recognition and spin avoidance:
 - (A) safety checks;
 - (B) stalling and recovery at the incipient spin stage (stall with excessive wing drop, about 45°);
 - (C) entry into fully developed spins (if suitable training aircraft available);
 - (D) recognition of full spins (if suitable training aircraft available);
 - (E) standard spin recovery (if suitable training aircraft available);
 - (F) instructor induced distractions during the spin entry (if suitable training aircraft available).
- Note: consideration of manoeuvre limitations and the need to refer to the sailplane manual and mass and balance calculations. If no suitable training aircraft is available to demonstrate the fully developed spin, all the aspects related to these training items have to be covered by specific theoretical instruction.
- (xii)Exercise 11: Take-off or launch methods:
 - At least one launch method must be taught containing all the subjects below.
- (xiii) Exercise 11a: Winch launch:
 - (A) signals or communication before and during launch;
 - (B) use of the launching equipment;
 - (C) pre-take-off checks;
 - (D) into wind take-off;
 - (E) crosswind take-off;
 - (F) optimum profile of winch launch and limitations;
 - (G) release procedures;
 - (H) launch failure procedures.
- (xiv) Exercise 11b: Aero tow:
 - (A) signals or communication before and during launch;
 - (B) use of the launch equipment;
 - (C) pre-take-off checks;
 - (D) into wind take-off;
 - (E) crosswind take-off;
 - (F) on tow: straight flight, turning and slip stream;
 - (G) out of position in tow and recovery;
 - (H) descending on tow (towing aircraft and sailplane);
 - (I) release procedures;
 - (J) launch failure and abandonment.
- (xv) Exercise 11c: Self-launch:
 - (A) engine extending and retraction procedures;
 - (B) engine starting and safety precautions;
 - (C) pre-take-off checks;
 - (D) noise abatement procedures;
 - (E) checks during and after take-off;
 - (F) into wind take-off;
 - (G) crosswind take-off;
 - (H) power failures and procedures;
 - (I) abandoned take-off;
 - (J) maximum performance (short field and obstacle clearance) take-off;
 - (K) short take-off and soft field procedure or techniques and performance calculations.
- (xvi) Exercise 11d: Car launch:
 - (A) signals before and during launch;
 - (B) use of the launch equipment;
 - (C) pre-take-off checks;
 - (D) into wind take-off;
 - (E) crosswind take-off;
 - (F) optimum launch profile and limitations;

- (G) release procedures;
- (H) launch failure procedures.
- (xvii) Exercise 11e: Bungee launch:
 - (A) signals before and during launch;
 - (B) use of the launch equipment;
 - (C) pre-take-off checks;
 - (D) into wind take-off.
- (xviii) Exercise 12: Circuit, approach and landing:
 - (A) procedures for rejoining the circuit;
 - (B) collision avoidance, look-out techniques and procedures;
 - (C) pre-landing checks: circuit procedures, downwind and base leg;
 - (D) effect of wind on approach and touchdown speeds;
 - (E) use of flaps (if applicable);
 - (F) visualisation of an aiming point;
 - (G) approach control and use of airbrakes;
 - (H) normal and crosswind approach and landing;
 - (I) short landing procedures or techniques.
- (xix) Exercise 13: First solo:
 - (A) instructor's briefing including limitations;
 - (B) awareness of local area and restrictions;
 - (C) use of required equipment;
 - (D) observation of flight and debriefing by instructor.
- (xx) Exercise 14: Advanced turning:
 - (A) steep turns (45°);
 - (B) stalling and spin avoidance in the turn and recovery;
 - (C) recoveries from unusual attitudes, including spiral dives.
- (xxi) Exercise 15: Soaring techniques:
 - At least one of the three soaring techniques must be taught containing all subjects below.
- (xxii) Exercise 15a: Thermalling:
 - (A) look-out procedures;
 - (B) detection and recognition of thermals;
 - (C) use of audio soaring instruments;
 - (D) joining a thermal and giving way;
 - (E) flying in close proximity to other sailplanes;
 - (F) centring in thermals;
 - (G) leaving thermals.
- (xxiii) Exercise 15b: Ridge flying:
 - (A) look-out procedures;
 - (B) practical application of ridge flying rules;
 - (C) optimisation of flight path;
 - (D) speed control.
- (xxiv) Exercise 15C: Wave flying:
 - (A) look-out procedures;
 - (B) wave access techniques;
 - (C) speed limitations with increasing height;
 - (D) use of oxygen.
- (xxv) Exercise 16: Out-landings:
 - (A) gliding range;
 - (B) restart procedures (only for self-launching and self-sustaining sailplanes);
 - (C) selection of landing area;
 - (D) circuit judgement and key positions;
 - (E) circuit and approach procedures;
 - (F) actions after landing.
- (xxvi) Exercise 17: Cross-country flying:

If the required cross-country flight will be conducted as a solo cross-country flight, all the subjects below must be taught before.

- (xxvii) Exercise 17a: Flight planning:
 - (A) weather forecast and actuals;
 - (B) NOTAMs and airspace considerations;
 - (C) map selection and preparation;

- (D) route planning;
- (E) radio frequencies (if applicable);
- (F) pre-flight administrative procedure;
- (G) flight plan where required;
- (H) mass and performance;
- (I) alternate aerodromes and landing areas;
- (J) safety altitudes.
- (xxviii) Exercise 17b: In-flight navigation:
 - (A) maintaining track and re-routing considerations;
 - (B) use of radio and phraseology (if applicable);
 - (C) in-flight planning;
 - (D) procedures for transiting regulated airspace or ATC liaison where required;
 - (E) uncertainty of position procedure;
 - (F) lost procedure;
 - (G) use of additional equipment where required;
 - (H) joining, arrival and circuit procedures at remote aerodrome.
- (xix) Exercise 17c: Cross-country techniques:
 - (A) look-out procedures;
 - (B) maximising potential cross-country performance;
 - (C) risk reduction and threat reaction.

AMC1 FCL.135.S; FCL.205.S (a)

EXTENSION OF PRIVILEGES TO TMG: LAPL(S) AND SPL

- (a) The aim of the flight training is to qualify LAPL(S) or SPL holders to exercise the privileges of the licence on a TMG.
- (b) The ATO should issue a certificate of satisfactory completion of the training.

(c) Theoretical knowledge

- The theoretical knowledge syllabus should cover the revision or explanation of:
- (1) Principles of flight:
 - (i) operating limitations (addition TMG);
 - (ii) propellers;
 - (iii) flight mechanics.
- (2) Operational procedures for TMG:
 - (i) special operational procedures and hazards;
 - (ii) emergency procedures.
- (3) Flight performance and planning:
 - (i) mass and balance considerations;
 - (ii) loading;
 - (iii) CG calculation;
 - (iv) load and trim sheet;
 - (v) performance of TMGs;
 - (vi) flight planning for VFR flights;
 - (vii) fuel planning;
 - (viii) pre-flight preparation;
 - (ix) ICAO flight plan;
 - (x) flight monitoring and in-flight re-planning.
- (4) Aircraft general knowledge:
 - (i) system designs, loads, stresses, maintenance;
 - (ii) airframe;
 - (iii) landing gear, wheels, tyres, brakes;
 - (iv) fuel system;
 - (v) electrics;
 - (vi) piston engines;
 - (vii)propellers;
 - (viii) instrument and indication systems.

- (5) Navigation:
 - (i) dead reckoning navigation (addition powered flying elements);
 - (ii) in-flight navigation (addition powered flying elements);
 - (iii) basic radio propagation theory;
 - (iv) radio aids (basics);
 - (v) radar (basics);
 - (vi) GNSS.
- (d) Flight instruction
 - (1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed.
 - (2) The flying exercises should cover the revision or explanation of the following exercises:
 - (i) Exercise 1: Familiarisation with the TMG:
 - (A) characteristics of the TMG;
 - (B) cockpit layout;
 - (C) systems;
 - (D) checklists, drills and controls.
 - (ii) Exercise 1e: Emergency drills:
 - (A) action if fire on the ground and in the air;
 - (B) engine cabin and electrical system fire;
 - (C) systems failure;
 - (D) escape drills, location and use of emergency equipment and exits.
 - (iii) Exercise 2: Preparation for and action after flight:
 - (A) serviceability documents;
 - (B) equipment required, maps, etc.;
 - (C) external checks;
 - (D) internal checks;
 - (E) harness and seat or rudder panel adjustments;
 - (F) starting and warm-up checks;
 - (G) power checks;
 - (H) running down system checks and switching off the engine;
 - (I) parking, security and picketing (for example tie down);
 - (J) completion of authorisation sheet and serviceability documents.
 - (iv) Exercise 3: Taxiing:
 - (A) pre-taxi checks;
 - (B) starting, control of speed and stopping;
 - (C) engine handling;
 - (D) control of direction and turning;
 - (E) turning in confined spaces;
 - (F) parking area procedure and precautions;
 - (G) effects of wind and use of flying controls;
 - (H) effects of ground surface;
 - (I) freedom of rudder movement;
 - (J) marshalling signals;
 - (K) instrument checks;
 - (L) air traffic control procedures (if applicable).
 - (v) Exercise 3e: Emergencies: brake and steering failure.
 - (vi) Exercise 4: Straight and level:
 - (A) at normal cruising power, attaining and maintaining straight and level flight;
 - (B) flight at critically high air speeds;
 - (C) demonstration of inherent stability;
 - (D) control in pitch, including use of trim;
 - (E) lateral level, direction and balance and trim;
 - (F) at selected air speeds (use of power);
 - (G) during speed and configuration changes;
 - (H) use of instruments for precision.
 - (vii)Exercise 5: Climbing:
 - (A) entry, maintaining the normal and max rate climb and levelling off;
 - (B) levelling off at selected altitudes;

- (C) en-route climb (cruise climb);
- (D) climbing with flap down;
- (E) recovery to normal climb;
- (F) maximum angle of climb;
- (G) use of instruments for precision.
- (viii) Exercise 6: Descending:
 - (A) entry, maintaining and levelling off;
 - (B) levelling off at selected altitudes;
 - (C) glide, powered and cruise descent (including effect of power and air speed);
 - (D) side slipping (on suitable types);
 - (E) use of instruments for precision flight.
- (ix) Exercise 7: Turning:
 - (A) entry and maintaining medium level turns;
 - (B) resuming straight flight;
 - (C) faults in the turn (incorrect pitch, bank and balance);
 - (D) climbing turns;
 - (E) descending turns;
 - (F) slipping turns (on suitable types);
 - (G) turns onto selected headings, use of gyro heading indicator or compass;
 - (H) use of instruments for precision.
- (x) Exercise 8a: Slow flight:
- Note: the objective is to improve the pilot's ability to recognise inadvertent flight at critically low speeds and provide practice in maintaining the TMG in balance while returning to normal air speed.
 - (A) safety checks;
 - (B) introduction to slow flight;
 - (C) controlled flight down to critically slow air speed;
 - (D) application of full power with correct attitude and balance to achieve normal climb speed.
- (xi) Exercise 8b: Stalling:
 - (A) airmanship;
 - (B) safety checks;
 - (C) symptoms;
 - (D) recognition;
 - (E) clean stall and recovery without power and with power;
 - (F) recovery when a wing drops;
 - (G) approach to stall in the approach and in the landing configurations, with and without power, recovery at the incipient stage.
- (xii)Exercise 9: Take-off and climb to downwind position:
 - (A) pre-take-off checks;
 - (B) into wind take-off;
 - (C) safeguarding the nose wheel (if applicable);
 - (D) crosswind take-off;
 - (E) drills during and after take-off;
 - (F) short take-off and soft field procedure or techniques including performance calculations;
 - (G) noise abatement procedures.
- (xiii) Exercise 10: Circuit, approach and landing:
 - (A) circuit procedures, downwind and base leg;
 - (B) powered approach and landing;
 - (C) safeguarding the nose wheel (if applicable);
 - (D) effect of wind on approach and touchdown speeds;
 - (E) use of airbrakes, flaps, slats or spoilers;
 - (F) crosswind approach and landing;
 - (G) glide approach and landing (engine stopped);
 - (H) short landing and soft field procedures or techniques;
 - (I) flapless approach and landing (if applicable);
 - (J) wheel landing (tail wheel aeroplanes);
 - (K) missed approach and go-around;
 - (L) noise abatement procedures.
- (xiv) Exercise 9/10e: Emergencies:
 - (A) abandoned take-off;

- (B) engine failure after take-off;
- (C) mislanding and go-around;
- (D) missed approach.
- Note: in the interests of safety it will be necessary for pilots trained on nose wheel TMGs to undergo dual conversion training before flying tail wheel TMGs, and vice versa.
- (xv) Exercise 11: Advanced turning:
 - (A) steep turns (45 $^{\circ}$), level and descending;
 - (B) stalling in the turn and recovery;
 - (C) recoveries from unusual attitudes, including spiral dives.
- (xvi) Exercise 12: Stopping and restarting the engine:
 - (A) engine cooling procedures;
 - (B) switching off procedure in-flight;
 - (C) sailplane operating procedures;
 - (D) restarting procedure.
- (xvii) Exercise 13: Forced landing without power:
 - (A) forced landing procedure;
 - (B) choice of landing area, provision for change of plan;
 - (C) gliding distance;
 - (D) descent plan;
 - (E) key positions;
 - (F) engine failure checks;
 - (G) use of radio;
 - (H) base leg;
 - (I) final approach;
 - (J) landing;
 - (K) actions after landing.
- (xviii) Exercise 14: Precautionary landing:
 - (A) full procedure away from aerodrome to break-off height;
 - (B) occasions necessitating;
 - (C) in-flight conditions;
 - (D) landing area selection:
 - (a) normal aerodrome;
 - (b) disused aerodrome;
 - (c) ordinary field.
 - (E) circuit and approach;
 - (F) actions after landing.
- (xix) Exercise 15a: Navigation
 - (A) Flight planning
 - (a) weather forecast and actuals;
 - (b) map selection and preparation:
 - (1) choice of route;
 - (2) airspace structure;
 - (3) safety altitudes.
 - (c) calculations:
 - (1) magnetic heading(s) and time(s) en-route;
 - (2) fuel consumption;
 - (3) mass and balance;
 - (4) mass and performance.
 - (d) flight information:
 - (1) NOTAMs, etc.;
 - (2) radio frequencies;
 - (3) selection of alternate aerodromes.
 - (e) TMG documentation;
 - (f) notification of the flight:
 - (1) pre-flight administrative procedures;
 - (2) flight plan form.
 - (B) Departure:
 - (a) organisation of cockpit workload;
 - (b) departure procedures:
 - (1) altimeter settings;

- (2) ATC liaison in regulated airspace;
- (3) setting heading procedure;
- (4) noting of ETAs.
- (C) En-route:
 - (a) maintenance of altitude and heading;
 - (b) revisions of ETA and heading;
 - (c) log keeping;
 - (d) use of radio or compliance with ATC procedures;
 - (e) minimum weather conditions for continuation of flight;
 - (f) in-flight decisions;
 - (g) transiting controlled or regulated airspace;
 - (h) diversion procedures;
 - (i) uncertainty of position procedure;
 - (j) lost procedure.
- (D) Arrival, aerodrome joining procedure:
 - (a) ATC liaison in regulated airspace;
 - (b) altimeter setting;
 - (c) entering the traffic pattern;
 - (d) circuit procedures;
 - (e) parking;
 - (f) security of TMG;
 - (g) refuelling;
 - (h) closing of flight plan, if appropriate;
 - (i) post-flight administrative procedures.
- (xx) Exercise 15b: Navigation problems at lower levels and in reduced visibility:
 - (A) actions before descending;
 - (B) hazards (for example obstacles and terrain);
 - (C) difficulties of map reading;
 - (D) effects of wind and turbulence;
 - (E) vertical situational awareness (avoidance of controlled flight into terrain);
 - (F) avoidance of noise sensitive areas;
 - (G) joining the circuit;
 - (H) bad weather circuit and landing.
- (xxi) Exercise 15c: Radio navigation (basics):
 - (A) Use of GNSS or VOR/NDB;
 - (a) selection of waypoints;
 - (b) to or from indications or orientation;
 - (c) error messages.
 - (B) Use of VHF/DF:
 - (a) availability, AIP and frequencies;
 - (b) R/T procedures and ATC liaison;
 - (c) obtaining a QDM and homing.
 - (C) Use of en-route or terminal radar:
 - (a) availability and AIP;
 - (b) procedures and ATC liaison;
 - (c) pilot's responsibilities;
 - (d) secondary surveillance radar;
 - (1) transponders;
 - (2) code selection;
 - (3) interrogation and reply.

AMC1 FCL.110.B LAPL(B) — **Experience requirements and crediting** CREDITING: PRE-ENTRY FLIGHT TEST

The pre-entry flight test referred to in FCL.110.B (b) should cover the total content of the syllabus of flight instruction for the issuance of the LAPL (B), in accordance with AMC1 FCL.110.B and FCL.210.B.

AMC1 FCL.110.B; FCL.210.B

FLIGHT INSTRUCTION FOR THE LAPL (B) AND FLIGHT INSTRUCTION FOR THE BPL

(a) Entry to training

Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

- (b) Flight instruction
 - (1) The LAPL(B) or BPL flight instruction syllabus should take into account the principles of threat and error management and also cover:
 - (i) pre-flight operations, including load calculations, balloon inspection and servicing;
 - (ii) crew and passenger briefings;
 - (iii) inflation and crowd control;
 - (iv) control of the balloon by external visual reference;
 - (v) take-off in different wind conditions;
 - (vi) approach from low and high level;
 - (vii)landings in different surface wind conditions;
 - (viii) cross-country flying using visual reference and dead reckoning;
 - (ix) emergency operations, including simulated balloon equipment malfunctions;
 - (x) compliance with air traffic services procedures and communication procedures;
 - (xi) avoidance of nature protection areas, landowner relations.
 - (2) Before allowing the applicant to undertake his/her first solo flight, the FI should ensure that the applicant can operate the required systems and equipment.
- (c) Syllabus of flight instruction (hot-air balloon)
 - (1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 - (i) the applicant's progress and ability;
 - (ii) the weather conditions affecting the flight;
 - (iii) the flight time available;
 - (iv) instructional technique considerations;
 - (v) the local operating environment;
 - (vi) applicability of the exercises to the balloon type.
 - (2) Each of the exercises involves the need for the applicant to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.
 - (i) Exercise 1: Familiarisation with the balloon:
 - (A) characteristics of the balloon;
 - (B) the components or systems;
 - (C) re-fuelling of the cylinders;
 - (D) instruments and equipment;
 - (E) use of checklist(s) and procedures.
 - (ii) Exercise 2: Preparation for flight:
 - (A) documentation and equipment;
 - (B) weather forecast and actuals;
 - (C) flight planning:
 - (a) NOTAMs
 - (b) airspace structure;
 - (c) sensitive areas (for example nature protection areas);
 - (d) expected track and distance;
 - (e) pre-flight picture;
 - (f) possible landing fields.
 - (D) launch field:
 - (a) permission;
 - (b) field selection;
 - (c) behaviour;
 - (d) adjacent fields.
 - (E) load calculations.

- (iii) Exercise 3: Crew and passenger briefing:
 - (A) clothing;
 - (B) crew briefing;
 - (C) passenger briefing.
- (iv) Exercise 4: Assembly and layout:
 - (A) crowd control;
 - (B) rigging envelope, basket and burner;
 - (C) burner test;
 - (D) use of restraint line;
 - (E) pre-inflation checks.
- (v) Exercise 5: Inflation:
 - (A) crowd control;
 - (B) cold inflation;
 - (C) use of the inflation fan;
 - (D) hot inflation.
- (vi) Exercise 6: Take-off in different wind conditions:
 - (A) pre take-off checks and briefings;
 - (B) heating for controlled climb;
 - (C) 'hands off and hands on' procedure for ground crew;
 - (D) assessment of lift;
 - (E) use of quick release;
 - (F) assessment of wind and obstacles;
 - (G) take-off in wind without shelter obstacles;
 - (H) preparation for false lift.
- (vii)Exercise 7: Climb to level flight:
 - (A) climbing with a predetermined rate of climb;
 - (B) look-out procedures;
 - (C) effect on envelope temperature;
 - (D) maximum rate of climb according to manufacturer's flight manual;
 - (E) levelling off at selected altitude.
- (viii) Exercise 8: Level flight:
 - (A) maintaining level flight by:
 - (a) use of instruments only;
 - (b) use of visual references only;
 - (c) all available means.
 - (B) use of parachute and turning vents (if applicable).
- (ix) Exercise 9: Descent to level flight:
 - (A) descent with a predetermined rate of descent;
 - (B) fast descent;
 - (C) look-out procedures;
 - (D) maximum rate of descent according to manufacturer's flight manual;
 - (E) use of parachute;
 - (F) parachute stall;
 - (G) cold descent;
 - (H) levelling off at selected altitude.
- (x) Exercise 10: Emergencies systems:
 - (A) pilot light failure;
 - (B) burner failure, valve leaks, flame out and re-light;
 - (C) gas leaks;
 - (D) envelope over temperature;
 - (E) envelope damage in-flight;
 - (F) parachute or rapid deflation system failure.
- (xi) Exercise 10B: Other emergencies:
 - (A) fire extinguisher;
 - (B) fire on ground;
 - (C) fire in the air;
 - (D) contact with electrical power lines;
 - (E) obstacle avoidance;
 - (F) escape drills, location and use of emergency equipment.
- (xii)Exercise 11: Navigation:

- (A) maps selection;
- (B) plotting expected track;
- (C) marking positions and time;
- (D) calculation of distance, speed and fuel consumption;
- (E) ceiling limitations (ATC, weather and envelope temperature);
- (F) planning ahead;
- (G) monitoring of weather development and acting so;
- (H) monitoring of fuel consumption and envelope temperature;
- (I) ATC liaison (if applicable);
- (J) communication with retrieve crew;
- (K) use of GNSS (if applicable).
- (xiii) Exercise 12: Fuel management:
 - (A) cylinder arrangement and burner systems;
 - (B) pilot light supply (vapour or liquid);
 - (C) use of master cylinders (if applicable);
 - (D) fuel requirement and expected fuel consumption;
 - (E) fuel state and pressure;
 - (F) fuel reserves;
 - (G) cylinder contents gauge and change procedure;
 - (H) use of cylinder manifolds.
- (xiv) Exercise 13: Approach from low level:
 - (A) pre-landing checks;
 - (B) passenger pre-landing briefing;
 - (C) selection of field;
 - (D) use of burner and parachute;
 - (E) look-out procedures;
 - (F) missed approach and fly on.
- (xv) Exercise 14: Approach from high level:
 - (A) pre-landing checks;
 - (B) passenger pre-landing briefing;
 - (C) selection of field;
 - (D) rate of descent;
 - (E) use of burner and parachute;
 - (F) look-out procedures;
 - (G) missed approach and fly on.
- (xvi) Exercise 15: Operating at low level:
 - (A) use of burner, whisper burner and parachute;
 - (B) look-out procedures;
 - (C) avoidance of low level obstacles;
 - (D) avoidance of protection areas;
 - (E) landowner relations.
- (xvii) Exercise 16: Landing in different wind conditions:
 - (A) pre-landing checks;
 - (B) passenger pre-landing briefing;
 - (C) selection of field;
 - (D) turbulences (in the case of landings with high wind speed only);
 - (E) use of burner and pilot lights;
 - (F) use of parachute and turning vents (if applicable);
 - (G) look-out procedures;
 - (H) dragging and deflation;
 - (I) landowner relations;
 - (J) airmanship.
- (xviii) Exercise 17: First solo:
 - (A) supervised flight preparation;
- (B) instructor's briefing, observation of flight and de-briefing.
- (d) Syllabus of flight instruction (gas balloon)
 - (1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:

- (i) the applicant's progress and ability;
- (ii) the weather conditions affecting the flight;
- (iii) the flight time available;
- (iv) instructional technique considerations;
- (v) the local operating environment;
- (vi) applicability of the exercises to the balloon type.
- (2) Each of the exercises involves the need for the pilot-under-training to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.
 - (i) Exercise 1: Familiarisation with the balloon:
 - (A) characteristics of the balloon;
 - (B) the components or systems;
 - (C) instruments and equipment;
 - (D) use of checklist(s) and procedures.
 - (ii) Exercise 2: Preparation for flight:
 - (A) documentation and equipment
 - (B) weather forecast and actuals;
 - (C) flight planning:
 - (a) NOTAMs;
 - (b) airspace structure;
 - (c) sensitive areas (for example nature protection areas);
 - (d) expected track and distance;
 - (e) pre-flight picture;
 - (f) possible landing fields.
 - (D) launch field:
 - (a) permission;
 - (b) behaviour;
 - (c) adjacent fields.
 - (E) load calculations.
 - (iii) Exercise 3: Crew and passenger briefing:
 - (A) clothing;
 - (B) crew briefings;
 - (C) passenger briefing.
 - (iv) Exercise 4: Assembly and layout:
 - (A) crowd control;
 - (B) rigging envelope and basket (balloon with net);
 - (C) rigging envelope and basket (netless balloon);
 - (D) ballast check.
 - (v) Exercise 5: Inflation:
 - (A) crowd control;
 - (B) inflation procedure according to manufacturer's flight manual;
 - (C) avoiding electrostatic discharge.
 - (vi) Exercise 6: Take-off in different wind conditions:
 - (A) pre take-off checks and briefings;
 - (B) prepare for controlled climb;
 - (C) 'hands off and hands on' procedure for ground crew;
 - (D) assessment of wind and obstacles;
 - (E) preparation for false lift.
 - (vii)Exercise 7: Climb to level flight:
 - (A) climb with a predetermined rate of climb;
 - (B) look-out procedures;
 - (C) maximum rate of climb according to manufacturer's flight manual;
 - (D) levelling off at selected altitude.
 - (viii) Exercise 8: Level flight:
 - (A) maintaining level flight by:
 - (a) use of instruments only;
 - (b) use of visual references only;
 - (c) all available means.
 - (B) use of parachute or valve.
 - (ix) Exercise 9: Descent to level flight:
 - (A) descent with a predetermined rate of descent;

- (B) fast descent;
- (C) look-out procedures;
- (D) maximum rate of descent according to manufacturer's flight manual;
- (E) use of parachute or valve;
- (F) levelling off at selected altitude.
- (x) Exercise 10: Emergencies:
 - (A) closed appendix during take-off and climb;
 - (B) envelope damage in-flight;
 - (C) parachute or valve failure;
 - (D) contact with electrical power lines;
 - (E) obstacle avoidance;
 - (F) escape drills, location and use of emergency equipment.
- (xi) Exercise 11: Navigation:
 - (A) map selection;
 - (B) plotting expected track;
 - (C) marking positions and time;
 - (D) calculation of distance, speed and ballast consumption;
 - (E) ceiling limitations (ATC, weather and ballast);
 - (F) planning ahead;
 - (G) monitoring of weather development and acting so;
 - (H) monitoring of ballast consumption;
 - (I) ATC liaison (if applicable);
 - (J) communication with retrieve crew;
 - (K) use of GNSS (if applicable).
- (xii)Exercise 12: Ballast management:
 - (A) minimum ballast;
 - (B) arrangement and securing of ballast;
 - (C) ballast requirement and expected ballast consumption;
 - (D) ballast reserves.
- (xiii) Exercise 13: Approach from low level:
 - (A) pre-landing checks;
 - (B) passenger pre-landing checks;
 - (C) selection of field;
 - (D) use of ballast and parachute or valve;
 - (E) use of trail rope (if applicable);
 - (F) look-out procedures;
 - (G) missed approach and fly on.
- (xiv) Exercise 14: Approach from high level:
 - (A) pre-landing checks;
 - (B) passenger pre-landing checks;
 - (C) selection of field;
 - (D) rate of descent;
 - (E) use of ballast and parachute or valve;
 - (F) use of trail rope (if applicable);
 - (G) look-out procedures;
 - (H) missed approach and fly on.
- (xv) Exercise 15: Operating at low level:
 - (A) use of ballast and parachute or valve;
 - (B) look-out procedures;
 - (C) avoidance of low level obstacle;
 - (D) avoidance of protection areas;
 - (E) landowner relations.
- (xvi) Exercise 16: Landing in different wind conditions:
 - (A) pre-landing checks;
 - (B) passenger pre-landing briefing;
 - (C) selection of field;
 - (D) turbulences (in the case of landings with high wind speed only);
 - (E) use of ballast and parachute or valve;
 - (F) look-out procedures;
 - (G) use of rip panel;

- (H) dragging;
- (I) deflation;
- (J) avoiding electrostatic discharge;
- (K) landowner relations.
- (xvii) Exercise 17: First solo:
- Note: the exercises 1 to 16 have to be completed and the student must have achieved a safe and competent level before the first solo flight takes place.
 - (A) supervised flight preparation;
 - (B) instructor's briefing, observation of flight and de-briefing.

AMC1 FCL.130.B; FCL.220.B

FLIGHT INSTRUCTION FOR THE EXTENSION OF PRIVILEGES TO TETHERED FLIGHTS

- (a) The aim of the flight instruction is to qualify LAPL (B) or BPL holders to perform tethered flights.
- (b) The flying exercise should cover the following training items:
 - (1) ground preparations;
 - (2) weather suitability;
 - (3) tether points:
 - (i) upwind;
 - (ii) downwind.
 - (4) tether ropes (three point system);
 - (5) maximum all-up-weight limitation;
 - (6) crowd control;
 - (7) pre take-off checks and briefings;
 - (8) heating for controlled lift off;
 - (9) 'hands off and hands on' procedure for ground crew;
 - (10) assessment of lift;
 - (11) assessment of wind and obstacles;
 - (12) take-off and controlled climb (at least up to 60 ft 20 m).

AMC1 FCL.135.B; FCL.225.B

THEORETICAL KNOWLEDGE INSTRUCTION FOR THE EXTENSION TO ANOTHER BALLOON CLASS: LAPL (B) AND BPL

- (a) The aim of the flight instruction is to qualify LAPL (B) or BPL holders to exercise the privileges on a different class of balloons.
- (b) The following classes are recognised:
 - (1) hot-air balloons;
 - (2) gas balloons;
 - (3) hot-air airships.
- (c) The ATO should issue a certificate of satisfactory completion of the instruction to licence endorsement.

(d) Theoretical knowledge

- The theoretical knowledge syllabus should cover the revision or explanation of:
- (1) principles of flight:
 - (i) operating limitations;
 - (ii) loading limitations.
- (2) operational procedures:
 - (i) special operational procedures and hazards;
 - (ii) emergency procedures.
- (3) flight performance and planning:
 - (i) mass considerations;
 - (ii) loading;
 - (iii) performance (hot-air balloon, gas balloon or hot-air airship);
 - (iv) flight planning;
 - (v) fuel planning;
 - (vi) flight monitoring.

- (4) aircraft general knowledge:
 - (i) system designs, loads, stresses and maintenance;
 - (ii) envelope;
 - (iii) burner (only extension to hot-air balloon or airship);
 - (iv) fuel cylinders (except gas balloon);
 - (v) basket or gondola;
 - (vi) lifting or burning gas;
 - (vii)ballast (only gas balloon);
 - (viii) engine (only hot-air airship);
 - (ix) instruments and indication systems;
 - (x) emergency equipment.

AMC2 FCL.135.B; FCL.225.B

FLIGHT INSTRUCTION FOR THE EXTENSION TO ANOTHER BALLOON CLASS: LAPL (B) AND BPL

- (a) This additional syllabus of flight instruction should be used for the extension of privileges for LAPL (B) and BPL hot-air balloon to hot-air airship.
- (b) The prerequisite for the extension of privileges to hot-air airships is a valid BPL or LAPL for hot-air balloons because a hot-air airship with a failed engine must be handled in a similar manner as a hot-air balloon. The conversion training has to concentrate therefore on the added complication of the engine, its controls and the different operating limitations of a hot-air airship.
 - (1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed.
 - (2) The flying exercises should cover the revision or explanation of the following exercises:
 - (i) Exercise 1: Familiarisation with the hot-air airship:
 - (A) characteristics of the hot-air airship;
 - (B) the components or systems;
 - (C) instruments and equipment;
 - (D) use of checklist(s) and procedures.
 - (ii) Exercise 2: Preparation for flight:
 - (A) documentation and equipment;
 - (B) weather forecast and actuals;
 - (C) flight planning:
 - (a) NOTAMs;
 - (b) airspace structure;
 - (c) sensitive areas;
 - (d) expected track and distance;
 - (e) pre-flight picture;
 - (f) possible landing fields.
 - (D) launch field:
 - (a) permission;
 - (b) behaviour;
 - (c) field selection;
 - (d) adjacent fields.
 - (E) load and fuel calculations.
 - (iii) Exercise 3: Crew and passenger briefing:
 - (A) clothing;
 - (B) crew briefing;
 - (C) passenger briefing.
 - (iv) Exercise 4: Assembly and layout:
 - (A) crowd control;
 - (B) rigging envelope, gondola, burner and engine;
 - (C) burner test;
 - (D) pre-inflation checks.
 - (v) Exercise 5: Inflation:
 - (A) crowd control;
 - (B) cold inflation:
 - (a) use of restraint line;

- (b) use of the inflation fan.
- (C) hot inflation.
- (vi) Exercise 6: Engine:
 - (A) identification of main parts and controls;
 - (B) familiarisation with operation and checking of the engine;
 - (C) engine checks before take-off.
- (vii)Exercise 7: Pressurisation:
 - (A) pressurisation fan operation;
 - (B) super pressure and balance between pressure and temperature;
 - (C) pressure limitations.
- (viii) Exercise 8: Take-off:
 - (A) before take-off checks and briefings;
 - (B) heating for controlled climb;
 - (C) procedure for ground crew;
 - (D) assessment of wind and obstacles.
- (ix) Exercise 9: Climb to level flight:
 - (A) climbing with a predetermined rate of climb;
 - (B) effect on envelope temperature and pressure;
 - (C) maximum rate of climb according to manufacturer's flight manual;
 - (D) level off at selected altitude.
- (x) Exercise 10: Level flight:
 - (A) maintaining level flight by:
 - (a) use of instruments only;
 - (b) use of visual references only;
 - (c) all available means.
 - (B) maintaining level flight at different air speeds by taking aerodynamic lift into account.
- (xi) Exercise 11: Descent to level flight:
 - (A) descent with a predetermined rate of descent;
 - (B) maximum rate of descent according to manufacturer's flight manual;
 - (C) levelling off at selected altitude.
- (xii)Exercise 12: Emergencies systems:
 - (A) engine failure;
 - (B) pressurisation failure;
 - (C) rudder failure;
 - (D) pilot light failure;
 - (E) burner failure, valve leaks, flame out and re-light;
 - (F) gas leaks;
 - (G) envelope over temperature;
 - (H) envelope damage in-flight.
- (xiii) Exercise 12B: Other emergencies:
 - (A) fire extinguishers;
 - (B) fire on ground;
 - (C) fire in the air;
 - (D) contact with electrical power lines;
 - (E) obstacle avoidance;
 - (F) escape drills, location and use of emergency equipment.
- (xiv) Exercise 13: Navigation:
 - (A) map selection and preparation;
 - (B) plotting and steering expected track;
 - (C) marking positions and time;
 - (D) calculation of distance, speed and fuel consumption;
 - (E) ceiling limitations (ATC, weather and envelope temperature);
 - (F) planning ahead;
 - (G) monitoring of weather development and acting so;
 - (H) monitoring of fuel and envelope temperature or pressure;
 - (I) ATC liaison (if applicable);
 - (J) communication with ground crew;
 - (K) use of GNSS (if applicable).
- (xv) Exercise 14: Fuel management:
 - (A) engine arrangement and tank system;

- (B) cylinder arrangement and burner systems;
- (C) pilot light supply (vapour or liquid);
- (D) fuel requirement and expected fuel consumption for engine and burner;
- (E) fuel state and pressure;
- (F) fuel reserves;
- (G) cylinder and petrol tank contents gauge.
- (xvi) Exercise 15: Approach and go-around:
 - (A) pre-landing checks;
 - (B) selection of field into wind;
 - (C) use of burner and engine;
 - (D) look-out procedures;
 - (E) missed approach and go-around.
- (xvii) Exercise 16: Approach with simulated engine failure:
 - (A) pre-landing checks;
 - (B) selection of field;
 - (C) use of burner;
 - (D) look-out procedures;
 - (E) missed approach and go-around.
- (xviii) Exercise 17: Operating at low level:
 - (A) use of burner and engine;
 - (B) look-out procedures;
 - (C) avoidance of low level obstacles;
 - (D) avoidance of sensitive areas (nature protection areas) or landowner relations.
- (xix) Exercise 18: Steering:
 - (A) assessment of wind;
 - (B) correcting for wind to steer a given course.
- (xx) Exercise 19: Final landing:
 - (A) pre-landing checks;
 - (B) use of burner and engine;
 - (C) look-out;
 - (D) deflation;
 - (E) landowner relations.

AMC3 FCL.135.B; FCL.225.B

CONTENTS OF THE SKILL TEST FOR THE EXTENSION OF A LAPL (B) OR A BPL TO ANOTHER BALLOON CLASS (HOT-AIR AIRSHIP)

- (a) The take-off site should be chosen by the applicant depending on the actual meteorological conditions, the area which has to be overflown and the possible options for suitable landing sites. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board.
- (b) An applicant should indicate to the FE the checks and duties carried out. Checks should be completed in accordance with the flight manual or the authorised checklist for the balloon on which the test is being taken. During pre-flight preparation for the test the applicant should be required to perform crew and passenger briefings and demonstrate crowd control. The load calculation should be performed by the applicant in compliance with the operations manual or flight manual for the hot-air airship used.

FLIGHT TEST TOLERANCE

- (c) The applicant should demonstrate the ability to:
 - (1) operate the hot-air airship within its limitations;
 - (2) complete all manoeuvres with smoothness and accuracy;
 - (3) exercise good judgment and airmanship;
 - (4) apply aeronautical knowledge;
 - (5) maintain control of the airship at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

CONTENT OF THE SKILL TEST

(d) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a LAPL (B) and BPL hot-air airship extension.

SECTION 1 PRE-FLIGHT OPERATIONS, INFLATION AND TAKE-OFF

Use of checklist, airmanship, control of hot-air airship by external visual reference, look-out procedures, etc. apply in all sections

- a Pre-flight documentation, flight planning, NOTAM and weather briefing
- b Hot-air airship inspection and servicing
- c Load calculation
- d Crowd control, crew and passenger briefings
- e Assembly and layout
- f Inflation and pre-take-off procedures
- g Take-off
- h ATC compliance (if applicable)

SECTION 2 GENERAL AIRWORK

- a Climb to level flight
- b Level flight
- c Descent to level flight
- d Operating at low level
- e ATC compliance (if applicable)

SECTION 3 EN-ROUTE PROCEDURES

- a Dead reckoning and map reading
- b Marking positions and time
- c Orientation and airspace structure
- d Plotting and steering expected track
- e Maintenance of altitude
- f Fuel management
- g Communication with ground crew
- h ATC compliance (if applicable)

SECTION 4 APPROACH AND LANDING PROCEDURES

- a Approach, missed approach and go-around
- b Pre-landing checks
- c Selection of landing field
- d Landing and deflation
- e ATC compliance (if applicable)
- f Actions after flight

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

This section may be combined with Sections 1 through 4

- a Simulated fire on the ground and in the air
- b Simulated pilot light-, burner- and engine-failure
- c Approach with simulated engine failure, missed approach and go-around
- d Other abnormal and emergency procedures as outlined in the appropriate flight manual
- e Oral questions

SUBPART C — PRIVATE PILOT LICENCE (PPL), SAILPLANE PILOT LICENCE (SPL) and BALLOON PILOT LICENCE (BPL)

AMC1 FCL.210; FCL.215

SYLLABUS OF THEORETICAL KNOWLEDGE FOR THE PPL (A) AND PPL (H)

The following tables contain the syllabi for the courses of theoretical knowledge, as well as for the theoretical knowledge examinations for the PPL(A) and PPL(H). The training and examination should cover aspects related to non-technical skills in an integrated manner, taking into account the particular risks associated to the licence and the activity. An approved course shall comprise at least 100 hours of theoretical knowledge instruction. This theoretical knowledge instruction provided by the ATO should include a certain element of formal classroom work but may include also such facilities as interactive video, slide or tape presentation, computer-based training and other media distance learning courses. The training organisation responsible for the training has to check if all the appropriate elements of the training course of theoretical knowledge instruction have been completed to a satisfactory standard before recommending the applicant for the examination.

The applicable items for each licence are marked with 'x'. An 'x' on the main title of a subject means that all the sub-divisions are applicable.

		Aeroplane		Helicopte	r
		PPL course	Bridge	PPL course	Bridge
1.	AIR LAW AND ATC PROCEDURES				
	International law: conventions, agreements and organis	ations			
	The Convention on international civil aviation (Chicago) Doc. 73()0/6		
	Part I Air Navigation: relevant parts of the	Х		Х	
	following chapters:				
	(a) general principles and application of the convention;				
	(b) flight over territory of Contracting States;				
	(c) nationality of aircraft;				
	(d) measures to facilitate air navigation;				
	(e) conditions to be fulfilled on aircraft;				
	(f) international standards and recommended practices;				
	(g) validity of endorsed certificates and licences;				
	(h) notification of differences.				
	Part II The International Civil Aviation	Х		Х	
	Organisation (ICAO): objectives and composition				
	Annex 8: Airworthiness of aircraft				
	Foreword and definitions	Х		Х	
	Certificate of airworthiness	Х		Х	
	Annex 7: Aircraft nationality and registration marks				
	Foreword and definitions	Х		Х	
	Common- and registration marks	Х		Х	
	Certificate of registration and aircraft nationality Annex 1: Personnel licensing	Х		Х	
	Definitions	Х		х	
	Relevant parts of Annex 1 connected to Part-	х		Х	
	FCL and Part-Medical	1		A	
	Annex 2: Rules of the air				
	Essential definitions, applicability of the rules of the air, ge	eneral rules	s (except	water oper	ations), visual
	flight rules, signals and interception of civil aircraft	X	· (F-	X	,
	Procedures for air navigation: aircraft operations doc. 8	8168-ops/6	511. volu		
	Altimeter setting procedures (including IACO doc. 7030				rocedures)
	Basic requirements (except tables), procedures applicable to				
	(except tables)	X	- r	X	

Secondary surveillance radar transponder operating procedures (including ICAO Doc. 7030 regional supplementary procedures) **Operation of transponders** Х Х Phraseology Х Х Annex 11: Doc. 4444 air traffic management Definitions х х General provisions for air traffic services Х Х Visual separation in the vicinity of aerodromes Х Х Procedures for aerodrome control services х х Radar services Х Х Flight information service and alerting service х Х Phraseologies х х Procedures related to emergencies, communication failure x x and contingencies **Annex 15: Aeronautical information service** Introduction, essential definitions x x AIP, NOTAM, AIRAC and AIC х Х Annex 14, volume 1 and 2: Aerodromes Definitions х х Aerodrome data: conditions of the movement х х area and related facilities Visual aids for navigation: х х (a) indicators and signalling devices; (b) markings; (c) lights; (d) signs; (e) markers. Visual aids for denoting obstacles: х х (a) marking of objects; (b) lighting of objects. Visual aids for denoting restricted use of areas х х Emergency and other services: х х (a) rescue and fire fighting; (b) apron management service. Annex 12: Search and rescue Essential definitions х х Operating procedures: х x (a) procedures for PIC at the scene of an accident; (b) procedures for PIC intercepting a distress transmission; (c) search and rescue signals. Search and rescue signals: Х х (a) signals with surface craft; (b) ground or air visual signal code; (c) air or ground signals. Annex 17: Security General: aims and objectives х х Annex 13: Aircraft accident investigation Essential definitions Х х Applicability х х National law National law and differences to relevant х х ICAO Annexes and relevant EU regulations. **HUMAN PERFORMANCE** Human factors: basic concepts Human factors in aviation Becoming a competent pilot х х Basic aviation physiology and health maintenance The atmosphere: Х Х (a) composition;

2.

(b) gas laws.		
Respiratory and circulatory systems:	Х	Х
(a) oxygen requirement of tissues;		
(b) functional anatomy;(c) main forms of hypoxia (hypoxic and anaemic):		
(1) sources, effects and counter-measures of carbon more	novide	
(1) sources, encets and counter-measures of earborn mo. (2) counter measures and hypoxia;	noxiae,	
(2) counter measures and hypoxia, (3) symptoms of hypoxia.		
(d) hyperventilation;		
(e) the effects of accelerations on the circulatory system;		
(f) hypertension and coronary heart disease.		
Man and environment		
	v	V
Central, peripheral and autonomic nervous systems Vision:	X	X X
(a) functional anatomy;	Х	Λ
(b) visual field, foveal and peripheral vision;		
(c) binocular and monocular vision;		
(d) monocular vision cues;		
(e) night vision;		
(f) visual scanning and detection techniques and importance	of 'look-ou	ıt':
(g) defective vision.		,
Hearing:	х	Х
(a) descriptive and functional anatomy;		
(b) flight related hazards to hearing;		
(c) hearing loss.		
Equilibrium:	Х	х
(a) functional anatomy;		
(b) motion and acceleration;		
(c) motion sickness.		
Integration of sensory inputs:	Х	Х
(a) spatial disorientation: forms, recognition and avoidance;		
(b) illusions: forms, recognition and avoidance:		
(1) physical origin;		
(2) physiological origin;		
(3) psychological origin.		
(c) approach and landing problems.		
Health and hygiene		
Personal hygiene: personal fitness	Х	Х
Body rhythm and sleep:	Х	Х
(a) rhythm disturbances;		
(b) symptoms, effects and management.		
Problem areas for pilots:	X	X
(a) common minor ailments including cold, influenza and ga	astro-intesti	nal upset;
(b) entrapped gases and barotrauma, (scuba diving);(c) obesity;		
(d) food hygiene;		
(e) infectious diseases;		
(f) nutrition;		
(g) various toxic gases and materials.		
Intoxication:	х	х
(a) prescribed medication;		
(b) tobacco;		
(c) alcohol and drugs;		
(d) caffeine;		
(e) self-medication.		
Basic aviation psychology		
Human information processing		
Attention and vigilance:	х	Х
(a) selectivity of attention;		

(b) divided attention.			
Perception:	Х	х	
(A) perceptual illusions;	71	A	
(B) subjectivity of perception;			
(C) processes of perception.			
Memory:	х	х	
(a) sensory memory;			
(b) working or short term memory;			
(c) long term memory to include motor memory (skills).			
· · · · · ·			
Human error and reliability			
Reliability of human behaviour	X	X	
Error generation: social environment (group, organisation)	Х	Х	
-			
Decision making			
Decision-making concepts:	Х	Х	
(a) structure (phases);			
(b) limits;			
(c) risk assessment;			
(d) practical application.			
Avoiding and managing errors: cockpit management			
Safety awareness:	Х	Х	
(a) risk area awareness;			
(b) situational awareness.			
Communication: verbal and non-verbal	Х	Х	
communication			
Human behaviour			
Personality and attitudes:	Х	Х	
(a) development;			
(b) environmental influences.			
Identification of hazardous attitudes (error proneness)	Х	Х	
Human overload and underload			
Arousal	Х	Х	
Stress:	Х	Х	
(a) definition(s);			
(b) anxiety and stress;			
(c) effects of stress.			
Fatigue and stress management:	Х	Х	
(a) types, causes and symptoms of fatigue;			
(b) effects of fatigue;			
(c) coping strategies;			
(d) management techniques;			
(e) health and fitness programmes;			
METEOROLOGY			
The atmosphere			
Composition, extent and vertical division			
Structure of the atmosphere	Х	Х	
Troposphere	Х	Х	
Air temperature			
Definition and units	Х	Х	
Vertical distribution of temperature	Х	Х	
Transfer of heat	Х	Х	
Lapse rates, stability and instability	Х	Х	
Development of inversions and types of inversions	х	х	
Temperature near the earth's surface, surface effects, d			et of clouds
and effect of wind			t of clouds
	Х	Х	
Atmospheric pressure Barometric pressure and isobars	77	T	
DATOTICTIC DIESSIFE AND ISODATS	Х	Х	
	17	37	
Pressure variation with height Reduction of pressure to mean sea level	X X	X X	

3.

	Relationship between surface pressure centres	х		Х
	and pressure centres aloft			
	Air density Relationship between pressure, temperature and density	х		х
	ISA ICAO standard atmosphere Altimetry	х		х
	Terminology and definitions	X		х
	Altimeter and altimeter settings	X		X
	Calculations	х		Х
	Effect of accelerated airflow due to topography	Х		Х
	Wind Definition and measurement of wind			
	Definition and measurement	х		Х
	Primary cause of wind			
	Primary cause of wind, pressure gradient, coriolis force and gradient wind	х		Х
	Variation of wind in the friction layer	х		Х
	Effects of convergence and divergence	Х		х
4.	COMMUNICATIONS			
	VFR COMMUNICATIONS			
	Definitions			
	Meanings and significance of associated terms ATS abbreviations	X X		X X
	Q-code groups commonly used in RTF air-ground	X		X
	communications			
	Categories of messages	х		Х
	General operating procedures			
	Transmission of letters	X	X	
	Transmission of numbers (including level information) Transmission of time	X X	X X	
	Transmission technique	X	X	
	Standard words and phrases (relevant RTF phraseology included)	Х	Х	
	R/T call signs for aeronautical stations	Х	х	
	including use of abbreviated call signs	Α	Α	
	R/T call signs for aircraft including use of	Х	х	
	abbreviated call signs			
	Transfer of communication Test procedures including readability scale	X	X X	
	Read back and acknowledgement requirements	X X	А	х
	Relevant weather information terms (VFR)			
	Aerodrome weather	х		Х
	Weather broadcast	Х		Х
	Action required to be taken in case of	Х		Х
	communication failure Distress and urgency procedures			
	Distress and digency procedures Distress (definition, frequencies, watch of	х		х
	distress frequencies, distress signal and distress message)			
	Urgency (definition, frequencies, urgency	Х		Х
	signal and urgency message)			
	General principles of VHF propagation	Х		Х
5.	and allocation of frequencies PRINCIPLES OF FLIGHT			
5. 5.1.	PRINCIPLES OF FLIGHT PRINCIPLES OF FLIGHT: AEROPLANE			
-	Subsonic aerodynamics			
	Basics concepts, laws and definitions			
	Laws and definitions:	Х	Х	
	(a) conversion of units;			

(b) Newton's laws;						
(c) Bernoulli's equation and venture;						
(d) static pressure, dynamic pressure and total pressure;						
(e) density;						
(f) IAS and TAS.						
Basics about airflow:	Х	Х				
(a) streamline;						
(b) two-dimensional airflow;						
(c) three-dimensional airflow.						
Aerodynamic forces on surfaces:	Х	Х				
(a) resulting airforce;						
(b) lift;						
(c) drag;						
(d) angle of attack.						
Shape of an aerofoil section:	Х	Х				
(a) thickness to chord ratio;						
(b) chord line;						
(c) camber line;						
(d) camber;						
(e) angle of attack.						
The wing shape:	Х	х				
(a) aspect ratio;						
(b) root chord;						
(c) tip chord;						
(d) tapered wings;						
(e) wing planform. The two dimensional sinflow shout on correfail						
The two-dimensional airflow about an aerofoil	v	v				
Streamline pattern	X	X				
Stagnation point Pressure distribution	X	X				
	X	X				
Centre of pressure	X	X				
Influence of angle of attack	X	Х				
Flow separation at high angles of attack The lift – graph	X	X				
The coefficients	Х	Х				
The lift coefficient C_l : the lift formula	Х	Х				
The drag coefficient C _{d:} the drag formula	Х	Х				
The three-dimensional airflow round a wing and a fusela	ige					
Streamline pattern:	Х	Х				
(a) span-wise flow and causes;						
(b) tip vortices and angle of attack;						
(c) upwash and downwash due to tip vortices;						
(d) wake turbulence behind an aeroplane (cause	s, c	listribution	and	duration	of	the
phenomenon).						
Induced drag:	Х	Х				
(a) influence of tip vortices on the angle of attack;						
(b) the induced local;						
(c) influence of induced angle of attack on the direction of the	ne lif	t vector;				
(d) induced drag and angle of attack.						
Drag						
The parasite drag:	х	Х				
(a) pressure drag;	л	л				
(b) interference drag;						
(c) friction drag.						
-						
The parasite drag and speed	X	X				
The induced drag and speed	X	X				
The total drag	Х	Х				

The ground effect Effect on take off and landing characteristics х х of an aeroplane The stall Flow separation at increasing angles of attack: х х (a) the boundary layer: (1) laminar layer; (2) turbulent layer; (3) transition. (b) separation point; (c) influence of angle of attack; (d) influence on: (1) pressure distribution; (2) location of centre of pressure; (3) CL; (4) CD; (5) pitch moments. (e) buffet; (f) use of controls. The stall speed: х х (a) in the lift formula; (b) 1g stall speed; (c) influence of: (1) the centre of gravity; (2) power setting; (3) altitude (IAS); (4) wing loading; (5) load factor n: (i) definition; (ii) turns; (iii) forces. The initial stall in span-wise direction: х Х (a) influence of planform; (b) geometric twist (wash out); (c) use of ailerons. Stall warning: х х (a) importance of stall warning; (b) speed margin; (c) buffet; (d) stall strip; (e) flapper switch; (f) recovery from stall. Special phenomena of stall: Х Х (a) the power-on stall; (b) climbing and descending turns; (c) t-tailed aeroplane; (d) avoidance of spins: (1) spin development; (2) spin recognition; (3) spin recovery. (e) ice (in stagnation point and on surface): (1) absence of stall warning; (2) abnormal behaviour of the aircraft during stall. **CL** augmentation Trailing edge flaps and the reasons for use in х х take-off and landing: (a) influence on C_L - α -graph; (b) different types of flaps; (c) flap asymmetry;

(d) influence on pitch movement.		
Leading edge devices and the reasons for use	Х	Х
in take-off and landing		
The boundary layer		
Different types:	Х	Х
(a) laminar;		
(b) turbulent.		
Special circumstances Ice and other contamination:	v	77
(a) ice in stagnation point;	Х	Х
(b) ice on the surface (frost, snow and clear ice);		
(c) rain;		
(d) contamination of the leading edge;		
(e) effects on stall;		
(f) effects on loss of controllability;		
(g) effects on control surface moment;		
(h) influence on high lift devices during take-off, landing a	nd low spe	eeds.
Stability		
Condition of equilibrium in steady horizontal flight		
Precondition for static stability	X	X
Equilibrium: (a) lift and weight;	Х	х
(b) drag and thrust.		
Methods of achieving balance		
Wing and empennage (tail and canard)	х	х
Control surfaces	Х	х
Ballast or weight trim	Х	х
Static and dynamic longitudinal stability		
Basics and definitions:	Х	Х
(a) static stability, positive, neutral and negative;		
(b) precondition for dynamic stability;		
(c) dynamic stability, positive, neutral and negative.		
Location of centre of gravity: (a) aft limit and minimum stability margin;	Х	х
(b) forward position;		
(c) effects on static and dynamic stability.		
Dynamic lateral or directional stability		
Spiral dive and corrective actions	х	х
Control		
General		
Basics, the three planes and three axis	Х	Х
Angle of attack change	Х	Х
Pitch control		
Elevator Deserves a file sta	X	X
Downwash effects Location of centre of gravity	X	X
Yaw control	Х	х
Pedal or rudder	х	х
Roll control	A	A
Ailerons: function in different phases of flight	х	х
Adverse yaw	Х	х
Means to avoid adverse yaw:	Х	х
(a) frise ailerons;		
(b) differential ailerons deflection.		
Means to reduce control forces		
Aerodynamic balance:	Х	х
(a) balance tab and anti-balance tab;		
(b) servo tab.		
Mass balance Reasons to balance: means	v	v
Reasons to balance. means	Х	Х

Trimming Descens to trim				
Reasons to trim Trim tabs	X	X		
	х	Х		
Limitations				
Operating limitations Flutter				
	X	X		
Vfe	X	X		
Vno, Vne	х	Х		
Manoeuvring envelope				
Manoeuvring load diagram:	Х	Х		
(a) load factor;				
(b) accelerated stall speed;				
(c) v _a ;				
(d) manoeuvring limit load factor or certification category.				
Contribution of mass	Х	Х		
Gust envelope				
Gust load diagram	Х	Х		
Factors contributing to gust loads	х	Х		
Propellers				
Conversion of engine torque to thrust				
Meaning of pitch	х	Х		
Blade twist	х	Х		
Effects of ice on propeller	х	Х		
Engine failure or engine stop				
Windmilling drag	х	Х		
Moments due to propeller operation				
Torque reaction	х	Х		
Asymmetric slipstream effect	х	Х		
Asymmetric blade effect	х	Х		
Flight mechanics				
Forces acting on an aeroplane				
Straight horizontal steady flight	х	Х		
Straight steady climb	х	Х		
Straight steady descent	Х	Х		
Straight steady glide	Х	Х		
Steady coordinated turn:	х	Х		
(a) bank angle;				
(b) load factor;				
(c) turn radius;				
(d) rate one turn.				
PRINCIPLES OF FLIGHT: HELICOPTER				
Subsonic aerodynamics				
Basic concepts, laws and definitions			х	
Conversion of units			х	
Definitions and basic concepts about air:			х	
(a) the atmosphere and International Standard Atmosphere;				
(b) density;				
(c) influence of pressure and temperature on density.				
Newton's laws:			х	
(a) Newton's second law: Momentum equation;			23	
(b) Newton's third law: action and reaction.				
Basic concepts about airflow:			Х	
(a) steady airflow and unsteady airflow;				
(b) Bernoulli's equation;	4			
(c) static pressure, dynamic pressure, total pressure and stage	nation p	oint;		
(d) TAS and IAS;				
(e) two-dimensional airflow and three- dimensional airflow;				
(f) viscosity and boundary layer.				

5.2.

Two-dimensional airflow	х	х
Aerofoil section geometry:	Х	х
(a) aerofoil section;		
(b) chord line, thickness and thickness to chord ratio of a section;		
(c) camber line and camber; (d) summatrial and assummatrial correfails sections		
(d) symmetrical and asymmetrical aerofoils sections.		
Aerodynamic forces on aerofoil elements: (a) angle of attack;	Х	х
(b) pressure distribution;		
(c) lift and lift coefficient		
(d) relation lift coefficient: angle of attack;		
(e) profile drag and drag coefficient;		
(f) relation drag coefficient: angle of attack;		
(g) resulting force, centre of pressure and pitching moment.		
Stall:	х	х
(a) boundary layer and reasons for stalling;		
(b) variation of lift and drag as a function of angle of attack;		
(c) displacement of the centre of pressure and pitching moment.		
Disturbances due to profile contamination:	х	х
(a) ice contamination;		
(b) ice on the surface (frost, snow and clear ice).		
The three-dimensional airflow round a wing and a fuselage	х	х
The wing:	Х	х
(a) planform, rectangular and tapered wings;		
(b) wing twist.		
Airflow pattern and influence on lift:	х	х
(a) span wise flow on upper and lower surface;		
(b) tip vortices;		
(c) span-wise lift distribution.		
Induced drag: causes and vortices	Х	Х
The airflow round a fuselage:	Х	х
(a) components of a fuselage;		
(b) parasite drag; (a) variation with speed		
(c) variation with speed. Transonic aerodynamics and compressibility effects		
Airflow velocities	х	х
Airflow speeds:	X	x
(a) speed of sound;		
(b) subsonic, high subsonic and supersonic flows.		
Shock waves:	Х	х
(a) compressibility and shock waves;		
(b) the reasons for their formation at upstream high subsonic airflow;		
(c) their effect on lift and drag.		
Influence of wing planform: sweep-angle	Х	х
Rotorcraft types	Х	х
Rotorcraft Rotorcraft types:	X	X
(a) autogyro;	х	х
(b) helicopter.		
Helicopters	х	х
Helicopters configurations: the single main rotor helicopter	Х	х
The helicopter, characteristics and associated terminology:	х	х
(a) general lay-out, fuselage, engine and gearbox;		
(b) tail rotor, fenestron and NOTAR;		
(c) engines (reciprocating and turbo shaft engines);		
(d) power transmission;		
(e) rotor shaft axis, rotor hub and rotor blades;		
(f) rotor disc and rotor disc area; (g) testering rotor (two blades) and rotors with more than two blades:		
(g) teetering rotor (two blades) and rotors with more than two blades;		

(h) skids and wheels;			
(i) helicopter axes and fuselage centre line;			
(j) roll axis, pitch axis and normal or yaw axis;			
(k) gross mass, gross weight and disc loading.			
Main rotor aerodynamics	X	X	
Hover flight outside ground effect	X	X	
Airflow through the rotor discs and round the blades: (a) circumferential velocity of the blade sections;	Х	х	
(b) induced airflow, through the disc and downstream;			
(c) downward fuselage drag;			
(d) equilibrium of rotor thrust, weight and fuselage drag;			
(e) rotor disc induced power;			
(f) relative airflow to the blade;			
(g) pitch angle and angle of attack of a blade section;			
(h) lift and profile drag on the blade element;			
(i) resulting lift and thrust on the blade and rotor thrust;			
(j) collective pitch angle changes and necessity of blade feathering;			
(k) required total main rotor-torque and rotor-power;			
(l) influence of the air density. Anti-torque force and tail rotor:	v	v	
(a) force of tail rotor as a function of main rotor-torque;	Х	х	
(b) anti-torque rotor power;			
(c) necessity of blade feathering of tail rotor blades and yaw pedals.			
Maximum hover altitude OGE:	х		х
(a) total power required and power available;			
(b) maximum hover altitude as a function of pressure			
altitude and OAT.			
Vertical climb x	х		
Relative airflow and angles of attack: x	х		
(a) climb velocity V_C , induced and relative velocity and angle of attac	ck;		
(b) collective pitch angle and blade feathering.			
Power and vertical speed:		х	х
(a) induced power, climb power and profile power;			
(b) total main rotor power and main rotor torque;(c) tail rotor power;			
(d) total power requirement in vertical flight.			
Forward flight		х	х
Airflow and forces in uniform inflow		x	x
distribution:			
(a) assumption of uniform inflow distribution on rotor disc;			
(b) advancing blade (90°) and retreating blade (270°);			
(c) airflow velocity relative to the blade sections, area of reverse flow			
(d) lift on the advancing and retreating blades at constant pitch angles	;		
(e) necessity of cyclic pitch changes;			
(f) compressibility effects on the advancing blade tip and speed limita			
(g) high angle of attack on the retreating blade, blade stall and speed l (h) thrust on rotor disc and tilt of thrust vector;	imitatio	ns;	
(i) vertical component of the thrust vector and gross weight equilibriu	m·		
(j) horizontal component of the thrust vector and gross weight equilibrium.	111,		
The flare (power flight):		х	х
(a) thrust reversal and increase in rotor thrust;			
(b) increase of rotor RPM on non governed rotor.			
Power and maximum speed:		х	х
(a) induced power as a function of helicopter speed;			
(b) rotor profile power as a function of helicopter speed;			
(c) fuselage drag and parasite power as a function of forward speed;			
(d) tail rotor power and power ancillary equipment;			
(e) total power requirement as a function of forward speed; (f) influence of baliconter mass, air density and drag of additional evt	ornal an	uinmont	
(f) influence of helicopter mass, air density and drag of additional ext (g) translational lift and influence on power required.	ernar eg	urpment	,
(g) translational intrante influence on power required.			

Hover and forward flight in ground effect		Х	Х
Airflow in ground effect and downwash: rotor	tont halie	X Contor m	X
power decrease as a function of rotor height above the ground at cons Vertical descent	stant nenc	x	x x
Vertical descent, power on:		X	X
(a) airflow through the rotor, low and moderate descent speeds;			
(b) vortex ring state, settling with power and consequences.			
Autorotation:		Х	х
(a) collective lever position after failure;			
(b) up flow through the rotor, auto-rotation			
and anti-autorotation rings;			
(c) tail rotor thrust and yaw control;(d) control of rotor RPM with collective lever;			
(e) landing after increase of rotor thrust by pulling collective and redu	uction in	vertical	sneed
Forward flight: Autorotation	action in	X	x
Airflow through the rotor disc:	х	X	
(a) descent speed and up flow through the disc;			
the flare, increase in rotor thrust, reduction of vertical speed and group	und speed	1.	
Flight and landing:	Х	Х	
(a) turning;			
(b) flare;			
(c) autorotative landing;(d) beight or velocity evolution of dead man's curve			
(d) height or velocity avoidance graph and dead man's curve. Main rotor mechanics	х	х	
Flapping of the blade in hover	X	X	
Forces and stresses on the blade:	X	X	
(a) centrifugal force on the blade and attachments;			
(b) limits of rotor RPM;			
(c) lift on the blade and bending stresses on a rigid attachment;			
(d) the flapping hinge of the articulated rotor and flapping hinge offs	set;		
(e) the flapping of the hinge less rotor and flexible element.			
Coning angle in hover:	Х	Х	
(a) lift and centrifugal force in hover and blade weight negligible(b) flapping, tip path plane and disc area.			
Flapping angles of the blade in forward flight	х	х	
Forces on the blade in forward flight without cyclic feathering:	X	X	
(a)aerodynamic forces on the advancing and retreating blades withou			ering;
(b) periodic forces and stresses, fatigue and flapping hinge;	2		0,
(c) phase lag between the force and the flapping angle (about 90°);			
(d) flapping motion of the hinged blades and tilting of the cone and fl	lap back o	of rotor;	
(e) rotor disc attitude and thrust vector tilt.			
Cyclic pitch (feathering) in helicopter mode, forward flight:		Х	Х
necessity of forward rotor disc tilt and thrust vector tilt; flapping and tip path plane, virtual rotation axis or no flapping axis a	nd nlana (of rotati	on.
(c) shaft axis and hub plane;	nu prane (of fotatio	511,
(d) cyclic pitch change (feathering) and rotor thrust vector tilt;			
(e) collective pitch change, collective lever, swash plate, pitch link an	nd pitch h	orn;	
(f) cyclic stick, rotating swash plate and pitch link movement and ph			
Blade lag motion	-	х	х
Forces on the blade in the disc plane (tip		Х	Х
path plane) in forward flight:			
forces due to the Coriolis effect because of the flapping;			
alternating stresses and the need of the drag or lag hinge.		v	v
The drag or lag hinge: (a) the drag hinge in the fully articulated		Х	х
(b) the lag flexure in the hinge less rotor;			
(c) drag dampers.			
Ground resonance:		х	х
(a) blade lag motion and movement of the			
(b) oscillating force on the fuselage;			

(c) fuselage, undercarriage and resonance.				
Rotor systems			Х	Х
See-saw or teetering rotor			Х	Х
Fully articulated rotor:			Х	Х
(a) three hinges arrangement;				
(b) bearings and elastomeric hinges.				
Hinge less rotor and bearing less rotor			Х	Х
Blade sailing:		Х	Х	
low rotor RPM and effect of adverse wind;				
minimising the danger;				
(c) droop stops. Vibrations due to main rotor:	v	v		
(a) origins of the vibrations: in plane and vertical;	х	Х		
(b) blade tracking and balancing.				
Tail rotors	х	х		
Conventional tail rotor	X	X		
Rotor description:	X	X		
(a) two-blades tail rotors with teetering hinge;	Α	A		
(b) rotors with more than two blades;				
(c) feathering bearings and flapping hinges;				
(d) dangers to people and to the tail rotor,				
Aerodynamics:	х	х		
(a) induced airflow and tail rotor thrust;				
(b) thrust control by feathering, tail rotor				
(c) effect of tail rotor failure and vortex ring.				
The fenestron: technical lay-out	х	Х		
The NOTAR: technical lay-out	х	Х		
Vibrations: high frequency vibrations due to	х	Х		
the tail rotors				
Equilibrium, stability and control	х	Х		
Equilibrium and helicopter attitudes	х	Х		
Hover:	х	Х		
(a) forces and equilibrium conditions;				
(b) helicopter pitching moment and pitch angle;				
(c) helicopter rolling moment and roll angle.				
Forward flight:	х	х		
(a) forces and equilibrium conditions;				
(b) helicopter moments and angles;				
(c) effect of speed on fuselage attitude.				
Control			Х	х
Control power			Х	Х
(a) fully articulated rotor;				
(b) hinge less rotor;				
(c) teetering rotor.				
Static and dynamic roll over			Х	Х
Helicopter performances				
Engine performances			Х	Х
Piston engines:			Х	Х
(a) power available;				
(b) effects of density altitude.				
Turbine engines:			Х	Х
(a) power available;				
(b) effects of ambient pressure and temperature.				
Helicopter performances			Х	Х
Hover and vertical flight:			Х	Х
(a) power required and power available; (b) OCE and ICE maximum bayar baiabt.				
(b) OGE and IGE maximum hover height;				
(c) influence of AUM, pressure, temperature and density.			37	
Forward flight:			Х	х
(a)maximum speed;				

6.

(c) maximum angle of climb speed;				
(d) range and endurance;				
(e) influence of AUM, pressure, temperature and density.				
Manoeuvring:			Х	
(a) load factor;				
(b) bank angle and number of g's;				
(c) manoeuvring limit load factor.				
Special conditions:			Х	
(a) operating with limited power;(b) over pitch and over torque.				
(b) over pitch and over torque.				
OPERATIONAL PROCEDURES				
General				
Operation of aircraft: ICAO Annex 6,				
General requirements				
Definitions	Х	Х	Х	
Applicability	Х	Х	Х	
Special operational procedures and	Х	Х	Х	
hazards (general aspects)				
Noise abatement				
Noise abatement procedures	Х	Х	Х	
Influence of the flight procedure (departure,	Х	Х	Х	
cruise and approach)				
Runway incursion awareness (meaning of	Х	Х	Х	
surface markings and signals)				
Fire or smoke				
Carburettor fire	Х	Х	Х	
Engine fire	Х	Х	Х	
Fire in the cabin and cockpit, (choice of	Х	Х	Х	
extinguishing agents according to fire				
classification and use of the extinguishers)				
Smoke in the cockpit and (effects and action	Х	Х	Х	
to be taken) and smoke in the cockpit and				
cabin (effects and actions taken)				
Windshear and microburst				
Effects and recognition during departure and	Х	Х	Х	
approach				
Actions to avoid and actions taken during	Х	Х	Х	
encounter				
Wake turbulence				
Cause	Х	Х	Х	
List of relevant parameters	Х	Х	Х	
Actions taken when crossing traffic, during	Х	Х	Х	
take-off and landing				
Emergency and precautionary landings				
Definition	Х	Х	Х	
Cause	Х	Х	Х	
Passenger information	Х	Х	Х	
Evacuation	Х	Х	Х	
Action after landing	Х	Х	Х	
Contaminated runways				
Kinds of contamination	Х	Х		
Estimated surface friction and friction coefficient	х	Х		
Rotor downwash			Х	
Operation influence by meteorological				
conditions (helicopter)				
White out, sand or dust			х	
			v	
Strong winds			Х	

	Emergency procedures				
	Influence by technical problems				
	Engine failure			Х	Х
	Fire in cabin, cockpit or engine			х	Х
	Tail, rotor or directional control failure			х	Х
	Ground resonance			Х	Х
	Blade stall			Х	Х
	Settling with power (vortex ring)			Х	Х
	Overpitch			Х	Х
	Overspeed: rotor or engine			Х	Х
	Dynamic rollover		Х		Х
	Mast bumping		Х		Х
7. FI 7.1.	LIGHT PERFORMANCE AND PLANNING MASS AND BALANCE: AEROPLANES OR HELICOI Purpose of mass and balance considerations	PTERS			
	Purpose of mass and balance considerations Mass limitations				
	Importance in regard to structural limitations	v	v	v	v
	Importance in regard to performance limitations	X X	X X	X	X X
	CG limitations	А	А	х	Λ
	Importance in regard to stability and controllability	v	v	v	v
	Importance in regard to performance	X X	X X	X X	X X
	Loading	А	А	А	Λ
	Terminology				
	Mass terms	v	х	х	х
	Load terms (including fuel terms)	X X	X X	X	л Х
	Mass limits	Λ	Λ	л	л
	Structural limitations	Х	х	х	х
	Performance limitations	X	X	X	x
	Baggage compartment limitations	X	X	X	x
	Mass calculations	А	л	Λ	Λ
	Maximum masses for take-off and landing	х	х	х	х
	Use of standard masses for passengers, baggage and crew	X	X	X	x
	Fundamentals of CG calculations	А	л	Λ	Λ
	Definition of centre of gravity	х	х	х	х
	Conditions of equilibrium (balance of	X	X	X	x
	forces and balance of moments)	Α	Α	А	Λ
	Basic calculations of CG	х	х	х	х
	Mass and balance details of aircraft	A	A	11	
	Contents of mass and balance documentation				
	Datum and moment arm	х	х	х	х
	CG position as distance from datum	x	X	X	x
	Extraction of basic mass and balance data from aircraft				
	BEM	X	X	х	х
	CG position or moment at BEM	X	X	X	X
	Deviations from standard configuration	X	X	X	X
	Determination of CG position				
	Methods				
	Arithmetic method	х	х	х	х
	Graphic method	х	х	х	х
	Load and trim sheet				
	General considerations	х	х	х	х
	Load sheet and CG envelope for light	х	х	х	х
	aeroplanes and for helicopters				
7.2.	PERFORMANCE: AEROPLANES				
1.4.	Introduction				
	Performance classes	v	v		
	Stages of flight	X	X		
	Effect of aeroplane mass, wind,	X	X		
	altitude, runway slope and runway conditions	Х	Х		
	annuae, ranway stope and ranway conditions				

	Gradients	х	Х		
	SE aeroplanes				
	Definitions of terms and speeds	Х	Х		
	Take-off and landing performance				
	Use of aeroplane flight manual data	Х	Х		
	Climb and cruise performance				
	Use of aeroplane flight data Effect of density altitude and aeroplane mass	X	X		
	Endurance and the effects of the	X X	X X		
	different recommended power or thrust settings	л	Λ		
	Still air range with various power or thrust settings	Х	Х		
7.3.	FLIGHT PLANNING AND FLIGHT				
	MONITORING				
	Flight planning for VFR flights				
	VFR navigation plan				
	Routes, airfields, heights and altitudes from VFR charts Courses and distances from VFR charts	X X	X	X	X
	Aerodrome charts and aerodrome directory	X X	X X	X X	X X
	Communications and radio navigation planning data	X	X	X	x
	Completion of navigation plan	X	X	X	x
	Fuel planning				
	General knowledge	Х	х	х	х
	Pre-flight calculation of fuel required				
	Calculation of extra fuel	Х	х	х	х
	Completion of the fuel section of the	Х	х	х	х
	navigation plan (fuel log) and calculation of total fuel				
	Pre-flight preparation				
	AIP and NOTAM briefing				
	Ground facilities and services	X	X	X	X
	Departure, destination and alternate aerodromes Airway routings and airspace structure	X X	X X	X X	X X
	Meteorological briefing	Λ	Λ	Λ	л
	Extraction and analysis of relevant data	Х	х	х	х
	from meteorological documents				
	ICAO flight plan (ATS flight plan)				
	Individual flight plan				
	Format of flight plan	х	х	х	х
	Completion of the flight plan	х	х	х	х
	Submission of the flight plan	Х	х	х	х
	Flight monitoring and in-flight re-planning				
	Flight monitoring				
	Monitoring of track and time	Х	Х	Х	х
	In-flight fuel management	Х	Х	Х	х
	In-flight re-planning in case of	Х	Х	Х	х
	deviation from planned data				
7.4.	PERFORMANCE: HELICOPTERS				
	General Introduction				
	Stages of flight		х	х	
	Effect on performance of atmospheric,		X	X	
	airport or heliport and helicopter conditions		л	л	
	Applicability of airworthiness requirements		х	х	
	Definitions and terminology		X	X	
	Performance: SE helicopters				
	Definitions of terms			х	Х
	(a) masses;				
	(b) velocities: v_x , v_y ;				

(c) velocity of best range and of maximum endurance;

Revision No: Original Issue No: 1 8. 8.1.

(d) power limitations;(e) altitudes.				
Take-off, cruise and landing performance			х	Х
Use and interpretation of diagrams and tables:				
(a) Take-off:				
(1) take-off run and distance available;				
(2) take-off and initial climb;				
(3) effects of mass, wind and density altitude;				
(4) effects of ground surface and gradient.				
(b) Landing:				
(1) effects of mass, wind, density altitude and approach	speed;			
(2) effects of ground surface and gradient.				
(c) In-flight:				
(1) relationship between power required and power avai	lable;			
(2) performance diagram;	1			
(3) effects of configuration, mass, temperature and altitu	ide;			
(4) reduction of performance during climbing turns;				
(5) autorotation;(6) adverse effects (icing, rain and condition of the airfr.	(ma)			
(o) adverse effects (feing, fain and condition of the anna	ame).			
AIRCRAFT GENERAL KNOWLEDGE				
AIRFRAME AND SYSTEMS, ELECTRICS, EQUIPMENT	POWER	PLANT	AND	EMERGEN
System design, loads, stresses, maintenance				
Loads and combination loadings applied to	Х	х	х	Х
an aircraft's structure				
Airframe				
Wings, tail surfaces and control surfaces				
Design and constructions	Х	х		
Structural components and materials	Х	х		
Stresses	Х	Х		
Structural limitations	Х	Х		
Fuselage, doors, floor, wind-screen and windows				
Design and constructions	Х	Х	Х	Х
Structural components and materials	Х	Х	Х	Х
Stresses	Х	Х	Х	Х
Structural limitations	Х	Х	Х	Х
Flight and control surfaces				
Design and constructions			Х	Х
Structural components and materials			Х	Х
Stresses and aero elastic vibrations			Х	Х
Structural limitations			Х	Х
Hydraulics				
Hydromechanics: basic principles	Х	X	X	X
Hydraulic systems Hydraulic fluids: types and characteristics, limitations	X	X	X	X
System components: design, operation,	X	X	X	X
degraded modes of operation, indications and warnings	Х	Х	х	Х
Landing gear, wheels, tyres and brakes				
Landing gear				
Types and materials	х	х	х	х
Nose wheel steering: design and operation	X	X	Λ	A
Brakes	1	28		
Types and materials	х	Х	х	х
System components: design, operation,	X	X	x	X
· · · · · · · · · · · · · · · · · · ·				
indications and warnings				
indications and warnings Wheels and tyres				
_	х	х	х	Х
Wheels and tyres	Х	Х	X X	X X

Mechanical or powered	Х	Х	Х	Х
Control systems and mechanical	х	х	Х	Х
System components: design, operation,	X :	Х	Х	Х
indications and warnings, degraded modes of operation and	jamming	5		
Secondary flight controls System components: design, operation,	v	v		
degraded modes of operation, indications and warnings	х	х		
Anti-icing systems				
Types and operation (pitot and windshield)	х	х	х	х
Fuel system	Λ	А	л	л
Piston engine				
System components: design, operation,	х	х	х	х
degraded modes of operation, indications and warnings				
Turbine engine				
System components: design, operation,			х	х
degraded modes of operation, indications and warnings				
Electrics				
Electrics: general and definitions				
Direct current: voltage, current, resistance,	Х	х	Х	Х
conductivity, Ohm's law, power and work				
Alternating current: voltage, current,	Х	х	Х	Х
amplitude, phase, frequency and resistance				
Circuits: series and parallel	Х	х	х	х
Magnetic field: effects in an electrical circuit	Х	х	Х	х
Batteries				
Types, characteristics and limitations	Х	х	Х	Х
Battery chargers, characteristics and limitations	Х	х	Х	Х
Static electricity: general Basic principles	v	v	v	v
Static dischargers	X X	X X	X X	X X
Protection against interference	X	X	X	X
Lightning effects	X	X	X	X
Generation: production, distribution and use				
DC generation: types, design, operation,	х	х	Х	х
degraded modes of operation, indications and warnings				
AC generation: types, design, operation,	х	х	Х	Х
degraded modes of operation, indications and warnings				
Electric components				
Basic elements: basic principles of switches,	Х	х	Х	Х
circuit-breakers and relays				
Distribution General:		v		v
(a) bus bar, common earth and priority;	х	х	Х	Х
(b) AC and DC comparison.				
Piston engines				
General				
Types of internal combustion engine: basic	х	х	х	х
principles and definitions				
Engine: design, operation, components and materials	х	х	х	х
Fuel				
Types, grades, characteristics and limitations	х	х	Х	Х
Alternate fuel: characteristics and limitations	Х	х	Х	Х
Carburettor or injection system				
Carburettor: design, operation, degraded	Х	х	Х	х
modes of operation, indications and warnings				
Injection: design, operation, degraded modes of operation, indications and warnings	Х	х	Х	Х
Icing	Х	х	х	х
^D			Α	Δ

Air cooling systems Design, operation, degraded modes of	v	v	v	v
operation, indications and warnings	х	Х	Х	Х
Lubrication systems				
Lubricants: types, characteristics and limitations	х	х	х	Х
Design, operation, degraded modes of	X	X	X	X
operation, indications and warnings	A	A	~	1
Ignition circuits				
Design, operation, degraded modes of operation	х	х	х	х
Mixture				
Definition, characteristic mixtures, control	х	х	х	х
instruments, associated control levers and indications				
Propellers				
Definitions and general:	х	х		
(a) aerodynamic parameters;				
(b) types;				
(c) operating modes.				
Constant speed propeller: design, operation	х	Х		
and system components				
Propeller handling: associated control levers,	х	х		
degraded modes of operation, indications and warnings				
Performance and engine handling				
Performance: influence of engine	х	х	Х	Х
parameters, influence of atmospheric				
conditions, limitations and power augmentation systems				
Engine handling: power and mixture settings	х	Х	Х	Х
during various flight phases and operational limitations				
Turbine engines				
Definitions			х	Х
Coupled turbine engine: design, operation, components and		5	х	Х
Free turbine engine: design, operation, components and mate	erials		Х	Х
Fuel				
Types, characteristics and limitations			х	Х
Main engine components				
Compressor:			Х	Х
(a) types, design, operation, components and materials;				
(b) stresses and limitations;				
(c) stall, surge and means of prevention.				
Combustion chamber:			Х	Х
(a) types, design, operation, components and materials;				
(b) stresses and limitations;				
(c) emission problems.				
Turbine:			Х	Х
(a) types, design, operation, components and materials;				
(b) stresses, creep and limitations.				
Exhaust:			Х	Х
(a) design, operation and materials;				
(b) noise reduction.				
Fuel control units: types, operation and sensors			Х	Х
Helicopter air intake: different types, design,			Х	Х
operation, materials and optional equipments				
Additional components and systems				
Helicopter additional components and			Х	Х
systems: lubrication system, ignition circuit,				
starter, accessory gearbox, free wheel units:				
design, operation and components				
Performance aspects				
Torque, performance aspects, engine handling and limitation	15:		Х	Х
(a) engine ratings; (b) anging performance and limitations;				
(b) engine performance and limitations;				

8.2.

Torque meter				
Design, operation, characteristics and accuracy			х	х
Tachometer				
Design, operation, characteristics and	Х	х	Х	Х
accuracy				
Measurement of aerodynamic parameters Pressure measurement				
Static pressure, dynamic pressure, density	Х	х	х	х
and definitions				
Design, operation, errors and accuracy	Х	х	Х	х
Temperature measurement: aeroplane				
Design, operation, errors and accuracy	Х	х		
Displays	Х	х		
Temperature measurement: helicopter Design, operation, errors and accuracy			х	Х
Displays			X	X
Altimeter				
Standard atmosphere	Х	х	х	х
The different barometric references (QNH,	Х	х	х	Х
QFE and 1013.25)				
Height, indicated altitude, true altitude,	Х	х	х	Х
pressure altitude and density altitude				
Design, operation, errors and accuracy	Х	X	X	Х
Displays Vertical speed indicator	Х	Х	Х	Х
Design, operation, errors and accuracy	х	х	х	Х
Displays	X	x	x	X
Air speed indicator				
The different speeds IAS, CAS, TAS:	Х	х	Х	Х
definition, usage and relationships				
Design, operation, errors and accuracy	Х	х	Х	Х
Displays Magnetism: direct reading compass	Х	Х	Х	Х
Earth magnetic field	х	х	х	х
Direct reading compass				
Design, operation, data processing, accuracy	Х	х	х	х
and deviation				
Turning and acceleration errors	Х	х	Х	Х
Gyroscopic instruments				
Gyroscope: basic principles Definitions and design	х	х	х	х
Fundamental properties	X	X	X	X
Drifts	X	x	X	X
Turn and bank indicator				
Design, operation and errors	Х	х	х	Х
Attitude indicator				
Design, operation, errors and accuracy	Х	х	Х	Х
Directional gyroscope Design, operation, errors and accuracy	Х	х	х	Х
Communication systems	Λ	А	Λ	Λ
Transmission modes: VHF, HF and				
SATCOM				
Principles, bandwidth, operational limitations and use	Х	х	Х	Х
Voice communication				
Definitions, general and applications	Х	Х	Х	Х
Alerting systems and proximity systems				
Flight warning systems Design, operation, indications and alarms	v	v	v	v
Design, operation, mulcations and atarms	Х	Х	х	Х

	Stall warning				
	Design, operation, indications and alarms Radio-altimeter	Х	Х		
	Design, operation, errors, accuracy and indications			х	х
	Rotor or engine over speed alert system			v	v
	Design, operation, displays and alarms Integrated instruments: electronic displays			Х	Х
	Display units				
	Design, different technologies and limitations	х	х	х	х
0					
9. 9.1.	NAVIGATION GENERAL NAVIGATION				
<i>)</i>	Basics of navigation				
	The solar system				
	Seasonal and apparent movements of the sun	х		Х	
	The earth				
	Great circle, small circle and rhumb line Latitude and difference of latitude	X		X	
	Longitude and difference of longitude	X X		X X	
	Use of latitude and longitude co-ordinates to	X		X	
	locate any specific position	л		л	
	Time and time conversions				
	Apparent time	х		х	
	UTC	х		х	
	LMT	х		х	
	Standard times	х		Х	
	Dateline	X		X	
	Definition of sunrise, sunset and civil twilight Directions	х		х	
	True north, magnetic north and compass north	х		х	
	Compass deviation	X		X	
	Magnetic poles, isogonals, relationship	х		х	
	between true and magnetic				
	Distance				
	Units of distance and height used in navigation: nautical miles, statute miles,	х		х	
	kilometres, metres and ft				
	Conversion from one unit to another	х		х	
	Relationship between nautical miles and	х		Х	
	minutes of latitude and minutes of longitude				
	Magnetism and compasses				
	General principles Terrestrial magnetism	х		х	
	Resolution of the earth's total magnetic force	X		X	
	into vertical and horizontal components				
	Variation-annual change	х		х	
	Aircraft magnetism				
	The resulting magnetic fields	х		х	
	Keeping magnetic materials clear of the compass	х		Х	
	Charts Concerned proportion of misselloneous types of projections				
	General properties of miscellaneous types of projections Direct Mercator	Х		Х	
	Lambert conformal conic	X X		X X	
	The representation of meridians,				
	parallels, great circles and rhumb lines				
	Direct Mercator	Х		Х	
	Lambert conformal conic The use of current aeronautical charts	Х		Х	
	Plotting positions	Х		Х	
	- Torring Population			2 1	

Methods of indicating scale and relief (ICAO	Х	Х
topographical chart)		
Conventional signs Measuring tracks and distances	X	Х
Plotting bearings and distances	X	Х
6 6	Х	Х
DR navigation		
Basis of DR Track		
	X	Х
Heading (compass, magnetic and true)	X	Х
Wind velocity	Х	Х
Air speed (IAS, CAS and TAS)	Х	Х
Groundspeed	Х	Х
ETA	Х	Х
Drift and wind correction angle	Х	Х
DR position fix	Х	Х
Use of the navigational computer		
Speed	Х	Х
Time	Х	Х
Distance	Х	Х
Fuel consumption	Х	Х
Conversions	Х	Х
Air speed	Х	Х
Wind velocity	Х	Х
True altitude	Х	Х
The triangle of velocities		
Heading	Х	Х
Ground speed	Х	Х
Wind velocity	Х	Х
Track and drift angle	Х	Х
Measurement of DR elements		
Calculation of altitude	Х	Х
Determination of appropriate speed	Х	Х
In-flight navigation		
Use of visual observations and	Х	Х
application to in-flight navigation		
Navigation in cruising flight, use of fixes		
to revise navigation data		
Ground speed revision	Х	х
Off-track corrections	X	X
Calculation of wind speed and direction	X	X
ETA revisions		X
Flight log	X	X
r nght ivg	Х	Λ
RADIO NAVIGATION		
Basic radio propagation theory		
Antennas		
Characteristics	v	
	Х	Х
Wave propagation	.	
Propagation with the frequency bands	Х	Х
Radio aids		
Ground DF		
Principles	Х	Х
Presentation and interpretation	Х	Х
Coverage	Х	Х
Range	Х	Х
Errors and accuracy	Х	Х
Factors affecting range and accuracy	Х	Х
NDB/ADF		
Principles	Х	Х

9.2.

Coverage	х	х
Range	Х	х
Errors and accuracy	Х	х
Factors affecting range and accuracy	Х	Х
VOR		
Principles	Х	Х
Presentation and interpretation	Х	Х
Coverage	Х	Х
Range	Х	Х
Errors and accuracy	Х	Х
Factors affecting range and accuracy	Х	Х
DME		
Principles	Х	Х
Presentation and interpretation	Х	Х
Coverage	Х	Х
Range	Х	Х
Errors and accuracy	Х	Х
Factors affecting range and accuracy	Х	Х
Radar		
Ground radar		
Principles	Х	Х
Presentation and interpretation	Х	Х
Coverage	Х	Х
Range	Х	Х
Errors and accuracy	Х	Х
Factors affecting range and accuracy	Х	Х
Secondary surveillance radar and transponder		
Principles	Х	Х
Presentation and interpretation	Х	Х
Modes and codes	Х	Х
GNSS		
GPS, GLONASS OR GALILEO		
Principles	Х	Х
Operation	Х	Х
Errors and accuracy	Х	Х
Factors affecting accuracy	Х	Х

AMC2 FCL.210; FCL.215

SYLLABUS OF THEORETICAL KNOWLEDGE FOR THE PPL (AS)

The following table contains the syllabi for the courses of theoretical knowledge, as well as for the theoretical knowledge examinations for the PPL (As). The training and examination should cover aspects related to non-technical skills in an integrated manner, taking into account the particular risks associated to the licence and the activity.

1.	AIR LAW AND ATC PROCEDURES	
	International law: conventions, agreements and organisations	Х
	Airworthiness of aircraft	Х
	Aircraft nationality and registration marks	Х
	Personnel licensing	Х
	Rules of the air	Х
	Procedures for air navigation services: aircraft operations	Х
	Air traffic services and air traffic management	Х
	Aeronautical information service	Х
	Aerodromes	Х
	Search and rescue	Х
	Security	Х
	Aircraft accident and incident investigation	Х
	National law	Х

PPL

2.	HUMAN PERFORMANCE	
	Human factors: basic concepts	х
	Basic aviation physiology and health maintenance	х
	Basic aviation psychology	х
3.	METEOROLOGY	
	The atmosphere	х
	Wind	х
	Thermodynamics	х
	Clouds and fog	х
	Precipitation	х
	Air masses and fronts	х
	Pressure systems	х
	Climatology	х
	Flight hazards	х
	Meteorological information	х
4.	COMMUNICATIONS	
	VFR COMMUNICATIONS	
	Definitions	х
	General operating procedures	х
	Relevant weather information terms (VFR)	х
	Action required to be taken in case of communication failure	х
	Distress and urgency procedures	х
	General principles of VHF propagation and allocation of frequencies	х
5.	PRINCIPLES OF FLIGHT	
	Basics of aerostatics	х
	Basics of subsonic aerodynamics	х
	Aerodynamics of airships	х
	Stability	х
	Controllability	х
	Limitations	х
	Propellers	х
	Basics of airship flight mechanics	х
6.	OPERATIONAL PROCEDURES	
	General requirements	х
	Special operational procedures and hazards (general aspects)	х
	Emergency procedures	х
7.	FLIGHT PERFORMANCE AND PLANNING	
7.1	MASS AND BALANCE	
	Purpose of mass and balance considerations	х
	Loading	Х
	Fundamentals of CG calculations	х
	Mass and balance details of aircraft	х
	Determination of CG position	х
	Passenger, cargo and ballast handling	х
7.2	PERFORMANCE	
	Airworthiness requirements	х
	Basics of airship performance	х
	Definitions and terms	х
	Stages of flight	х
	Use of flight manual	х
7.3	FLIGHT PLANNING AND FLIGHT MONITORING	
	Flight planning for VFR flights	х
	Fuel planning	х
	Pre-flight preparation	х
	ATS flight plan	x
	Flight monitoring and in-flight re-planning	X
	AIRCRAFT GENERAL KNOWLEDGE	
	ENVELOPE, AIRFRAME AND SYSTEMS, ELECTRICS, POWERPLANT AND	D
	EMERGENCY EQUIPMENT	
	-	

	Design, materials, loads and stresses	Х
	Envelope and airbags	Х
	Framework	Х
	Gondola	Х
	Flight controls	Х
	Landing gear	Х
	Hydraulics and pneumatics	Х
	Heating and air conditioning	Х
	Fuel system	Х
	Piston engines (propellers)	Х
	Turbine engines (basics)	Х
	Electrics	Х
	Fire protection and detection systems	Х
	Maintenance	Х
8.2	INSTRUMENTATION	
	Measurement of air data and gas parameters	Х
	Magnetism: direct reading compass and flux valve	Х
	Gyroscopic instruments	Х
	Communication systems	Х
	Alerting systems	Х
	Integrated instruments: electronic displays	Х
	Flight management system (general basics)	Х
	Digital circuits and computers	Х
9.	NAVIGATION	
9.1.	GENERAL NAVIGATION	
	Basics of navigation	Х
	Magnetism and compasses	Х
	Charts	Х
	DR navigation	Х
	In-flight navigation	Х
9.2.	RADIO NAVIGATION	
	Basic radio propagation theory	Х
	Radio aids	Х
	Radar	Х
	GNSS	Х

AMC3 FCL.210; FCL.215 SYLLABUS OF THEORETICAL KNOWLEDGE FOR THE BPL AND SPL

The syllabi for the theoretical knowledge instruction and examination for the LAPL (B) and LAPL(S) in AMC1 FCL.115 and FCL.120 should be used for the BPL and SPL, respectively.

AMC1 FCL.215; FCL.235 THEORETICAL KNOWLEDGE EXAMINATION AND SKILL TEST FOR THE PPL

- (a) Theoretical knowledge examination
 - (1) The examinations should comprise a total of 120 multiple-choice questions covering all the subjects.
 - (2) Communication practical classroom testing may be conducted.
 - (3) The period of 18 months mentioned in FCL.025 (b) (2) should be counted from the end of the calendar month when the applicant first attempted an examination.
- (b) Skill test

Further training may be required following any failed skill test or part thereof. There should be no limit to the number of skill tests that may be attempted.

- (c) Conduct of the test
 - (1) If the applicant chooses to terminate a skill test for reasons considered inadequate by the FE, the applicant should retake the entire skill test. If the test is terminated for reasons considered adequate by the FE, only those sections not completed should be tested in a further flight.

- (2) Any manoeuvre or procedure of the test may be repeated once by the applicant. The FE may stop the test at any stage if it is considered that the applicant's demonstration of flying skill requires a complete retest.
- (3) An applicant should be required to fly the aircraft from a position where the PIC functions can be performed and to carry out the test as if there is no other crew member. Responsibility for the flight should be allocated in accordance with national regulations.

AMC1 FCL.235 Skill test

CONTENTS OF THE SKILL TEST FOR THE ISSUE OF A PPL (A)

- (a) The route to be flown for the navigation test should be chosen by the FE. The route may end at the aerodrome of departure or at another aerodrome. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board. The navigation section of the test should have a duration that allows the pilot to demonstrate his/her ability to complete a route with at least three identified waypoints and may, as agreed between the applicant and FE, be flown as a separate test.
- (b) An applicant should indicate to the FE the checks and duties carried out, including the identification of radio facilities. Checks should be completed in accordance with the authorised checklist for the aeroplane on which the test is being taken. During pre-flight preparation for the test the applicant should be required to determine power settings and speeds. Performance data for take-off, approach and landing should be calculated by the applicant in compliance with the operations manual or flight manual for the aeroplane used.

FLIGHT TEST TOLERANCE

- (c) The applicant should demonstrate the ability to:
 - (1) operate the aeroplane within its limitations;
 - (2) complete all manoeuvres with smoothness and accuracy;
 - (3) exercise good judgment and airmanship;
 - (4) apply aeronautical knowledge;
 - (5) maintain control of the aeroplane at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.
- (d) The following limits are for general guidance. The FE should make allowance for turbulent conditions and the handling qualities and performance of the aeroplane used:
 (1) height:

(1)	norgin.		
	(i) normal flight	± 150	ft
	(ii) with simulated engine failure	± 200	ft (if ME aeroplane is used)
(2)	heading or tracking of radio aids:		
	(i) normal flight	\pm 10 $^{\circ}$	
	(ii) with simulated engine failure	± 15 ° (i	if ME aeroplane is used)
(3)	speed:		
	(i) take-off and approach	+15/-5	knots
	(ii) all other flight regimes	± 15 kno	ots

CONTENT OF THE SKILL TEST

(e) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a PPL(A) on SE and ME aeroplanes or on TMGs.

SECTION 1 PRE-FLIGHT OPERATIONS AND DEPARTURE

Use of checklist, airmanship, control of aeroplane by external visual reference, anti/de-icing procedures, etc. apply in all sections.

- a Pre-flight documentation, NOTAM and weather briefing
- b Mass and balance and performance calculation
- c Aeroplane inspection and servicing
- d Engine starting and after starting procedures
- e Taxiing and aerodrome procedures, pre-take-off procedures
- f Take-off and after take-off checks
- g Aerodrome departure procedures
- h ATC compliance and R/T procedures

SECTION 2 GENERAL AIRWORK

- a ATC compliance and R/T procedures
- b Straight and level flight, with speed changes
- c Climbing:
 - i. best rate of climb;
 - ii. climbing turns;
 - iii. levelling off.
 - Medium (30° bank) turns
- e Steep (45 ° bank) turns (including recognition and recovery from a spiral dive)
- f Flight at critically low air speed with and without flaps
- g Stalling:

d

- i. clean stall and recover with power;
- ii. approach to stall descending turn with bank angle 20, approach configuration;
- iii. approach to stall in landing configuration.
- h Descending:
 - i. with and without power;
 - ii. descending turns (steep gliding turns);
 - iii. levelling off.

SECTION 3 EN-ROUTE PROCEDURES

- a Flight plan, dead reckoning and map reading
- b Maintenance of altitude, heading and speed
- c Orientation, timing and revision of ETAs and log keeping
- d Diversion to alternate aerodrome (planning and implementation)
- e Use of radio navigation aids
- f Basic instrument flying check (180 ° turn in simulated IMC)
- g Flight management (checks, fuel systems and carburettor icing, etc.)
- h ATC compliance and R/T procedures

SECTION 4 APPROACH AND LANDING PROCEDURES

- a Aerodrome arrival procedures
- b * Precision landing (short field landing), crosswind, if suitable conditions available
- c * Flapless landing
- d * Approach to landing with idle power (SE only)
- e Touch and go
- f Go-around from low height
- g ATC compliance and R/T procedures
- h Actions after flight

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

This section may be combined with sections 1 through 4

- a Simulated engine failure after take-off (SE only)
- b * Simulated forced landing (SE only)
- c Simulated precautionary landing (SE only)
- d Simulated emergencies
- e Oral questions

SECTION 6 SIMULATED ASYMMETRIC FLIGHT AND RELEVANT CLASS OR TYPE ITEMS

This section may be combined with sections 1 through 5

- a Simulated engine failure during take-off (at a safe altitude unless carried out in an FFS)
- b Asymmetric approach and go-around
- c Asymmetric approach and full stop landing
- d Engine shutdown and restart
- e ATC compliance, R/T procedures or airmanship
- f As determined by the FE: any relevant items of the class or type rating skill test to include, if applicable:

- i. aeroplane systems including handling of auto pilot;
- ii. operation of pressurisation system;
- iii. use of de-icing and anti-icing system.
- g Oral questions
- * These items may be combined, at the discretion of the FE.

AMC2 FCL.235 Skill test

CONTENTS OF THE SKILL TEST FOR THE ISSUE OF A PPL (H)

- (a) The area and route to be flown should be chosen by the FE and all low level and hover work should be at an adequate aerodrome or site. Routes used for section 3 may end at the aerodrome of departure or at another aerodrome. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board. The navigation section of the test, as set out in this AMC should consist of at least three legs, each leg of a minimum duration of 10 minutes. The skill test may be conducted in two flights.
- (b) An applicant should indicate to the FE the checks and duties carried out, including the identification of radio facilities. Checks should be completed in accordance with the authorised checklist or pilot operating handbook for the helicopter on which the test is being taken. During pre-flight preparation for the test the applicant is required to determine power settings and speeds. Performance data for take-off, approach and landing should be calculated by the applicant in compliance with the operations manual or flight manual for the helicopter used.

FLIGHT TEST TOLERANCE

- (c) The applicant should demonstrate the ability to:
 - (1) operate the helicopter within its limitations;
 - (2) complete all manoeuvres with smoothness and accuracy;
 - (3) exercise good judgement and airmanship;
 - (4) apply aeronautical knowledge;
 - (5) maintain control of the helicopter at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.
- (d) The following limits are for general guidance. The FE should make allowance for turbulent conditions and the handling qualities and performance of the helicopter used.
 (1) height:

(1)	height:	
	(I) normal forward flight	150 ft
	(ii) with simulated major emergency	200 ft
	(iii) hovering IGE flight	2 ft
(2)	heading or tracking of radio aids:	
	(i) normal flight	10 °
	(ii) with simulated major emergency	15 °
(3)	speed:	
	(i) take-off approach	- 10 knots/+15 knots
	(ii) all other flight regimes	15 knots
(4)	ground drift:	
	(i) take-off hover IGE	3 ft
	(ii) landing	no sideways or backwards movement

CONTENT OF THE SKILL TEST

(e) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a PPL(H) on SE or ME helicopters.

Use of checklist, airmanship, control of helicopter by external visual reference, anti-icing procedures, etc. apply in all sections

- a Helicopter knowledge, (for example technical log, fuel, mass and balance, performance), flight planning, NOTAM and weather briefing
- b Pre-flight inspection or action, location of parts and purpose
- c Cockpit inspection and starting procedure
- d Communication and navigation equipment checks, selecting and setting frequencies
- e Pre-take-off procedure, R/T procedure and ATC compliance
- f Parking, shutdown and post-flight procedure

SECTION 2 HOVER MANOEUVRES, ADVANCED HANDLING AND CONFINED AREAS

- a Take-off and landing (lift-off and touch down)
- b Taxi and hover taxi
- c Stationary hover with head, cross or tail wind
- d Stationary hover turns, 360 ° left and right (spot turns)
- e Forward, sideways and backwards hover manoeuvring
- f Simulated engine failure from the hover
- g Quick stops into and downwind
- h Sloping ground or unprepared sites landings and take-offs
- i Take-offs (various profiles)
- j Crosswind and downwind take-off (if practicable)
- k Take-off at maximum take-off mass (actual or simulated)
- 1 Approaches (various profiles)
- m Limited power take-off and landing
- n Autorotations, (FE to select two items from: basic, range, low speed and 360 ° turns)
- o Autorotative landing
- p Practice forced landing with power recovery
- q Power checks, reconnaissance technique, approach and departure technique

SECTION 3 NAVIGATION - EN ROUTE PROCEDURES

- a Navigation and orientation at various altitudes or heights and map reading
- b Altitude or height, speed, heading control, observation of airspace and altimeter setting
- c Monitoring of flight progress, flight log, fuel usage, endurance, ETA, assessment of track error and reestablishment of correct track and instrument monitoring
- d Observation of weather conditions and diversion planning
- e Use of navigation aids (where available)
- f ATC liaison with due observance of regulations, etc.

SECTION 4 FLIGHT PROCEDURES AND MANOEUVRES

- a Level flight, control of heading, altitude or height and speed
- b Climbing and descending turns to specified headings
- c Level turns with up to 30 $^{\circ}$ bank, 180 $^{\circ}$ to 360 $^{\circ}$ left and right
- d Level turns 180 ° left and right by sole reference to instruments

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES (SIMULATED WHERE APPROPRIATE)

Note (1) Where the test is conducted on an ME helicopter, a simulated engine failure drill, including an SE approach and landing should be included in the test.

Note (2) The FE should select four items from the following:

- a Engine malfunctions, including governor failure, carburettor or engine icing and oil system, as appropriate
- b Fuel system malfunction
- c Electrical system malfunction
- d Hydraulic system malfunction, including approach and landing without hydraulics, as applicable
- e Main rotor or anti-torque system malfunction (FFS or discussion only)
- f Fire drills, including smoke control and removal, as applicable
- g Other abnormal and emergency procedures as outlined in an appropriate flight manual and with reference to Appendix 9 C to Part-FCL, sections 3 and 4, including for ME helicopters:
 - (a) Simulated engine failure at take-off:
 - (1) rejected take-off at or before TDP or safe forced landing at or before DPATO;
 - (2) shortly after TDP or DPATO.
 - (b) Landing with simulated engine failure:
 - (1) landing or go-around following engine failure before LDP or DPBL;
 - (2) following engine failure after LDP or safe forced landing after DPBL.

AMC3 FCL.235 Skill test

CONTENT OF THE SKILL TEST FOR THE ISSUE OF THE PPL (AS)

- (a) The area and route to be flown is chosen by the FE. Routes used for section 3 may end at the aerodrome of departure or at another aerodrome and one destination should be a controlled aerodrome. The skill test may be conducted in two flights. The total duration of the flight(s) should be at least 60 minutes.
- (b) The applicant should demonstrate the ability to:
 - (1) operate the airship within its limitations;
 - (2) complete all manoeuvres with smoothness and accuracy;
 - (3) exercise good judgement and airmanship;
 - (4) apply aeronautical knowledge;
 - (5) maintain control of the airship at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

FLIGHT TEST TOLERANCES

- (c) The following limits should apply, corrected to make allowance for turbulent conditions and the handling qualities and performance of the airship used.
 - (1) height:

()

(-)	iner Billi	
	(i) normal flight	±200 ft
	(ii) simulated major emergency	±300 ft
(2)	tracking on radio aids:	± 15 °
(3)	heading:	
	(i) normal flight	± 15 °
	(ii) simulated major emergency	± 20 °

CONTENT OF THE TEST

- (d) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a PPL (As).
- (e) Items in sections 5 and 6 may be performed in an FNPT (As) or a FS (As).

SECTION 1 PRE-FLIGHT OPERATIONS AND DEPARTURE

Use of airship checklists, airmanship, control of airship by external visual reference, anti-icing procedures, and principles of threat and error management, etc. apply in all sections

- a Pre-flight, including:
- flight planning, documentation, mass and balance, NOTAM and weather briefing
- b Airship inspection and servicing
- c Off-mast procedure, ground manoeuvring and take-off
- d Performance considerations and trim
- e Aerodrome and traffic pattern operations
- f Departure procedure, altimeter setting, collision avoidance (look-out)
- g ATC compliance and R/T procedures

SECTION 2 GENERAL AIRWORK

- a Control of the airship by external visual reference, including straight and level, climb, descent and look-out
- b Flight close to pressure height
- c Turns
- d Steep descents and climbs
- e Flight by reference solely to instruments, including:
 - i. Level flight, control of heading, altitude and air speed;
 - ii. Climbing and descending turns;
 - iii. Recoveries from unusual attitudes.
- f ATC compliance and R/T procedures

SECTION 3 EN-ROUTE PROCEDURES

- a Flight plan, dead reckoning and map reading
- b Maintenance of altitude, heading and speed and collision avoidance (look-out procedures)
- c Orientation, timing and revision of ETAs and log keeping
- d Observation of weather conditions and diversion to alternate aerodrome (planning and implementation)
- e Use of radio navigation aids
- f Flight management (checks, fuel systems, etc.)
- g ATC compliance and R/T procedures

SECTION 4 APPROACH AND LANDING PROCEDURES

- a Aerodrome arrival procedures, altimeter setting, checks and look-out
- b ATC compliance and R/T procedures
- c Go-around action
- d Normal landing
- e Short field landing
- f Post-flight actions

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

This section may be combined with sections 1 through 4

- a Simulated engine failure after take-off (at a safe altitude) and fire drill
- b Equipment malfunctions
- c Forced landing (simulated)
- d ATC compliance and R/T procedures
- e Oral questions

SECTION 6 RELEVANT TYPE ITEMS

This section may be combined with sections 1 through 5

- a Simulated engine failure during take-off (at a safe altitude unless carried out in a FFS)
- b Approach and go-around with failed engine(s)
- c Approach and full stop landing with failed engine(s)
- d Malfunctions in the envelope pressure system
- e ATC compliance, R/T procedures and airmanship
- f As determined by the FE: any relevant items of the type rating skill test to include, if applicable:
- i. Airship systems;
- ii. Operation of envelope pressure system.
- g Oral questions

AMC1 FCL.210.A PPL (A) — Experience requirements and crediting

FLIGHT INSTRUCTION FOR THE PPL (A)

(a) Entry to training

Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

- (b) Flight instruction
 - (1) The PPL(A) flight instruction syllabus takes into account the principles of threat and error management and also covers:
 - (i) pre-flight operations, including mass and balance determination, aircraft inspection and servicing;
 - (ii) aerodrome and traffic pattern operations, collision avoidance precautions and procedures;
 - (iii) control of the aircraft by external visual reference;
 - (iv) flight at critically low air speeds, recognition of, and recovery from, incipient and full stalls;
 - (v) flight at critically high air speeds, recognition of, and recovery from, spiral dive;
 - (vi) normal and crosswind take-offs and landings;

(vii)maximum performance (short field and obstacle clearance) take-offs, short-field landings;

- (viii) flight by reference solely to instruments, including the completion of a level 180 $^{\circ}$ turn;
- (ix) cross-country flying using visual reference, dead reckoning and radio navigation aids;
- (x) emergency operations, including simulated aeroplane equipment malfunctions;
- (xi) operations to, from and transiting controlled aerodromes, compliance with air traffic services procedures, communication procedures and phraseology.
- (2) Before allowing the applicant for a PPL (A) to undertake his/her first solo flight, the FI should ensure that the applicant can use R/T communication.
- (c) Syllabus of flight instruction
 - (1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 - (i) the applicant's progress and ability;
 - (ii) the weather conditions affecting the flight;
 - (iii) the flight time available;
 - (iv) instructional technique considerations;
 - (v) the local operating environment;
 - (vi) applicability of the exercises to the aeroplane.
 - (2) Each of the exercises involves the need for the applicant to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.
 - (i) Exercise 1a: Familiarisation with the aeroplane:
 - (A) characteristics of the aeroplane;
 - (B) cockpit layout;
 - (C) systems;
 - (D) checklists, drills and controls.
 - (ii) Exercise 1b: Emergency drills:
 - (A) action if fire on the ground and in the air;
 - (B) engine cabin and electrical system fire;
 - (C) systems failure;
 - (D) escape drills, location and use of emergency equipment and exits.
 - (iii) Exercise 2: Preparation for and action after flight:
 - (A) flight authorisation and aeroplane acceptance;
 - (B) serviceability documents;
 - (C) equipment required, maps, etc.;
 - (D) external checks;
 - (E) internal checks;
 - (F) harness, seat or rudder panel adjustments;
 - (G) starting and warm-up checks;
 - (H) power checks;
 - (I) running down system checks and switching off the engine;
 - (J) parking, security and picketing (for example tie down);
 - (K) completion of authorisation sheet and serviceability documents.
 - (iv) Exercise 3: Air experience: flight exercise.
 - (v) Exercise 4: Effects of controls:
 - (A) primary effects when laterally level and when banked;
 - (B) further effects of aileron and rudder;
 - (C) effects of:
 - (a) air speed;
 - (b) slipstream;
 - (c) power;
 - (d) trimming controls;
 - (e) flaps;
 - (f) other controls, as applicable.
 - (D) operation of:
 - (a) mixture control;
 - (b) carburettor heat;
 - (c) cabin heating or ventilation.
 - (vi) Exercise 5a: Taxiing:

- (A) pre-taxi checks;
- (B) starting, control of speed and stopping;
- (C) engine handling;
- (D) control of direction and turning;
- (E) turning in confined spaces;
- (F) parking area procedure and precautions;
- (G) effects of wind and use of flying controls;
- (H) effects of ground surface;
- (I) freedom of rudder movement;
- (J) marshalling signals;
- (K) instrument checks;
- (L) air traffic control procedures.
- (vii)Exercise 5b: Emergencies: brake and steering failure.
- (viii) Exercise 6: Straight and level:
 - (A) at normal cruising power, attaining and maintaining straight and level flight;
 - (B) flight at critically high air speeds;
 - (C) demonstration of inherent stability;
 - (D) control in pitch, including use of trim;
 - (E) lateral level, direction and balance and trim;
 - (F) at selected air speeds (use of power);
 - (G) during speed and configuration changes;
 - (H) use of instruments for precision.
 - (ix) Exercise 7: Climbing:
 - (A) entry, maintaining the normal and max rate climb and levelling off;
 - (B) levelling off at selected altitudes;
 - (C) en-route climb (cruise climb);
 - (D) climbing with flap down;
 - (E) recovery to normal climb;
 - (F) maximum angle of climb;
 - (G) use of instruments for precision.
- (x) Exercise 8: Descending:
 - (A) entry, maintaining and levelling off;
 - (B) levelling off at selected altitudes;
 - (C) glide, powered and cruise descent (including effect of power and air speed);
 - (D) side slipping (on suitable types);
 - (E) use of instruments for precision flight.
- (xi) Exercise 9: Turning:
 - (A) entry and maintaining medium level turns;
 - (B) resuming straight flight;
 - (C) faults in the turn (for example in correct pitch, bank and balance);
 - (D) climbing turns;
 - (E) descending turns;
 - (F) faults in the turns (slipping and skidding on suitable types);
 - (G) turns onto selected headings, use of gyro heading indicator and compass;
 - (H) use of instruments for precision.
- (xii)Exercise 10a: Slow flight:
 - Note: the objective is to improve the student's ability to recognise inadvertent flight at critically low speeds and provide practice in maintaining the aeroplane in balance while returning to normal air speed.
 - (A) safety checks;
 - (B) introduction to slow flight;
 - (C) controlled flight down to critically slow air speed;
 - (D) application of full power with correct attitude and balance to achieve normal climb speed.
- (xiii) Exercise 10b: Stalling:
 - (A) safety checks;
 - (B) symptoms;
 - (C) recognition;
 - (D) clean stall and recovery without power and with power;
 - (E) recovery when a wing drops;
 - (F) approach to stall in the approach and in the landing configurations, with and without power

and recovery at the incipient stage.

- (xiv) Exercise 11: Spin avoidance:
 - (A) safety checks;
 - (B) stalling and recovery at the incipient spin stage (stall with excessive wing drop, about 45°);
 - (C) instructor induced distractions during the stall.
 - Note 1: at least two hours of stall awareness and spin avoidance flight training should be completed during the course.
 - Note 2: consideration of manoeuvre limitations and the need to refer to the aeroplane manual and mass and balance calculations.
- (xv) Exercise 12: Take-off and climb to downwind position:
 - (A) pre-take-off checks;
 - (B) into wind take-off;
 - (C) safeguarding the nose wheel;
 - (D) crosswind take-off;
 - (E) drills during and after take-off;
 - (F) short take-off and soft field procedure/techniques including performance calculations;
 - (G) noise abatement procedures.
- (xvi) Exercise 13: Circuit, approach and landing:
 - (A) circuit procedures, downwind and base leg;
 - (B) powered approach and landing;
 - (C) safeguarding the nose wheel;
 - (D) effect of wind on approach and touchdown speeds and use of flaps;
 - (E) crosswind approach and landing;
 - (F) glide approach and landing;
 - (G) short landing and soft field procedures or techniques;
 - (H) flapless approach and landing;
 - (I) wheel landing (tail wheel aeroplanes);
 - (J) missed approach and go-around;
 - (K) noise abatement procedures.
- (xvii) Exercise 12/13: Emergencies:
 - (A) abandoned take-off;
 - (B) engine failure after take-off;
 - (C) mislanding and go-around;
 - (D) missed approach.
 - Note: in the interests of safety it will be necessary for pilots trained on nose wheel aeroplanes to undergo dual conversion training before flying tail wheel aeroplanes, and vice-versa.
- (xviii) Exercise 14: First solo:
 - (A) instructor's briefing, observation of flight and de-briefing;

Note: during flights immediately following the solo circuit consolidation the following should be revised:

- (B) procedures for leaving and rejoining the circuit;
- (C) the local area, restrictions, map reading;
- (D) use of radio aids for homing;
- (E) turns using magnetic compass, compass errors.
- (xix) Exercise 15: Advanced turning:
 - (A) steep turns (45 $^{\circ}$), level and descending;
 - (B) stalling in the turn and recovery;
 - (C) recoveries from unusual attitudes, including spiral dives.

(xx) Exercise 16: Forced landing without power:

- (A) forced landing procedure;
- (B) choice of landing area, provision for change of plan;
- (C) gliding distance;
- (D) descent plan;
- (E) key positions;
- (F) engine cooling;
- (G) engine failure checks;
- (H) use of radio;
- (I) base leg;
- (J) final approach;
- (K) landing;

- (L) actions after landing.
- (xxi) Exercise 17: Precautionary landing:
 - (A) full procedure away from aerodrome to break-off height;
 - (B) occasions necessitating;
 - (C) in-flight conditions;
 - (D) landing area selection:
 - (a) normal aerodrome;
 - (b) disused aerodrome;
 - (c) ordinary field.
 - (E) circuit and approach;
 - (F) actions after landing.
- (xxii) Exercise 18a: Navigation:
 - (A) flight planning:
 - (a) weather forecast and actuals;
 - (b) map selection and preparation:
 - (1) choice of route;
 - (2) controlled airspace;
 - (3) danger, prohibited and restricted areas;
 - (4) safety altitudes.
 - (c) calculations:
 - (1) magnetic heading(s) and time(s) en-route;
 - (2) fuel consumption;
 - (3) mass and balance;
 - (4) mass and performance.
 - (d) flight information:
 - (1) NOTAMs etc.;
 - (2) radio frequencies;
 - (3) selection of alternate aerodromes.
 - (e) aeroplane documentation;
 - (f) notification of the flight:
 - (1) pre-flight administrative procedures;
 - (2) flight plan form.
 - (B) departure:
 - (a) organisation of cockpit workload;
 - (b) departure procedures:
 - (1) altimeter settings;
 - (2) ATC liaison in controlled or regulated airspace;
 - (3) setting heading procedure;
 - (4) noting of ETAs.
 - (c) maintenance of altitude and heading;
 - (d) revisions of ETA and heading;
 - (e) log keeping;
 - (f) use of radio;
 - (g) use of navaids;
 - (h) minimum weather conditions for continuation of flight;
 - (i) in-flight decisions;
 - (j) transiting controlled or regulated airspace;
 - (k) diversion procedures;
 - (l) uncertainty of position procedure;
 - (m) lost procedure.
 - (C) arrival and aerodrome joining procedure:
 - (a) ATC liaison in controlled or regulated airspace;
 - (b) altimeter setting;
 - (c) entering the traffic pattern;
 - (d) circuit procedures;
 - (e) parking;
 - (f) security of aeroplane;
 - (g) refuelling;
 - (h) closing of flight plan, if appropriate;
 - (i) post-flight administrative procedures.

- (xxiii) Exercise 18b: Navigation problems at lower levels and in reduced visibility:
 - (A) actions before descending;
 - (B) hazards (for example obstacles and terrain);
 - (C) difficulties of map reading;
 - (D) effects of wind and turbulence;
 - (E) vertical situational awareness (avoidance of controlled flight into terrain);
 - (F) avoidance of noise sensitive areas;
 - (G) joining the circuit;
 - (H) bad weather circuit and landing.
- (xxiv) Exercise 18c: Radio navigation:
 - (A) use of GNSS:
 - (a) selection of waypoints;
 - (b) to or from indications and orientation;
 - (c) error messages.
 - (B) use of VHF omni range:
 - (a) availability, AIP and frequencies;
 - (b) selection and identification;
 - (c) OBS;
 - (d) to or from indications and orientation;
 - (e) CDI;
 - (f) determination of radial;
 - (g) intercepting and maintaining a radial;
 - (h) VOR passage;
 - (i) obtaining a fix from two VORs.
 - (C) use of ADF equipment: NDBs:
 - (a) availability, AIP and frequencies;
 - (b) selection and identification;
 - (c) orientation relative to the beacon;
 - (d) homing.
 - (D) use of VHF/DF:
 - (a) availability, AIP, frequencies;
 - (b) R/T procedures and ATC liaison;
 - (c) obtaining a QDM and homing.
 - (E) use of en-route or terminal radar:
 - (a) availability and AIP;
 - (b) procedures and ATC liaison;
 - (c) pilot's responsibilities;
 - (d) secondary surveillance radar:
 - (1) transponders;
 - (2) code selection;
 - (3) interrogation and reply.
 - (F) use of DME:
 - (a) station selection and identification;
 - (b) modes of operation: distance, groundspeed and time to run.
- (xxv) Exercise 19: Basic instrument flight:
 - (A) physiological sensations;
 - (B) instrument appreciation; attitude instrument flight;
 - (C) instrument limitations;
 - (D) basic manoeuvres:
 - (a) straight and level at various air speeds and configurations;
 - (b) climbing and descending;
 - (c) standard rate turns, climbing and descending, onto selected headings;
 - (d) recoveries from climbing and descending turns.
- (d) BITD
 - (1) A BITD may be used for flight training for:
 - (i) flight by reference solely to instruments;
 - (ii) navigation using radio navigation aids;
 - (iii) basic instrument flight.
 - (2) The use of the BITD should be subject to the following:

- (i) the training should be complemented by exercises on an aeroplane;
- (ii) the record of the parameters of the flight must be available;
- (iii) A FI (A) or STI (A) should conduct the instruction.

AMC1 FCL.210.H PPL (H) — **Experience requirements and crediting** FLIGHT INSTRUCTION FOR THE PPL (H)

(a) Entry to training

Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

(b) Ground instruction

Enhanced ground instruction in weather interpretation, planning and route assessment, decision making on encountering DVE including reversing course or conducting a precautionary landing.

(c) Flight instruction

- (1) The PPL(H) flight instruction syllabus should take into account the principles of threat and error management and cover:
 - (i) pre-flight operations, including mass and balance determination, helicopter inspection and servicing;
 - (ii) aerodrome and traffic pattern operations, collision avoidance precautions and procedures;
 - (iii) control of the helicopter by external visual reference;
 - (iv) take-offs, landings, hovering, look-out turns and normal transitions from and to the hover;
 - (v) emergency procedures, basic autorotations, simulated engine failure, ground resonance recovery if relevant to type;
 - (vi) sideways and backwards flight, turns on the spot;
 - (vii)incipient vortex ring recognition and recovery;
 - (viii) touchdown autorotations, simulated engine-off landings, practice forced landings. Simulated equipment malfunctions and emergency procedures relating to malfunctions of engines, controls, electrical and hydraulic circuits;
 - (ix) steep turns;
 - (x) transitions, quick stops, out of wind manoeuvres, sloping ground landings and take-offs;
 - (xi) limited power and confined area operations, including selection of and operations to and from unprepared sites;
 - (xii)flight by sole reference to basic flight instruments, including completion of a level 180 ° turn and recovery from unusual attitudes to simulate inadvertent entry into cloud (this training may be conducted by an FI(H));
 - (xiii) cross-country flying by using visual reference, DR, GNNS and, where available, radio navigation aids; simulation of deteriorating weather conditions and actions to divert or conduct precautionary landing;
 - (xiv) operations to, from and transiting controlled aerodromes; compliance with air traffic services procedures, communication procedures and phraseology.
- (2) Before allowing the applicant for a PPL(H) to undertake his/her first solo flight, the FI should ensure that the applicant can use R/T communication.
- (3) Wherever possible, flight simulation should be used to demonstrate to student pilots the effects of flight into DVE and to enhance their understanding and need for avoidance of this potentially fatal flight regime.
- (d) Syllabus of flight instruction
 - (1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 - (i) the applicant's progress and ability;
 - (ii) the weather conditions affecting the flight;
 - (iii) the flight time available;
 - (iv) instructional technique considerations;
 - (v) the local operating environment;
 - (vi) applicability of the exercises to the helicopter.

- (2) Each of the exercises involves the need for the applicant to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.
 - (i) Exercise 1a: Familiarisation with the helicopter:
 - (A) characteristics of the helicopter, external features;
 - (B) cockpit layout;
 - (C) systems;
 - (D) checklists, procedures and controls.
 - (ii) Exercise 1b: Emergency procedures:
 - (A) action if fire on the ground and in the air;
 - (B) engine, cabin and electrical system fire;
 - (C) systems failures;
 - (D) escape drills, location and use of emergency equipment and exits.
 - (iii) Exercise 2: Preparation for and action after flight:
 - (A) flight authorisation and helicopter acceptance;
 - (B) serviceability documents;
 - (C) equipment required, maps, etc.;
 - (D) external checks;
 - (E) internal checks;
 - (F) seat, harness and flight controls adjustments;
 - (G) starting and warm-up checks clutch engagement and starting rotors;
 - (H) power checks;
 - (I) running down system checks and switching off the engine;
 - (J) parking, security and picketing;
 - (K) completion of authorisation sheet and serviceability documents.
 - (iv) Exercise 3: Air experience:
 - (A) to introduce the student to rotary wing flight;
 - (B) flight exercise.
 - (v) Exercise 4: Effects of controls:
 - (A) function of flight controls, primary and secondary effect;
 - (B) effects of:
 - (a) air speed;
 - (b) power changes (torque);
 - (c) yaw (sideslip);
 - (d) disc loading (bank and flare);
 - (e) controls of selecting hydraulics on/off;
 - (f) control friction.
 - (C) instruments;
 - (D) use of carburettor heat or anti-icing control.
 - (vi) Exercise 5: Power and attitude changes:
 - (A) relationship between cyclic control position, disc attitude, fuselage attitude and air speed;
 - (B) flapback;
 - (C) power required diagram in relation to air speed;
 - (D) power and air speed changes in level flight;
 - (E) use of instruments for precision;
 - (F) engine and air speed limitations.
 - (vii)Exercise 6: Straight and level:
 - (A) at normal cruising power, attaining and maintaining straight and level flight;
 - (B) control in pitch, including use of control friction or trim;
 - (C) maintaining direction and balance, (ball or yawstring use);
 - (D) setting power for selected air speeds and speed changes;
 - (E) use of instruments for precision.
 - (viii) Exercise 7: Climbing:
 - (A) optimum climb speed, best angle or rate of climb from power required diagram;
 - (B) initiation, maintaining the normal and maximum rate of climb, levelling off;
 - (C) levelling off at selected altitudes or heights;
 - (D) use of instruments for precision.
 - (ix) Exercise 8: Descending:
 - (A) optimum descent speed, best angle or rate of descent from power required diagram;
 - (B) initiation, maintaining and levelling off;
 - (C) levelling off at selected altitudes or heights;

- (D) descent (including effect of power and air speed);
- (E) use of instruments for precision.
- (x) Exercise 9: Turning:
 - (A) initiation and maintaining medium level turns;
 - (B) resuming straight flight;
 - (C) altitude, bank and co-ordination;
 - (D) climbing and descending turns and effect on rate of climb or descent;
 - (E) turns onto selected headings, use of gyro heading indicator and compass;
 - (F) use of instruments for precision.
- (xi) Exercise 10: Basic autorotation:
 - (A) safety checks, verbal warning and look-out;
 - (B) entry, development and characteristics;
 - (C) control of air speed and RRPM, rotor and engine limitations;
 - (D) effect of AUM, IAS, disc loading, G forces and density altitude;
 - (E) re-engagement and go-around procedures (throttle over-ride or ERPM control);
 - (F) vortex condition during recovery;
 - (G) gentle and medium turns in autorotation;
 - (H) demonstration of variable flare simulated engine off landing.
- (xii)Exercise 11a: Hovering:
 - (A) demonstrate hover IGE, importance of wind effect and attitude, ground cushion, stability in the hover and effects of over controlling;
 - (B) student holding cyclic stick only;
 - (C) student handling collective lever (and throttle) only;
 - (D) student handling collective lever, (throttle) and pedals;
 - (E) student handling all controls;
 - (F) demonstration of ground effect;
 - (G) demonstration of wind effect;
 - (H) demonstrate gentle forward running touchdown;
 - (I) specific hazards for example snow, dust and litter.
- (xiii) Exercise 11b: Hover taxiing and spot turns:
 - (A) revise hovering;
 - (B) precise ground speed and height control;
 - (C) effect of wind direction on helicopter attitude and control margin;
 - (D) control and co-ordination during spot turns;
 - (E) carefully introduce gentle forward running touchdown.
- (xiv) Exercise 11c: Hovering and taxiing emergencies:
 - (A) revise hovering and gentle forward running touchdown, explain (demonstrate where applicable) effect of hydraulics failure in the hover;
 - (B) demonstrate simulated engine failure in the hover and hover taxi;
 - (C) demonstrate dangers of mishandling and over-pitching.
- (xv) Exercise 12: Take-off and landing:
 - (A) pre-take-off checks or drills;
 - (B) look-out;
 - (C) lifting to hover;
 - (D) after take-off checks;
 - (E) danger of horizontal movement near ground;
 - (F) danger of mishandling and overpitching;
 - (G) landing (without sideways or backwards movement);
 - (H) after landing checks or drills;
 - (I) take-off and landing crosswind and downwind.
- (xvi) Exercise 13: Transitions from hover to climb and approach to hover:
 - (A) look-out;
 - (B) revise take-off and landing;
 - (C) ground effect, translational lift and its effects;
 - (D) flapback and its effects;
 - (E) effect of wind speed and direction during transitions from or to the hover;
 - (F) the constant angle approach;
 - (G) demonstration of variable flare simulated engine off landing.
- (xvii) Exercise 14a: Circuit, approach and landing:
 - (A) revise transitions from hover to climb and approach to hover;

- (B) circuit procedures, downwind and base leg;
- (C) approach and landing with power;
- (D) pre-landing checks;
- (E) effect of wind on approach and IGE hover;
- (F) crosswind approach and landing;
- (G) go-around;
- (H) noise abatement procedures.
- (xviii) Exercise 14b: Steep and limited power approaches and landings:
 - (A) revise the constant angle approach;
 - (B) the steep approach (explain danger of high sink rate and low air speed)
 - (C) limited power approach (explain danger of high speed at touch down);
 - (D) use of the ground effect;
 - (E) variable flare simulated engine off landing.
- (xix) Exercise 14c: Emergency procedures:
 - (A) abandoned take-off;
 - (B) missed approach and go-around;
 - (C) hydraulic off landing (if applicable);
 - (D) tail rotor control or tail rotor drive failure (briefing only)
 - (E) simulated emergencies in the circuit to include:
 - (a) hydraulics failure;
 - (b) simulated engine failure on take-off, crosswind, downwind and base leg;
 - (c) governor failure.
- (xx) Exercise 15: First solo:
 - (A) instructor's briefing, observation of flight and debriefing;
 - (B) warn of change of attitude from reduced and laterally displaced weight;
 - (C) warn of low tail, low skid or wheel during hover, landing;
 - (D) warn of dangers of loss of RRPM and overpitching;
 - (E) pre-take-off checks;
 - (F) into wind take-off;
 - (G) procedures during and after take-off;
 - (H) normal circuit, approaches and landings;
 - (I) action if an emergency.
- (xxi) Exercise 16: Sideways and backwards hover manoeuvring:
 - (A) manoeuvring sideways flight heading into wind;
 - (B) manoeuvring backwards flight heading into wind;
 - (C) combination of sideways and backwards manoeuvring;
 - (D) manoeuvring sideways and backwards and heading out of wind;
 - (E) stability and weather cocking;
 - (F) recovery from backwards manoeuvring (pitch nose down);
 - (G) limitations for sideways and backwards manoeuvring.
- (xxii) Exercise 17: Spot turns:
 - (A) revise hovering into wind and downwind;
 - (B) turn on spot through 360°:
 - (a) around pilots position;
 - (b) around tail rotor;
 - (c) around helicopter geometric centre;
 - (d) square and safe visibility clearing turn.
 - (C) rotor RPM control, torque effect, cyclic limiting stops due to CG position and wind speed and direction.
- (xxiii) Exercise 18: Hover OGE and vortex ring:
 - (A) establishing hover OGE;
 - (B) drift, height or power control;
 - (C) demonstration of incipient stage of vortex ring, recognition and recovery (from a safe altitude);
 - (D) loss of tail rotor effectiveness.
- (xxiv) Exercise 19: Simulated EOL:
 - (A) the effect of weight, disc loading, density attitude and RRPM decay;
 - (B) revise basic autorotation entry;
 - (C) optimum use of cyclic and collective to control speed or RRPM;
 - (D) variable flare simulated EOL;

- (E) demonstrate constant attitude simulated EOL;
- (F) demonstrate simulated EOL from hover or hover taxi;
- (G) demonstrate simulated EOL from transition and low level.
- (xxv) Exercise 20: Advanced autorotation:
 - (A) over a selected point at various height and speed;
 - (B) revise basic autorotation: note ground distance covered;
 - (C) range autorotation;
 - (D) low speed autorotation;
 - (E) constant attitude autorotation (terminate at safe altitude);
 - (F) 'S' turns;
 - (G) turns through 180 $^\circ$ and 360 $^\circ;$
 - (H) effects on angles of descent, IAS, RRPM and effect of AUM.
- (xxvi) Exercise 21: Practice forced landings:
 - (A) procedure and choice of the forced landing area;
 - (B) forced landing checks and crash action;
 - (C) re-engagement and go-around procedures.
- (xxvii) Exercise 22: Steep turns:
 - (A) steep (level) turns $(30^{\circ} \text{ bank})$;
 - (B) maximum rate turns (45 $^{\circ}$ bank if possible);
 - (C) steep autorotative turns;
 - (D) faults in the turn: balance, attitude, bank and co-ordination;
 - (E) RRPM control and disc loading;
 - (F) vibration and control feedback;
 - (G) effect of wind at low level.
- (xxviii) Exercise 23: Transitions:
 - (A) revise ground effect, translational lift and flapback;
 - (B) maintaining constant height, (20-30 ft AGL);
 - (C) transition from hover to minimum 50 knots IAS and back to hover;
 - (D) demonstrate effect of wind.
- (xxix) Exercise 24: Quick stops:
 - (A) use of power and controls;
 - (B) effect of wind;
 - (C) quick stops into wind;
 - (D) quick stops from crosswind and downwind terminating into wind;
 - (E) danger of vortex ring;
 - (F) danger of high disc loading.
- (xxx) Exercise 25a: Navigation:
 - (A) flight planning:
 - (a) weather forecast and actuals;
 - (b) map selection and preparation and use;
 - (1) choice of route:
 - (2) controlled airspace, danger and prohibited areas;
 - (3) safety altitudes and noise abatement considerations.
 - (c) calculations:
 - (1) magnetic heading(s) and time(s) en-route;
 - (2) fuel consumption;
 - (3) mass and balance.
 - (d) flight information:
 - (1) NOTAMs, etc.;
 - (2) radio frequencies;
 - (3) selection of alternate landing sites.
 - (e) helicopter documentation;
 - (f) notification of the flight:
 - (1) pre-flight administrative procedures;
 - (2) flight plan form (where appropriate).
 - (B) departure:
 - (a) organisation of cockpit workload;
 - (b) departure procedures:
 - (1) altimeter settings;
 - (2) ATC liaison in controlled or regulated airspace;

- (3) setting heading procedure;
- (4) noting of ETAs.
- (c) maintenance of height or altitude and heading;
- (d) revisions of ETA and heading:
 - (1) 10 $^{\circ}$ line, double track and track error and closing angle;
 - (2) 1 in 60 rule;
 - (3) amending an ETA.
- (e) log keeping;
- (f) use of radio;
- (g) use of navaids (if fitted);
- (h) minimum weather conditions for continuation of flight;
- (i) in-flight decisions;
- (j) transiting controlled or regulated airspace;
- (k) uncertainty of position procedure;
- (l) lost procedure.
- (C) arrival and aerodrome joining procedure:
 - (a) ATC liaison in controlled or regulated airspace;
 - (b) altimeter setting;
 - (c) entering the traffic pattern;
 - (d) circuit procedures.
 - (e) parking;
 - (f) security of helicopter;
 - (g) refuelling;
 - (h) closing of flight plan (if appropriate);
 - (i) post-flight administrative procedures.
- (xxxi) Exercise 25b: Navigation problems at low heights and in reduced visibility:
 - (A) actions before descending;
 - (B) hazards (for example obstacles and other aircraft);
 - (C) difficulties of map reading;
 - (D) effects of wind and turbulence;
 - (E) avoidance of noise sensitive areas;
 - (F) actions in the event of encountering DVE;
 - (G) decision to divert or conduct precautionary landing;
 - (H) bad weather circuit and landing;
 - (I) appropriate procedures and choice of landing area;
 - (J) precautionary landing.
- (xxxii) Exercise 25c: Radio navigation:
 - (A) use of GNSS:
 - (a) selection of waypoints;
 - (b) to or from indications and orientation;
 - (c) error messages;
 - (d) hazards of over-reliance on the use of GNSS in the continuation of flight in DVE.
 - (B) use of VHF omni range:
 - (a) availability, AIP and frequencies;
 - (b) selection and identification;
 - (c) OBS;
 - (d) to or from indications and orientation;
 - (e) CDI;
 - (f) determination of radial;
 - (g) intercepting and maintaining a radial;
 - (h) VOR passage;
 - (i) obtaining a fix from two VORs.
 - (C) use of ADF equipment: NDBs:
 - (a) availability, AIP and frequencies;
 - (b) selection and identification;
 - (c) orientation relative to the beacon;
 - (d) homing.
 - (D) use of VHF/DF:
 - (a) availability, AIP and frequencies;
 - (b) RTF procedures and ATC liaison;

- (c) obtaining a QDM and homing.
- (E) use of en-route or terminal radar:
 - (a) availability and AIP;
 - (b) procedures and ATC liaison;
 - (c) pilots responsibilities;
 - (d) secondary surveillance radar (if transponder fitted):
 - (1) transponders;
 - (2) code selection;
 - (3) interrogation and reply.
- (F) use of DME:
 - (a) station selection and identification;
 - (b) modes of operation: distance, groundspeed and time to run.
- (xxxiii) Exercise 26: Advanced take-off, landings and transitions:
 - (A) landing and take-off out of wind (performance reduction);
 - (B) ground effect, translational lift and directional stability variation when out of wind;
 - (C) downwind transitions;
 - (D) vertical take-off over obstacles;
 - (E) running take-off;
 - (F) cushion creep take-off;
 - (G) reconnaissance of landing site;
 - (H) running landing;
 - (I) zero speed landing;
 - (J) crosswind and downwind landings;
 - (K) steep approach;
 - (L) go-around.
- (xxxiv) Exercise 27: Sloping ground:
 - (A) limitations and assessing slope angle;
 - (B) wind and slope relationship: blade and control stops;
 - (C) effect of CG when on slope;
 - (D) ground effect on slope and power required;
 - (E) right skid up slope;
 - (F) left skid up slope;
 - (G) nose up slope;
 - (H) avoidance of dynamic roll over, dangers of soft ground and sideways movement on touchdown;
 - (I) danger of striking main or tail rotor by harsh control movement near ground.
- (xxxv) Exercise 28: Limited power:
 - (A) take-off power check;
 - (B) vertical take-off over obstacles;
 - (C) in-flight power check;
 - (D) running landing;
 - (E) zero speed landing;
 - (F) approach to low hover;
 - (G) approach to hover;
 - (H) approach to hover OGE;
 - (I) steep approach;
 - (J) go-around.
- (xxxvi) Exercise 29: Confined areas:
 - (A) landing capability and performance assessment;
 - (B) locating landing site and assessing wind speed and direction;
 - (C) reconnaissance of landing site;
 - (D) select markers;
 - (E) select direction and type of approach;
 - (F) circuit;
 - (G) approach to committed point and go-around;
 - (H) approach;
 - (I) clearing turn;
 - (J) landing;
 - (K) power check and performance assessment in and out of ground effect;
 - (L) normal take-off to best angle of climb speed;

- (M) vertical take-off from hover.
- (xxxvii) Exercise 30: Basic instrument flight:
 - (A) physiological sensations;
 - (B) instrument appreciation:
 - (a) attitude instrument flight;
 - (b) instrument scan.
 - (C) instrument limitations;
 - (D) basic manoeuvres:
 - (a) straight and level at various air speeds and configurations;
 - (b) climbing and descending;
 - (c) standard rate turns, climbing and descending, onto selected headings.
 - (E) recoveries from climbing and descending turns;
 - (F) recoveries from unusual attitudes.

(xxxviii) Exercise 31a: Night flying (if night rating required):

- (A) pre-flight inspection using torch, pan lights, etc.;
- (B) take-off (no sideways or backwards manoeuvring);
- (C) hover taxi (higher and slower than by day);
- (D) transition to climb;
- (E) level flight;
- (F) approach and transition to hover;
- (G) landing;
- (H) autorotation;
- (I) practice forced landing (with flares if appropriate: simulated);
- (J) night emergencies (for example failure of lights, etc.).
- (xxxix) Exercise 31b: Night cross-country (if night rating required):
 - (A) navigation principles as for day cross-country;
 - (B) map marking (highlighting built-up areas with thicker lines, etc.).

AMC1 FCL.210.As PPL (As) — Experience requirements and crediting FLIGHT INSTRUCTION FOR THE PPL (AS)

(a) Entry to training

Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

- (b) Flight instruction
 - (1) The PPL(As) flight instruction syllabus should take into account the principles of threat and error management and cover:
 - (i) pre-flight operations, including mass and balance determination, airship inspection and servicing;
 - (ii) ground manoeuvring, masting and unmasting procedures;
 - (iii) aerodrome and traffic pattern operations, collision avoidance precautions and procedures;
 - (iv) control of the airship by external visual reference;
 - (v) take-offs and landings;
 - (vi) flight by reference solely to instruments, including the completion of a level 180 ° turn;
 - (vii)cross-country flying using visual reference, dead reckoning and radio navigation aids;
 - (viii) emergency operations, including simulated airship equipment malfunctions;
 - (ix) operations to, from and transiting controlled aerodromes, compliance with air traffic services procedures, communication procedures and phraseology.
 - (2) Before allowing the applicant for a PPL (As) to undertake his/her first solo flight, the FI should ensure that the applicant can use R/T communication.
- (c) Syllabus of flight instruction
 - (1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 - (i) the applicant's progress and ability;
 - (ii) the weather conditions affecting the flight;
 - (iii) the flight time available;
 - (iv) instructional technique considerations;

- (v) the local operating environment;
- (vi) applicability of the exercises to the airship.
- (2) Each of the exercises involves the need for the applicant to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.
 - (i) Exercise 1a: Familiarisation with the airship:
 - (A) characteristics of the airship;
 - (B) cockpit layout;
 - (C) systems;
 - (D) checklists, drills and controls.
 - (ii) Exercise 1b: Emergency drills:
 - (A) action if fire on the ground and in the air;
 - (B) engine cabin and electrical system fire;
 - (C) systems failure;
 - (D) escape drills, location and use of emergency equipment and exits.
 - (iii) Exercise 2: Preparation for and action after flight:
 - (A) flight authorisation and airship acceptance;
 - (B) serviceability documents;
 - (C) equipment required, maps, etc.;
 - (D) mass and balance;
 - (E) external checks;
 - (F) ground crew briefing;
 - (G) internal checks;
 - (H) harness, seat or rudder panel adjustments;
 - (I) starting and warm-up checks;
 - (J) power checks;
 - (K) running down system checks and switching off the engine;
 - (L) parking, security and masting;
 - (M) completion of authorisation sheet and serviceability documents.
 - (iv) Exercise 3: Air experience: flight exercise.
 - (v) Exercise 4: Effects of controls:
 - (A) primary effects;
 - (B) further effects;
 - (C) effects of:
 - (a) air speed;
 - (b) power;
 - (c) trimming controls;
 - (d) other controls, as applicable.
 - (D) operation of:
 - (a) mixture control;
 - (b) carburettor heat;
 - (c) cabin heating or ventilation.
 - (vi) Exercise 5: Ground manoeuvring:
 - (A) pre-taxi checks;
 - (B) starting, control of speed and stopping;
 - (C) engine handling;
 - (D) masting procedures;
 - (E) control of direction and turning;
 - (F) effects of wind;
 - (G) effects of ground surface;
 - (H) marshalling signals;
 - (I) instrument checks;
 - (J) air traffic control procedures;
 - (K) emergencies.
 - (vii)Exercise 6a: Take-off procedures:
 - (A) pre-take-off checks;
 - (B) take-off with different static heaviness;
 - (C) drills during and after take-off;
 - (D) noise abatement procedures.
 - (viii) Exercise 6b: Emergencies:
 - (A) abandoned take-off;

- (B) engine failure after take-off;
- (C) malfunctions of thrust vector control;
- (D) aerodynamic control failures;
- (E) electrical and system failures.
- (ix) Exercise 7: Climbing:
 - (A) entry, maintaining the normal and max rate climb and levelling off;
 - (B) levelling off at selected altitudes;
 - (C) maximum angle of climb;
 - (D) maximum rate of climb.
- (x) Exercise 8: Straight and level:
 - (A) attaining and maintaining straight and level flight;
 - (B) flight at or close to pressure height;
 - (C) control in pitch, including use of trim;
 - (D) at selected air speeds (use of power);
 - (E) during speed changes;
 - (F) use of instruments for precision.
- (xi) Exercise 9: Descending:
 - (A) entry, maintaining and levelling off;
 - (B) levelling off at selected altitudes;
 - (C) maximum rate of descent;
 - (D) maximum angle of descent;
 - (E) use of instruments for precision flight.
 - (xii)Exercise 10: Turning:
 - (A) entry and maintaining level turns;
 - (B) resuming straight flight;
 - (C) faults in the turn;
 - (D) climbing turns;
 - (E) descending turns;
 - (F) turns onto selected headings, use of gyro heading indicator and compass;
 - (G) use of instruments for precision.
- (xiii) Exercise 11: Hovering: hovering manoeuvres (as applicable);
- (xiv) Exercise 12a: Approach and landing:
 - (A) effect of wind on approach and touchdown speeds;
 - (B) landing with different static heaviness;
 - (C) missed approach and go-around procedures;
 - (D) noise abatement procedures.
 - (xv) Exercise 12b: Emergencies:
 - (A) aborted approach or go-around;
 - (B) malfunction of thrust vector control;
 - (C) envelope emergencies;
 - (D) fire emergencies;
 - (E) aerodynamic control failures;
 - (F) electrical and system failures.
- (xvi) Exercise 13: Precautionary landing:
 - (A) occasions necessitating;
 - (B) in-flight conditions;
 - (C) landing area selection;
 - (D) circuit and approach;
 - (E) actions after landing;
- (xvii) Exercise 14a: Navigation:
 - (A) flight planning:
 - (a) weather forecast and actuals;
 - (b) map selection and preparation:
 - (1) choice of route;
 - (2) airspace structure;
 - (3) sensitive areas;
 - (4) safety altitudes.
 - (c) calculations:
 - (1) magnetic heading(s) and time(s) en-route;
 - (2) fuel consumption;

- (3) mass and balance;
- (4) performance.
- (d) flight information:
 - (1) NOTAMs etc.;
 - (2) radio frequencies;
 - (3) selection of alternate aerodromes.
- (e) airship documentation;
- (f) notification of the flight:
 - (1) pre-flight administrative procedures;
 - (2) flight plan form.
- (B) departure:
 - (a) organisation of cockpit workload;
 - (b) departure procedures:
 - (1) altimeter settings;
 - (2) ATC liaison in controlled or regulated airspace;
 - (3) setting heading procedure;
 - (4) noting of ETAs.
 - (c) maintenance of altitude and heading;
 - (d) revisions of ETA and heading;
 - (e) log keeping;
 - (f) use of radio;
 - (g) use of navaids;
 - (h) minimum weather conditions for continuation of flight;
 - (i) in-flight decisions;
 - (j) transiting controlled or regulated airspace;
 - (k) diversion procedures;
 - (l) uncertainty of position procedure;
 - (m) lost procedure.
- (C) arrival, aerodrome joining procedure:
 - (a) ATC liaison in controlled or regulated airspace;
 - (b) altimeter setting;
 - (c) entering the traffic pattern;
 - (d) circuit procedures;
 - (e) parking or on masting;
 - (f) security of airship;
 - (g) refuelling;
 - (h) closing of flight plan, if appropriate;
 - (i) post-flight administrative procedures.
- (xviii) Exercise 14b: Navigation problems at lower levels and in reduced visibility:
 - (A) actions before descending;
 - (B) hazards (for example obstacles, and terrain);
 - (C) difficulties of map reading;
 - (D) effects of winds, turbulence and precipitation;
 - (E) vertical situational awareness;
 - (F) avoidance of noise sensitive areas;
 - (G) joining the circuit;
 - (H) bad weather circuit and landing.
- (xix) Exercise 14c: Radio navigation:
 - (A) use of GNSS
 - (a) selection of waypoints;
 - (b) to or from indications and orientation;
 - (c) error messages.
 - (B) use of VHF omni range (if applicable):
 - (a) availability, AIP and frequencies;
 - (b) selection and identification;
 - (c) OBS;
 - (d) to or from indications and orientation;
 - (e) CDI;
 - (f) determination of radial;
 - (g) intercepting and maintaining a radial;

- (h) VOR passage;
- (i) obtaining a fix from two VORs.
- (C) use of ADF equipment: NDBs (if applicable):
 - (a) availability, AIP and frequencies;
 - (b) selection and identification;
 - (c) orientation relative to the beacon;
- (d) homing.(D) use of VHF/DF:
 - (a) availability, AIP and frequencies;
 - (b) R/T procedures and ATC liaison;
 - (c) obtaining a QDM and homing.
- (E) use of en-route or terminal radar:
 - (a) availability and AIP;
 - (b) procedures and ATC liaison;
 - (c) pilot's responsibilities;
 - (d) secondary surveillance radar:
 - (1) transponders;
 - (2) code selection;
 - (3) interrogation and reply.
- (F) use of DME (if applicable);
 - (a) station selection and identification;
 - (b) modes of operation: distance, groundspeed and time to run.
- (xx) Exercise 15: Basic instrument flight:
 - (A) physiological sensations;
 - (B) instrument appreciation: attitude instrument flight;
 - (C) instrument limitations;
 - (D) basic manoeuvres:
 - (a) straight and level;
 - (b) climbing and descending;
 - (c) turns, climbing and descending, onto selected headings;
 - (d) recoveries from climbing and descending turns.
- (d) BITD
 - (1) A BITD may be used for flight training for:
 - (i) flight by reference solely to instruments;
 - (ii) navigation using radio navigation aids;
 - (iii) basic instrument flight.
 - (2) The use of the BITD should be subject to the following:
 - (i) the training should be complemented by exercises on an airship;
 - (ii) the record of the parameters of the flight must be available; and an FI(As) should conduct the instruction.

AMC1 FCL.205.S (b) SPL — Privileges and conditions

CONTENTS OF THE PROFICIENCY CHECK FOR THE EXTENSION OF SPL PRIVILEGES TO EXERCISE COMMERCIAL PRIVILEGES ON A SAILPLANE

- (a) The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board.
- (b) An applicant should indicate to the FE the checks and duties carried out. Checks should be completed in accordance with the authorised checklist for the sailplane on which the test is being taken.

FLIGHT TEST TOLERANCE

- (c) The applicant should demonstrate the ability to:
 - (1) operate the sailplane within its limitations;
 - (2) complete all manoeuvres with smoothness and accuracy;
 - (3) exercise good judgment and airmanship;
 - (4) apply aeronautical knowledge;
 - (5) maintain control of the sailplane at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

CONTENT OF THE SKILL TEST

(d) The applicant should demonstrate his/her skill in at least the winch or aerotow method of launching.

SECTION 1 PRE-FLIGHT OPERATIONS AND TAKE-OFF

Use of checklist, airmanship, control of sailplane by external visual reference, look-out procedures, etc. apply in all sections.

- a Pre-flight sailplane (daily) inspection, documentation, NOTAM and weather briefing
- b Verifying in-limits mass and balance and performance calculation
- c Passenger briefing
- d Sailplane servicing compliance
- e Pre-take-off checks

SECTION 2 LAUNCH METHOD

Note: at least for one of the three launch methods all the mentioned items are fully exercised during the skill test.

SECTION 2 (a) WINCH OR CAR LAUNCH

- a Signals before and during launch, including messages to winch driver
- b Initial roll and take-off climb
- c Adequate profile of winch launch
- d Launch failures (simulated)
- e Situational awareness

SECTION 2 (b) AEROTOW LAUNCH

- a Signals before and during launch, including signals to or communications with tow plane pilot for any problems
- b Initial roll and take-off climb
- c Launch abandonment (simulation only or 'talk-through')
- d Correct positioning during straight flight and turns
- e Out of position and recovery
- f Correct release from tow
- g Lookout and airmanship through whole launch phase

SECTION 2 (c) SELF LAUNCH (TMGs excluded)

- a ATC compliance
- b Aerodrome departure procedures
- c Initial roll and take-off climb
- d Simulated engine failure after take-off
- e Engine shut down and stowage
- f Lookout and airmanship through whole launch phase

SECTION 3 GENERAL AIRWORK

- a Maintain straight flight: attitude and speed control
- b Steep (45 ° bank) turns, look-out procedures and collision avoidance
- c Turning on to selected headings visually and with use of compass
- d Flight at high angle of attack (critically low air speed)
- e Clean stall and recovery
- f Spin avoidance and recovery
- g Local area navigation and awareness

SECTION 4 CIRCUIT, APPROACH AND LANDING

- a Aerodrome circuit joining procedure
- b Collision avoidance: look-out procedures

- c Pre-landing checks
- d Circuit, approach control and landing
- e Precision landing (simulation of out-landing: short field)
- f Cross wind landing if suitable conditions available

AMC1 FCL.205.B (b) BPL — Privileges and conditions

CONTENTS OF THE PROFICIENCY CHECK FOR EXTENSION OF BPL PRIVILEGES TO EXERCISE COMMERCIAL PRIVILEGES ON A BALLOON

- (a) The take-off site should be chosen by the applicant depending on the actual meteorological conditions, the area which has to be overflown and the possible options for suitable landing sites. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board. The proficiency check may be conducted in two flights. The total duration of the flight(s) should be at least 60 minutes.
- (b) An applicant should indicate to the FE the checks and duties carried out. Checks should be completed in accordance with the flight manual or the authorised checklist for the balloon on which the test is being taken. During pre-flight preparation for the test the applicant should be required to perform crew and passenger briefings and demonstrate crowd control. The load calculation should be performed by the applicant in compliance with the operations manual or flight manual for the balloon used.

FLIGHT TEST TOLERANCE

- (c) The applicant should demonstrate the ability to:
 - (1) operate the balloon within its limitations;
 - (2) complete all manoeuvres with smoothness and accuracy;
 - (3) exercise good judgment and airmanship;
 - (4) apply aeronautical knowledge;
 - (5) maintain control of the balloon at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.
- (d) The following limits are for general guidance. The FE should make allowance for turbulent conditions and the handling qualities and performance of the hot-air balloon used:

Height

- (1) normal flight ± 100 ft
- (2) with simulated emergency \pm 150 ft

CONTENT OF THE SKILL TEST

(e) The contents and sections of the proficiency check set out in this AMC should be used for the extension of BPL privileges to exercise commercial privileges on a hot-air balloon.

SECTION 1 PRE-FLIGHT OPERATIONS, INFLATION AND TAKE-OFF

Use of checklist, airmanship, control of balloon by external visual reference, look-out procedures, etc. apply in all sections.

- a Pre-flight documentation, flight planning, NOTAM and weather briefing
- b Balloon inspection and servicing
- c Load calculation
- d Crowd control and crew briefing
- e Passenger briefing
- f Assembly and layout
- g Inflation and pre-take-off procedures
- h Take-off
- i ATC compliance

SECTION 2 GENERAL AIRWORK

- a Climb to level flight
- b Level flight
- c Descent to level flight

- d Operating at low level
- e ATC compliance

SECTION 3 EN-ROUTE PROCEDURES

- a Dead reckoning and map reading
- b Marking positions and time
- c Orientation, airspace structure
- d Maintenance of altitude
- e Fuel management
- f Communication with retrieve crew
- g ATC compliance or R/T communication

SECTION 4 APPROACH AND LANDING PROCEDURES

- a Approach from low level and missed approach and fly on
- b Approach from high level and missed approach and fly on
- c Passenger pre-landing briefing
- d Pre-landing checks
- e Selection of landing field
- f Landing, dragging and deflation
- g ATC compliance or R/T communication
- h Actions after flight

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

This section may be combined with sections 1 through 6

- a Simulated fire on the ground and in the air
- b Simulated pilot light and burner failures
- c Simulated passenger health problems
- d Other abnormal and emergency procedures as outlined in the appropriate flight manual
- e Oral questions
- (f) The contents and sections of the proficiency check set out in this AMC should be used for the extension of BPL privileges to exercise commercial privileges on a gas balloon.

SECTION 1 PRE-FLIGHT OPERATIONS, INFLATION AND TAKE-OFF

Use of checklist, airmanship, control of balloon by external visual reference, look-out procedures, etc. apply in all sections.

- a Pre-flight documentation, flight planning and NOTAM and weather briefing
- b Balloon inspection and servicing
- c Load calculation
- d Crowd control and crew briefings
- e Passenger briefing
- f Assembly and layout
- g Inflation and pre-take-off procedures
- h Take-off
- i ATC liaison: compliance

SECTION 2 GENERAL AIRWORK

- a Climb to level flight
- b Level flight
- c Descent to level flight
- d Operating at low level
- e ATC liaison: compliance

SECTION 3 EN-ROUTE PROCEDURES

- a Dead reckoning and map reading
- b Marking positions and time
- c Orientation, airspace structure
- d Maintenance of altitude
- e Ballast management
- f Communication with retrieve crew
- g ATC compliance or R/T communication

SECTION 4 APPROACH AND LANDING PROCEDURES

- a Approach from low level and missed approach and fly on
- b Approach from high level and missed approach and fly on
- c Passenger pre-landing briefing
- d Pre-landing checks
- e Selection of landing field
- f Landing, dragging and deflation
- g ATC compliance or R/T communication
- h Actions after flight

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

This section may be combined with sections 1 through 4

- a Simulated closed appendix during take-off and climb
- b Simulated parachute or valve failure
- c Simulated passenger health problems
- d Other abnormal and emergency procedures as outlined in the appropriate flight manual
- e Oral questions

AMC1 FCL.225.B BPL — Extension of privileges to another balloon class or group

- (a) The aim of the flight training is to qualify BPL holders to exercise the privileges on a different class or group of balloons.
- (b) The following classes should be recognised:
 - (1) hot-air balloons;
 - (2) gas balloons;
 - (3) hot-air airships.
- (c) The following groups should be recognised:
 - (1) group A:
 - (i) hot-air balloons and hot-air airships with a maximum envelope capacity of 3 400m³;
 - (ii) gas balloons with a maximum envelope capacity of 1 260m³.
 - (2) group B:
 - (i) hot-air balloons and hot-air airship with an envelope capacity between 3 401m³ and 6 000m³;
 - (ii) gas balloons with an envelope capacity of more than $1260m^3$.
 - (3) group C:
 - hot-air balloons and hot-air airship with an envelope capacity between 6 001m³ and 10 500m³. (4) group D:

hot-air balloons and hot-air airships with an envelope capacity of more than 10 500m³.

- (d) An extension to group B is also valid for group A. The extension for the group C is also valid for the groups A and B. An extension to group D will include the privilege for the other three groups.
- (e) The ATO should issue a certificate of satisfactory completion of the instruction to licence endorsement.

SUBPART D — COMMERCIAL PILOT LICENCE — CPL

AMC1 FCL.310; FCL.515 (b); FCL.615 (b) SYLLABUS OF THEORETICAL KNOWLEDGE FOR THE ATPL, CPL AND IR

The following tables contain the detailed theoretical knowledge syllabus for the ATPL, CPL and IR.

Aspects related to non-technical skills shall be included in an integrated manner, taking into account the particular risks associated to the licence and the activity.

The applicable items for each licence or rating are marked with 'x'. An 'x' on the main title of a subject means that all the sub-divisions are applicable.

(a) Aeroplanes and helicopters

(a) Aeroplanes	s and helicopters						
		Aeropla		Helicop			IR
		ATPL	CPL	ATPL /IR	ATPL	CPL	
010 00 00 00	AIR LAW AND ATC PROCEDURES	Х	Х	X	х	Х	х
010 01 00 00	INTERNATIONAL LAW:						
	CONVENTIONS, AGREEMENTS AND						
	ORGANISATIONS						
010 02 00 00	AIRWORTHINESS OF AIRCRAFT						
010 03 00 00	AIRCRAFT NATIONALITY AND						
	REGISTRATION MARKS						
010 04 00 00	PERSONNEL LICENSING						
010 05 00 00	RULES OF THE AIR						
010 06 00 00	PROCEDURES FOR AIR NAVIGATION						
	SERVICES: AIRCRAFT OPERATIONS						
010 07 00 00	AIR TRAFFIC SERVICES AND AIR						
	TRAFFIC MANAGEMENT						
010 08 00 00	AERONAUTICAL INFORMATION						
	SERVICE						
010 09 00 00	AERODROMES OR HELIPORTS						
010 10 00 00	FACILITATION						
010 11 00 00	SEARCH AND RESCUE						
010 12 00 00	SECURITY						
010 13 00 00	AIRCRAFT ACCIDENT AND						
	INCIDENT INVESTIGATION						
021 00 00 00	AIRCRAFT GENERAL KNOWLEDGE	X	Х	Х	Х	Х	Х
	AIRFRAME AND SYSTEMS,						
	ELECTRICS, POWERPLANT AND						
	EMERGENCY EQUIPMENT						
021 01 00 00	SYSTEM DESIGN, LOADS, STRESSES						
	AND MAINTENANCE						
021 02 00 00	AIRFRAME						
021 03 00 00	HYDRAULICS	-					
021 04 00 00	LANDING GEAR, WHEELS, TYRES AND)					
0.01.05.00.00	BRAKES						
021 05 00 00	FLIGHT CONTROLS						
021 06 00 00	PNEUMATICS: PRESSURISATION AND						
021 07 00 00	AIR CONDITIONING						
021 07 00 00	ANTI AND DE-ICING SYSTEMS						
021 08 00 00	FUEL SYSTEM						
021 09 00 00	ELECTRICS DISTON ENCINES						
021 10 00 00 021 11 00 00	PISTON ENGINES						
021 11 00 00	TURBINE ENGINES						
021 12 00 00	PROTECTION AND DETECTION						
021 12 00 00	SYSTEMS						
	5 I 5 I LIVIS						

021 13 00 00	OXYGEN SYSTEMS						
021 14 00 00	HELICOPTER: MISCELLANEOUS						
	SYSTEMS						
021 15 00 00	HELICOPTER: ROTOR HEADS						
021 16 00 00	HELICOPTER: TRANSMISSION						
021 17 00 00	HELICOPTER: BLADES						
022 00 00 00	AIRCRAFT GENERAL KNOWLEDGE:	Х	Х	Х	Х	Х	Х
	INSTRUMENTATION						
022 01 00 00	SENSORS AND INSTRUMENTS						
022 02 00 00	MEASUREMENT OF AIR DATA						
	PARAMETERS						
022 03 00 00	MAGNETISM: DIRECT READING						
000 04 00 00	COMPASS AND FLUX VALVE						
022 04 00 00	GYROSCOPIC INSTRUMENTS						
022 05 00 00	INERTIAL NAVIGATION AND						
022 06 00 00	REFERENCE SYSTEMS						
022 06 00 00	AEROPLANE: AUTOMATIC FLIGHT CONTROL SYSTEMS						
022 07 00 00	HELICOPTER: AUTOMATIC FLIGHT						
022 07 00 00	CONTROL SYSTEMS						
022 08 00 00	TRIMS, YAW DAMPER AND FLIGHT						
022 08 00 00	ENVELOPE PROTECTION						
022 09 00 00	AUTOTHROTTLE: AUTOMATIC						
022 09 00 00	THRUST CONTROL SYSTEM						
022 10 00 00	COMMUNICATION SYSTEMS						
022 11 00 00	FMS						
022 12 00 00	ALERTING SYSTEMS AND PROXIMITY	7					
	SYSTEMS						
022 13 00 00	INTEGRATED INSTRUMENTS:						
	ELECTRONIC DISPLAYS						
022 14 00 00	MAINTENANCE, MONITORING AND						
	RECORDING SYSTEMS						
022 15 00 00	DIGITAL CIRCUITS AND COMPUTERS						
030 00 00 00	FLIGHT PERFORMANCE AND	Х	Х	Х	Х	Х	
	PLANNING						
031 00 00 00	MASS AND BALANCE:	Х	Х	Х	Х	Х	
021 01 00 00	AEROPLANES OR HELICOPTERS						
031 01 00 00	PURPOSE OF MASS AND BALANCE						
021 02 00 00	CONSIDERATIONS						
031 02 00 00 031 03 00 00	LOADING FUNDAMENTALS OF CG						
031 03 00 00	CALCULATIONS						
031 04 00 00	MASS AND BALANCE DETAILS OF						
031 04 00 00	AIRCRAFT						
031 05 00 00	DETERMINATION OF CG POSITION						
031 06 00 00	CARGO HANDLING						
032 00 00 00	PERFORMANCE: AEROPLANES	х	х				
032 01 00 00	GENERAL						
032 02 00 00	PERFORMANCE CLASS B: SE						
	AEROPLANES						
032 03 00 00	PERFORMANCE CLASS B: ME						
	AEROPLANES						
032 04 00 00	PERFORMANCE CLASS A :						
	AEROPLANES CERTIFICATED UNDER						
	CS-25 ONLY						
033 00 00 00	FLIGHT PLANNING AND FLIGHT	Х	Х	Х	Х	Х	х
	MONITORING						
0.00.01.00.55							
033 01 00 00	FLIGHT PLANNING FOR VFR FLIGHTS						
033 02 00 00	FLIGHT PLANNING FOR IFR FLIGHTS						

033 03 00 00	FUEL PLANNING						
033 04 00 00	PRE-FLIGHT PREPARATION						
033 05 00 00	ATS FLIGHT PLAN						
033 06 00 00	FLIGHT MONITORING AND IN-FLIGH	Г					
	RE-PLANNING						
034 00 00 00	PERFORMANCE: HELICOPTERS			Х	Х	Х	
034 01 00 00	GENERAL						
034 02 00 00	PERFORMANCE CLASS 3 SE						
	HELICOPTERS ONLY						
034 03 00 00	PERFORMANCE CLASS 2						
034 04 00 00	PERFORMANCE CLASS 1						
	HELICOPTERS CERTIFICATED UNDER	K					
040 00 00 00	CS 29 ONLY HUMAN PERFORMANCE						
040 00 00 00	HUMAN FACTORS: BASIC CONCEPTS	Х	Х	Х	Х	Х	Х
040 01 00 00	BASIC AVIATION PHYSIOLOGY AND						
040 02 00 00	HEALTH MAINTENANCE						
040 03 00 00	BASIC AVIATION PSYCHOLOGY						
050 00 00 00	METEOROLOGY	х	х	х	х	х	х
050 01 00 00	THE ATMOSPHERE	A	A	1	A	1	~
050 02 00 00	WIND						
050 03 00 00	THERMODYNAMICS						
050 04 00 00	CLOUDS AND FOG						
050 05 00 00	PRECIPITATION						
050 06 00 00	AIR MASSES AND FRONTS						
050 07 00 00	PRESSURE SYSTEMS						
050 08 00 00	CLIMATOLOGY						
050 09 00 00	FLIGHT HAZARDS						
050 10 00 00	METEOROLOGICAL INFORMATION						
060 00 00 00	NAVIGATION	Х	Х	Х	Х	Х	х
061 00 00 00	GENERAL NAVIGATION	Х	Х	Х	Х	Х	х
061 01 00 00	BASICS OF NAVIGATION						
061 02 00 00	MAGNETISM AND COMPASSES						
061 03 00 00	CHARTS						
061 04 00 00 061 05 00 00	DEAD RECKONING NAVIGATION IN-FLIGHT NAVIGATION						
001 03 00 00 062 00 00 00	RADIO NAVIGATION	х	v	v	v	v	v
062 00 00 00	BASIC RADIO PROPAGATION THEOR		Х	Х	х	х	Х
062 01 00 00	RADIO AIDS	1					
062 02 00 00	RADAR						
062 04 00 00	INTENTIONALLY LEFT BLANK						
062 05 00 00	AREA NAVIGATION SYSTEMS AND						
	RNAV OR FMS						
062 06 00 00	GNSS						
070 00 00 00	OPERATIONAL PROCEDURES	х	Х	Х	х	Х	
071 01 00 00	GENERAL REQUIREMENTS						
071 02 00 00	SPECIAL OPERATIONAL PROCEDURE	S					
	AND HAZARDS (GENERAL ASPECTS)						
071 03 00 00	HELICOPTER EMERGENCY						
	PROCEDURES						
080 00 00 00	PRINCIPLES OF FLIGHT	Х	Х	Х	Х	Х	
081 00 00 00	PRINCIPLES OF FLIGHT:	Х	Х				
001 01 00 00	AEROPLANE SUBSONIC AERODYNAMICS						
081 01 00 00	SUBSONIC AERODYNAMICS						
081 02 00 00 081 03 00 00	HIGH SPEED AERODYNAMICS INTENTIONALLY LEFT BLANK						
081 03 00 00	STABILITY						
081 04 00 00	CONTROL						
081 05 00 00	LIMITATIONS						
081 07 00 00	PROPELLERS						

081 08 00 00 082 00 00 00	FLIGHT MECHANICS PRINCIPLES OF FLIGHT:						
082 00 00 00				х	Х	Х	
082 01 00 00	HELICOPTER SUBSONIC AERODYNAMICS						
082 01 00 00 082 02 00 00	TRANSONIC AERODYNAMICS						
082 02 00 00	COMPRESSIBILITY EFFECTS						
082 03 00 00	ROTORCRAFT TYPES						
082 03 00 00	MAIN ROTOR AERODYNAMICS						
082 04 00 00	MAIN ROTOR AEROD TNAMICS MAIN ROTOR MECHANICS						
082 05 00 00	TAIL ROTORS						
082 00 00 00							
082 07 00 00	EQUILIBRIUM, STABILITY AND CONTROL						
082 08 00 00	HELICOPTER FLIGHT MECHANICS						
090 00 00 00	COMMUNICATIONS	х	х	х	х	х	х
091 00 00 00	VFR COMMUNICATIONS						
091 01 00 00	DEFINITIONS						
091 02 00 00	GENERAL OPERATING PROCEDURES						
091 03 00 00	RELEVANT WEATHER INFORMATION	ſ					
	TERMS (VFR)						
091 04 00 00	ACTION REQUIRED TO BE TAKEN IN						
	CASE OF COMMUNICATION FAILURE						
091 05 00 00	DISTRESS AND URGENCY						
	PROCEDURES						
091 06 00 00	GENERAL PRINCIPLES OF VHF						
	PROPAGATION AND ALLOCATION OF	7					
	FREQUENCIES						
092 00 00 00	IFR COMMUNICATIONS						
092 01 00 00	DEFINITIONS						
092 02 00 00	GENERAL OPERATING PROCEDURES						
092 03 00 00	ACTION REQUIRED TO BE TAKEN IN						
	CASE OF COMMUNICATION FAILURE						
092 04 00 00	DISTRESS AND URGENCY						
	PROCEDURES						
092 05 00 00	RELEVANT WEATHER INFORMATION	ſ					
	TERMS (IFR)						
092 06 00 00	GENERAL PRINCIPLES OF VHF						
	PROPAGATION AND ALLOCATION OF	7					
	FREQUENCIES						
092 07 00 00	MORSE CODE						

(b) Airships

CPL IR

1.	AIR LAW AND ATC PROCEDURES	Х	
	INTERNATIONAL LAW: CONVENTIONS, AGREEMENTS		
	AND ORGANISATIONS		
	AIRWORTHINESS OF AIRCRAFT		
	AIRCRAFT NATIONALITY AND REGISTRATION MARKS		
	PERSONNEL LICENSING		х
	RULES OF THE AIR		х
	PROCEDURES FOR AIR NAVIGATION SERVICES:		х
	AIRCRAFT OPERATIONS		
	AIR TRAFFIC SERVICES AND AIR TRAFFIC		х
	MANAGEMENT		
	AERONAUTICAL INFORMATION SERVICE		х
	AERODROMES		х
	FACILITATION		
	SEARCH AND RESCUE		
	SECURITY		
	AIRCRAFT ACCIDENT AND INCIDENT		

	INVESTIGATION		
2.	AIRSHIP GENERAL KNOWLEDGE: ENVELOPE,		
	AIRFRAME AND SYSTEMS, ELECTRICS,	х	
	POWERPLANT AND EMERGENCY EQUIPMENT		
	DESIGN, MATERIALS, LOADS AND STRESSES		
	ENVELOPE AND AIRBAGS		
	FRAMEWORK		
	GONDOLA		
	FLIGHT CONTROLS		
	LANDING GEAR		
	HYDRAULICS AND PNEUMATICS		
	HEATING AND AIR CONDITIONING		
	FUEL SYSTEM		
	PISTON ENGINES		
	TURBINE ENGINES (BASICS)		
	ELECTRICS		
	FIRE PROTECTION AND DETECTION SYSTEMS		
	MAINTENANCE		
3.	AIRSHIP GENERAL KNOWLEDGE:	х	
	INSTRUMENTATION		
	SENSORS AND INSTRUMENTS		
	MEASUREMENT OF AIR DATA AND GAS PARAMETERS		
	MAGNETISM: DIRECT READING COMPASS AND FLUX		
	VALVE		
	GYROSCOPIC INSTRUMENTS		
	COMMUNICATION SYSTEMS		
	ALERTING SYSTEMS		
	INTEGRATED INSTRUMENTS: ELECTRONIC DISPLAYS		
	FLIGHT MANAGEMENT SYSTEM (GENERAL BASICS)		
	DIGITAL CIRCUITS AND COMPUTERS		
4.	FLIGHT PERFORMANCE AND PLANNING	х	
4.1.	MASS AND BALANCE: AIRSHIPS	х	
	PURPOSE OF MASS AND BALANCE CONSIDERATIONS		
	LOADING		
	FUNDAMENTALS OF CG CALCULATIONS		
	MASS AND BALANCE DETAILS OF AIRCRAFT		
	DETERMINATION OF CG POSITION		
	PASSENGER, CARGO AND BALLAST HANDLING		
4.2.	FLIGHT PLANNING AND FLIGHT MONITORING		
	FLIGHT PLANNING FOR VFR FLIGHTS	х	
	FLIGHT PLANNING FOR IFR FLIGHTS		х
	FUEL PLANNING	х	х
	PRE-FLIGHT PREPARATION	х	х
	ATS FLIGHT PLAN	х	х
	FLIGHT MONITORING AND IN-FLIGHT RE-PLANNING	х	х
4.3.	PERFORMANCE: AIRSHIPS	х	
	AIRWORTHINESS REQUIREMENTS		
	BASICS OF AIRSHIP PERFORMANCE		
	DEFINITIONS AND TERMS		
	STAGES OF FLIGHT		
	USE OF FLIGHT MANUAL		
5.	HUMAN PERFORMANCE	х	
	HUMAN FACTORS: BASIC CONCEPTS		
	BASIC AVIATION PHYSIOLOGY AND HEALTH		
	MAINTENANCE		
	BASIC AVIATION PSYCHOLOGY		
6.	METEOROLOGY	х	
	THE ATMOSPHERE		
	WIND		
	THERMODYNAMICS		

	CLOUDS AND FOG		
	PRECIPITATION		
	AIR MASSES AND FRONTS		
	PRESSURE SYSTEMS		
	CLIMATOLOGY		
	FLIGHT HAZARDS		
	METEOROLOGICAL INFORMATION		
7.	NAVIGATION		
7.1.	GENERAL NAVIGATION	Х	
	BASICS OF NAVIGATION		
	MAGNETISM AND COMPASSES		
	CHARTS		
	DR NAVIGATION		
	IN-FLIGHT NAVIGATION		
7.2.	RADIO NAVIGATION		
	BASIC RADIO PROPAGATION THEORY	Х	х
	RADIO AIDS	Х	х
	RADAR	Х	х
	INTENTIONALLY LEFT BLANK		
	AREA NAVIGATION SYSTEMS AND RNAV/FMS		х
	GNSS	Х	х
8.	OPERATIONAL PROCEDURES AIRSHIP	Х	
	GENERAL REQUIREMENTS		
	SPECIAL OPERATIONAL PROCEDURES AND HAZARDS		
	(GENERAL ASPECTS)		
	EMERGENCY PROCEDURES		
9.	PRINCIPLES OF FLIGHT	Х	
9.1.	PRINCIPLES OF FLIGHT: AIRSHIPS	Х	
	BASICS OF AEROSTATICS		
	BASICS OF SUBSONIC AERODYNAMICS		
	AERODYNAMICS OF AIRSHIPS		
	STABILITY		
	CONTROLLABILITY		
	LIMITATIONS		
	PROPELLERS		
10	BASICS OF AIRSHIP FLIGHT MECHANICS		
10.	COMMUNICATIONS		
10.1.	VFR COMMUNICATIONS	Х	
	DEFINITIONS	Х	
	GENERAL OPERATING PROCEDURES	Х	
	RELEVANT WEATHER INFORMATION TERMS (VFR)	Х	
	ACTION REQUIRED TO BE TAKEN IN CASE OF	Х	
	COMMUNICATION FAILURE		
	DISTRESS AND URGENCY PROCEDURES	Х	
	GENERAL PRINCIPLES OF VHF PROPAGATION AND	Х	
10.2.	ALLOCATION OF FREQUENCIES		
10.2.	IFR COMMUNICATIONS DEFINITIONS		v
			X
	GENERAL OPERATING PROCEDURES ACTION REQUIRED TO BE TAKEN IN CASE OF		X
	COMMUNICATION FAILURE		Х
	DISTRESS AND URGENCY PROCEDURES		17
	RELEVANT WEATHER INFORMATION TERMS (IFR)		X
	GENERAL PRINCIPLES OF VHF PROPAGATION AND		X
	ALLOCATION OF FREQUENCIES		Х
	MORSE CODE		х
			11

SUBPART F — AIRLINE TRANSPORT PILOT LICENCE — ATPL

AMC1 FCL.510.A (b)(1) ATPL(A) — Prerequisites, experience and crediting

Equivalent requirements for CS-25 and CS-23 commuter category are the JAR/FAR-25 transport category, JAR/FAR-23 commuter category, or BCAR or AIR 2051.

AMC1 FCL.520.A; FCL.520.H ATPL SKILL TEST

The ATPL skill test may serve at the same time as a skill test for the issue of the licence and a proficiency check for the revalidation of the type rating for the aircraft used in the test and may be combined with the skill test for the issue of a MP type rating.

SUBPART G — INSTRUMENT RATING — IR

AMC1 FCL.615 (b) IR – Theoretical knowledge and flight instruction

SYLLABUS OF THEORETICAL KNOWLEDGE FOR THE IR FOLLOWING THE COMPETENCY-BASED MODULAR COURSE AND EIR

- (a) The following tables contain the detailed theoretical knowledge syllabus for the IR following the competency-based modular route (IR (A)) and the EIR.
- (b) Aspects related to non-technical skills should be included in an integrated manner, taking into account the particular risks associated to the licence and the activity.
- (c) The applicant who has completed a modular IR (A) course according to Appendix 6 A and passed the IR (A) theoretical knowledge examination should be fully credited towards the requirements of theoretical knowledge instruction and examination for a competency-based IR (A) or EIR within the validity period of the examination. An applicant wishing to transfer to a competency-based IR (A) or EIR course during a modular IR (A) course should be credited towards the requirements of theoretical knowledge instruction and examination for a competency-based IR (A) or EIR course during a modular IR (A) course should be credited towards the requirements of theoretical knowledge instruction and examination for a competency-based IR (A) or EIR for those subjects or theory items already completed.
- (d) The applicant for an IR (A) who has completed an EIR theoretical knowledge course and passed the EIR theoretical knowledge examination according to FCL.825 should be fully credited towards the requirements of theoretical knowledge instruction and examination for a competency-based IR (A) according to Annex 6 Aa.

	1
010 00 00 00	AIR LAW
010 04 00 00	PERSONNEL LICENSING
010 05 00 00	RULES OF THE AIR
010 06 00 00	PROCEDURES FOR AIR NAVIGATION SERVICES — AIRCRAFT OPERATIONS
	(PANS OPS)
010 07 00 00	AIR TRAFFIC SERVICES AND AIR TRAFFIC MANAGEMENT
010 08 00 00	AERONAUTICAL INFORMATION SERVICE
010 09 00 00	AERODROMES (ICAO Annex 14, Volume I, Aerodrome Design and Operations)
022 00 00 00	AIRCRAFT GENERAL KNOWLEDGE — INSTRUMENTATION
022 02 00 00	MEASUREMENT OF AIR DATA PARAMETERS
022 04 00 00	GYROSCOPIC INSTRUMENTS
022 13 00 00	INTEGRATED INSTRUMENTS — ELECTRONIC DISPLAYS
033 00 00 00	FLIGHT PLANNING AND MONITORING
033 02 00 00	FLIGHT PLANNING FOR IFR FLIGHTS
033 03 00 00	FUEL PLANNING
033 04 00 00	PRE-FLIGHT PREPARATION
033 05 00 00	ICAO FLIGHT PLAN (ATS FLIGHT PLAN)
040 00 00 00	HUMAN PERFORMANCE
040 01 00 00	HUMAN FACTORS: BASIC CONCEPTS
040 02 00 00	BASIC AVIATION PHYSIOLOGY AND HEALTH MAINTENANCE
040 03 00 00	BASIC AVIATION PSYCHOLOGY
050 00 00 00	METEOROLOGY
050 01 00 00	THE ATMOSPHERE
050 02 00 00	WIND
050 03 00 00	THERMODYNAMICS
050 04 00 00	CLOUDS AND FOG
050 05 00 00	PRECIPITATION
050 06 00 00	AIR MASSES AND FRONTS
050 07 00 00	PRESSURE SYSTEMS
050 08 00 00	CLIMATOLOGY
050 09 00 00	FLIGHT HAZARDS
050 10 00 00	METEOROLOGICAL INFORMATION
062 00 00 00	RADIO NAVIGATION

062 02 00 00	RADIO AIDS
062 03 00 00	RADAR
062 05 00 00	AREA NAVIGATION SYSTEMS, RNAV/FMS
092 00 00 00	IFR COMMUNICATIONS
092 01 00 00	DEFINITIONS
092 02 00 00	GENERAL OPERATING PROCEDURES
092 03 00 00	ACTION REQUIRED TO BE TAKEN IN CASE OF COMMUNICATION FAILURE
092 04 00 00	DISTRESS AND URGENCY PROCEDURES
092 05 00 00	RELEVANT WEATHER INFORMATION TERM
092 06 00 00	GENERAL PRINCIPLES OF VHF PROPAGATION AND ALLOCATION OF
	FREQUENCIES
092 07 00 00	MORSE CODE

AMC2 FCL.615 (b) IR - Theoretical knowledge and flight instruction DETAILED THEORETICAL KNOWLEDGE SYLLABUS AND LEARNING OBJECTIVES

Subject Air Law (Competency-based modular training course (CB-IR (A)) for instrument rating according to Appendix 6 Aa and en route instrument rating (EIR) course according to FCL.825)

Syllabus reference	Syllabus details and associated Learning Objectives	CB- IR(A) and
		EIR
010 00 00 00	AIR LAW	
010 04 00 00	PERSONNEL LICENSING	
010 04 02 00	Regulation on Air Crew — Part-FCL	
010 04 02 01	Definitions	
LO	Define the following: Category of aircraft, cross country flight, dual instruction time, flight time, flight time as SPIC, instrument time, instrument flight time, instrument ground time, MCC, multi-pilot aeroplanes, night, PPL, CPL, proficiency check, rating, renewal, revalidation, skill test, solo flight time, type of aircraft	X
010 04 02 02	Part-FCL	
LO	Name the content of PART-FCL	Х
010 04 02 05	Ratings	
LO	Explain the requirements for plus validity and privileges of Instrument Ratings	Х
010 05 00 00	RULES OF THE AIR	
010 05 02 00	Applicability of the Rules of the Air	
LO	Explain the duties of the PIC concerning pre-flight actions in case of an IFR flight	Х
010 05 03 00	General Rules	-
LO	Describe the requirements when carrying out simulated instrument flights	Х
LO	Explain why a time check has to be obtained before flight	Х
LO	Describe the required actions to be carried out, if the continuation of a controlled VFR flight in VMC is not practicable anymore	х
LO	Describe the provisions for transmitting a position report to the appropriate ATS Unit including time of transmission and normal content of the message	Х
LO	Describe the necessary action when an aircraft is experiencing a COM failure	Х
010 05 05 00	Instrument Flight Rules (IFR)	
LO	Describe the Instrument Flight Rules as contained in Chapter 5 of ICAO Annex 2	Х
010 06 00 00	PROCEDURES FOR AIR NAVIGATION SERVICES — AIRO OPERATIONS (PANS OPS)	CRAFT
010 06 03 00	Departure procedures	
010 06 03 01	General criteria (assuming all engines operating)	
LO	Name the factors dictating the design of instrument departure procedures	Х
LO	Explain in which situations the criteria for omni-directional departures are applied	Х
010 06 03 02	Standard Instrument Departures (SIDs)	•
LO	Define the terms 'straight departure' and 'turning departure'	Х

LO		
LO	State the responsibility of the operator when unable to utilize the published	х
010.06.02.02	departure procedures	
010 06 03 03	Omni-directional departures	
LO	Explain when the 'omni-directional method' is used for departure	X
LO	Describe the solutions when an omni-directional procedures is not possible	Х
010 06 03 04	Published information	1
LO	State the conditions for the publication of a SID and/or RNAV route	Х
LO	Describe how omni-directional departures are expressed in the appropriate	х
	publication	
010 06 03 05	Area Navigation (RNAV) Departure Procedures and RNP-based Departures	
LO	Explain the relationship between RNAV/RNP-based departure procedures and	х
010.06.04.00	those for approaches	
010 06 04 00	Approach procedures	
010 06 04 01	General criteria	1
LO	Name the five possible segments of an instrument approach procedure	Х
LO	Give reasons for establishing aircraft categories for the approach	Х
LO	State the maximum angle between the final approach track and the extended RWY	х
	centre-line to still consider a non-precision-approach as being a 'Straight-In	
10	Approach'	
LO	State the minimum obstacle clearance provided by the minimum sector altitudes	х
	(MSA) established for an aerodrome	
LO	Describe the point of origin, shape, size and sub-divisions of the area used for	х
	MSAs	
LO	State that a pilot shall apply wind corrections when carrying out an instrument	Х
	approach procedures	
LO	Name the most significant performance factor influencing the conduct of	х
	Instrument Approach Procedures	
LO	Explain why a Pilot should not descend below OCA/Hs which are established for	Х
	-precision approach procedures -a non-precision approach procedures — visual	
	(circling) procedures	
LO	Describe in general terms, the relevant factors for the calculation of operational	х
	minima	
LO	Translate the following abbreviations into plain language: DA, DH, OCA, OCH,	Х
	MDA, MDH, MOC, DA/H, OCA/H, MDA/H	
LO	Explain the relationship between the terms: DA, DH, OCA, OCH, MDA, MDH,	х
	MOC, DA/H, OCA/H, MDA/H	
010 06 04 02	Approach Procedure Design	1
LO	Describe how the vertical cross-section for each of the five approach segments is	х
	broken down into the various areas	
LO	State within which area of the cross-section the Minimum Obstacle Clearance	х
10	(MOC) is provided for the whole width of the area	
LO	Define the terms IAF, IF, FAF, MAPt and TP	Х
LO	State the accuracy of facilities providing track (VOR, ILS, NDB)	Х
LO	Describe the basic information relating to approach area splays	Х
LO	State the optimum descent gradient (preferred for a precision approach) in degrees	х
010 0 4 5 5 5 5	and per cent	
010 06 04 03	Arrival and approach segments	r
LO	Name the five standard segments of an instrument APP procedure and state the	х
	beginning and end for each of them	
LO	Describe where an ARR route normally ends	Х
LO	State whether or not omni-directional or sector arrivals can be provided	Х
LO	Explain the main task for the initial APP segment	X
LO	Describe the maximum angle of interception between the initial APP segment and	Х
	the intermediate APP segment (provided at the intermediate fix) for a precision	
	APP and a non-precision APP	
LO	Describe the main task of the intermediate APP segment	Х
LO	State the main task of the final APP segment	Х
LO	Name the two possible aims of a final APP	Х

LO	Explain the term 'final approach point' in case of an ILS approach	Х
LO	State what happens if an ILS GP becomes inoperative during the APP	X
010 06 04 04	Missed Approach	А
LO	Name the three phases of a missed approach procedure and describe their	х
	geometric limits	
LO	Describe the main task of a missed approach procedure	х
LO	State at which height/altitude the missed approach is assured to be initiated	Х
LO	Define the term 'missed approach point (MAPt)'	х
LO	Describe how an MAPt may be established in an approach procedure	х
LO	State the pilot's reaction if, upon reaching the MAPt, the required visual reference	х
	is not established	
LO	Describe what a pilot is expected to do in the event a missed approach is initiated	х
	prior to arriving at the MAPt	
LO	State whether the pilot is obliged to cross the MAPt at the height/altitude required	х
	by the procedure or whether he is allowed to cross the MAPt at an altitude/height	
	greater than that required by the procedure	
010 06 04 05	Visual manoeuvring (circling) in the vicinity of the aerodrome:	
LO	Describe what is meant by 'visual manoeuvring (circling)'	х
LO	Describe how a prominent obstacle in the visual manoeuvring (circling) area	х
	outside the final approach and missed approach area has to be considered for the	
	visual circling	
LO	State for which category of aircraft the obstacle clearance altitude/height within an	х
	established visual manoeuvring (circling) area is determined	
LO	Describe how an MDA/H is specified for visual manoeuvring (circling) if the	х
	OCA /H is known	
LO	State the conditions to be fulfilled before descending below MDA/H in a visual	х
	manoeuvring (circling) approach	
LO	Describe why there can be no single procedure designed that will cater for	х
	conducting a circling approach in every situation	
LO	State how the pilot is expected to behave after initial visual contact during a visual	х
	manoeuvring (circling)	
LO	Describe what the pilot is expected to do if visual reference is lost while circling	х
	to land from an instrument approach	
010 06 04 06	Area navigation (RNAV) approach procedures based on VOR/DME	
LO	Describe the provisions that must be fulfilled before carrying out VOR/DME	х
	RNAV approaches	
LO	Explain the disadvantages of the VOR/DME RNAV system	Х
LO	List the factors on which the navigational accuracy of the VOR/DME RNAV	х
	system depends	
LO	State whether the VOR/DME/RNAV approach is a precision or a non-precision	х
	procedure	
010 06 05 00	Holding procedures	
010 06 05 01	Entry and Holding	
LO	Explain why deviations from the in-flight procedures of a holding established in	х
1.0	accordance with ICAO Doc 8168 are dangerous	
LO	State that if for any reasons a pilot is unable to conform to the procedures for	Х
	normal conditions laid down for any particular holding pattern, he/she should	
	advise ATC as early as possible.	
LO	Describe how the right turns holdings can be transferred to left turn holding	Х
10	patterns	
LO	Describe the shape and terminology associated with the holding pattern	Х
10	State the bank angle and rate of turn to be used whilst flying in a holding pattern	Х
	Explain why pilots in a holding pattern should attempt to maintain tracks and how	Х
LO	Explain why pilots in a holding pattern should attempt to maintain tracks and how this can be achieved	
LO LO	Explain why pilots in a holding pattern should attempt to maintain tracks and how this can be achievedDescribe where outbound timing begins in a holding pattern	X
LO LO	Explain why pilots in a holding pattern should attempt to maintain tracks and how this can be achievedDescribe where outbound timing begins in a holding patternState where the outbound leg in a holding terminates if the outbound leg is based	
LO LO LO	 Explain why pilots in a holding pattern should attempt to maintain tracks and how this can be achieved Describe where outbound timing begins in a holding pattern State where the outbound leg in a holding terminates if the outbound leg is based on DME 	X X
LO LO LO LO LO LO	Explain why pilots in a holding pattern should attempt to maintain tracks and how this can be achievedDescribe where outbound timing begins in a holding patternState where the outbound leg in a holding terminates if the outbound leg is based	X

LO	Determine the correct entry procedure for a given holding pattern	х
LO	State the still air time for flying the outbound entry heading with or without DME	X
LO	Describe what the pilot is expected to do when clearance is received specifying	X
	the time of departure from the holding point	
010 06 05 02	Obstacle clearance (except table)	
LO	Describe the layout of the basic holding area, entry area and buffer area of a	х
	holding pattern	
LO	State which obstacle clearance is provided by a minimum permissible holding	х
	level referring to the holding area, the buffer area (general only) and over high	
	terrain or in mountainous areas	
010 06 06 00	Altimeter setting procedures	
010 06 06 01	Basic requirements and procedures	
LO	Describe the two main objectives for altimeter settings	Х
LO	Define the terms 'QNH' and 'QFE'	Х
LO	Describe the different terms of altitude or flight levels respectively which are the	х
	references during climb or descent to change the altimeter setting from QNH to	
	1013.2 hPa and vice versa	
LO	Define the term 'Flight Level' (FL)	Х
LO	State where flight level zero shall be located	Х
LO	State the interval by which consecutive flight levels shall be separated	Х
LO	Describe how flight levels are numbered	Х
LO	Define the term 'Transition Altitude'	Х
LO	State how Transition Altitudes shall normally be specified	Х
LO	Explain how the height of the Transition Altitude is calculated and expressed in	Х
1.0	practice	
LO	State where Transition Altitudes shall be published	Х
LO	Define the term 'Transition Level'	Х
LO	State when the Transition Level is normally passed to aircraft	Х
LO	State how the vertical position of aircraft shall be expressed at or below the	Х
10	Transition Altitude and Transition Level	
LO LO	Define the term 'Transition Layer' Describe when the vertical position of an aircraft passing through the transition	X
LU	layer shall be expressed in terms of flight levels and when in terms of altitude	Х
LO	State when the QNH altimeter setting shall be made available to departing aircraft	X
LO	Explain when the vertical separation of aircraft during en-route flight shall be	х
LO	assessed in terms of altitude and when in terms of flight levels	л
LO	Explain when, in air-ground communications during an en-route flight, the	х
LO	vertical position of an aircraft shall be expressed in terms of altitude and when in	л
	terms of flight levels	
LO	Describe why QNH altimeter setting reports should be provided from sufficient	Х
	locations	
LO	State how a QNH altimeter setting shall be made available to aircraft approaching	Х
	a controlled aerodrome for landing	
LO	State under which circumstances the vertical position of an aircraft above the	Х
	transition level may be referenced to altitudes	
010 06 06 02	Procedures for Operators and Pilots	
LO	State the three requirements that altitudes or flight levels selected should have	Х
LO	Describe a pre-flight operational test in case of QNH setting and in case of QFE	Х
	setting including indication (error) tolerances referred to the different test ranges	
LO	State on which setting at least one altimeter shall be set prior to take off	Х
LO	State where during the climb the altimeter setting shall be changed from QNH to 1013.2 hPa	Х
LO	Describe when a pilot of an aircraft intending to land at an AD shall obtain the	Х
	transition level	
LO	Describe when a pilot of an aircraft intending to land at an AD shall obtain the	Х
	actual QNH altimeter setting	
LO	State where the altimeter settings shall be changed from 1013.2 hPa to QNH	Х
	during descent for landing	

010 06 07 00	Simultaneous Operation on parallel or near-parallel instrument Runways	
LO	Describe the difference between independent and dependent parallel approaches	X
LO	Describe the following different operations: — Simultaneous instrument	X
	departures — Segregated parallel approaches/departures — Semi-mixed and	
	mixed operations	
010 06 08 00	Secondary surveillance radar (transponder) operating procedures	
010 06 08 01	Operation of transponders	
LO	State when and where the pilot shall operate the transponder	Х
LO	State the modes and codes that the pilot shall operate in the absence of any ATC	Х
	directions or regional air navigation agreements	
LO	Indicate when the pilot shall operate Mode S	Х
LO	State when the pilot shall 'SQUAWK IDENT'	Х
LO	State the transponder mode and code to indicate: -a state of emergency -a Communication failure - unlawful interference	Х
LO	Describe the consequences of a transponder failure in flight	Х
LO	State the primary action of the pilot in the case of an unserviceable transponder	X
20	before departure when no repair or replacement at this aerodrome is possible	Λ
010 06 08 02	Operation of ACAS equipment	
LO	Describe the main reason for using ACAS	Х
010 07 00 00	AIR TRAFFIC SERVICES AND AIR TRAFFIC MANAGEMENT	
010 07 01 00	ICAO Annex 11 — Air Traffic Services	
010 07 01 03	Airspace	
LO	Understand the various rules and services that apply in the various classes of	х
	airspace	
010 07 01 04	Air Traffic Control Services	
LO	Name the ATS units providing ATC service (area control service, approach	х
	control service, aerodrome control service)	
LO	Describe which unit(s) may be assigned with the task to provide specified services	х
LO	on the apron	
LO LO	Name the purpose of clearances issued by an ATC unit	X
LU	Describe the aim of clearances issued by ATC with regard to IFR, VFR or special VFR flights and refer to the different airspaces	Х
LO	List the various (five possible) parts of an ATC clearance	х
LO	State how ATC shall react when it becomes apparent that traffic, additional to that	X
20	one already accepted, cannot be accommodated within a given period of time at a	<i>A</i>
	particular location or in a particular area, or can only be accommodated at a given	
	rate	
010 07 02 00	ICAO Document 4444 — Air Traffic Management	
010 07 02 01	Foreword (Scope and purpose)	
LO	State whether or not a clearance issued by ATC units does include prevention of	х
	collision with terrain and if there is an exception to this, name the exception	
010 07 02 03	ATS System Capacity and Air Traffic Flow Management	
LO	Explain when and where an air traffic flow management (ATFM) service shall be	х
010 07 02 05	implemented	
010 07 02 05 LO	ATC Clearances Explain 'the sole scope and purpose' of an ATC clearance	v
LO	State on which information the issue of an ATC clearance is based	X
LO	Describe what a PIC should do if an ATC clearance is not suitable	X X
LO	Indicate who bears the responsibility for maintaining applicable rules and	X
20	regulations whilst flying under the control of an ATC unit	Δ
LO	Explain what is meant by the expression 'clearance limit'	Х
	Explain the meaning of the phrases 'cleared via flight planned route', 'cleared via	X
LU		
LO		
10	(designation) departure' and 'cleared via (designation) arrival' in an ATC clearance.	
	(designation) departure' and 'cleared via (designation) arrival' in an ATC	X
	(designation) departure' and 'cleared via (designation) arrival' in an ATC clearance.	X
LO	(designation) departure' and 'cleared via (designation) arrival' in an ATC clearance.List which items of an ATC clearance shall always be read back by the flight crew	X X

		r
LO	State within which distance from the threshold the PIC must not expect any kind	х
010 05 00 05	of speed control	
010 07 02 07	Change from IFR to VFR flight	
LO	Explain how the change from IFR to VFR can be initiated by the PIC	X
LO	Indicate the expected reaction of the appropriate ATC unit upon a request to change from IFR to VFR	Х
010 07 02 09	Altimeter Setting Procedures	
LO	Define the following terms: — transition level — transition layer — and transition	х
LO	altitude	л
LO	Indicate how the vertical position of an aircraft in the vicinity of an aerodrome shall be expressed at or below the transition altitude, at or above the transition level and while climbing or descending through the transition layer	X
LO	Describe when the height of an aircraft using QFE during an NDB approach is referred to the landing threshold instead of the aerodrome elevation	х
LO	Indicate how far altimeter settings provided to aircraft shall be rounded up or down	Х
LO	Define the expression 'lowest usable flight level'	Х
LO	Determine how the vertical position of an aircraft on a flight en-route is expressed at or above the lowest usable flight level and below the lowest usable flight level	X
LO	State who establishes the transition level to be used in the vicinity of an aerodrome	Х
LO	Decide how and when a flight crew shall be informed about the transition level	Х
LO	State whether or not the pilot can request the transition level to be included in the approach clearance	X
LO	State in what kind of clearance the QNH altimeter setting shall be included	Х
010 07 02 10	Position Reporting	
LO	Describe when position reports shall be made by an aircraft flying on routes defined by designated significant points	Х
LO	List the six items that are normally included in a voice position report	х
LO	Name the requirements for using a simplified position report with Flight level, next position (and time over) and ensuing significant points omitted	X
LO	Name the item of a position report which must be forwarded to ATC with the initial call after changing to a new frequency	Х
LO	Indicate the item of a position report which may be omitted if SSR Mode C is used	Х
010 07 02 12	Separation methods and minima	
LO	Explain the general provisions for the separation of controlled traffic	Х
LO	Name the different kind of separation used in aviation	х
LO	Understand the difference between the type of separation provided within the various classes of airspace and between the various types of flight	Х
LO	State who is responsible for the avoidance of collision with other aircraft when operating in VMC	Х
LO	State the ICAO documents in which details of current separation minima are prescribed	Х
LO	Describe how vertical separation is obtained	х
LO	State the required vertical separation minimum	X
LO	Describe how the cruising levels of aircraft flying to the same destination and the	Х
	expected approach sequence are correlated with each other	
LO	Name the conditions that must be adhered to, when two aircraft are cleared to maintain a specified vertical separation between them during climb or descent	Х
LO	List the two main methods for horizontal separation	Х
LO	Describe how lateral separation of aircraft at the same level may be obtained	Х
LO	Explain the term 'Geographical Separation'	Х
LO	Describe track separation between aircraft using the same navigation aid or method	Х
LO	Describe the three basic means for the establishment of longitudinal separation	Х

LO	are suspended	A
LU	Describe the procedules to be observed by the TWIK whenever VIIK operations	1
10	Describe the procedures to be observed by the TWR whenever VFR operations	x
LU	state that, after a given period of time, the TWR shall report to the ACC of FIC II an aircraft does not land as expected	х
LO	reported to the TWR immediately State that, after a given period of time, the TWR shall report to the ACC or FIC if	v
LO	Name the operational failure or irregularity of AD equipment which shall be	х
	prevent collisions	
LO	List for which aircraft and their given positions or flight situations the TWR shall	х
	information and clearances to aircraft under its control	
LO	Describe the general tasks of the Aerodrome Control Tower (TWR) when issuing	Х
010 07 02 16	Procedures for Aerodrome Control Service	•
	arriving aircraft, particularly changes in the meteorological conditions.	
LO	State the significant changes that shall be transmitted as early as practicable to an	х
	visual or non-visual aids are concerned	
LO	Describe what information shall be forwarded to a departing aircraft as far as	х
	climb-out area that shall be transmitted without delay to a departing aircraft.	
LO	State the significant changes in the meteorological conditions in the take-off or	х
LO	Explain the factors that influence the approach sequence	Х
	approach to land) and aircraft intending to depart	
LO	State the sequence of priority between aircraft landing (or in the final stage of an	X
LO	List the information to be transmitted to an aircraft during final approach	х
-	approach	
LO	List the information to be transmitted to an aircraft at the commencement of final	x
	as practicable if an approach for landing is intended	^
LO	List the elements of information which shall be transmitted to an aircraft as early	x
010 07 02 15	Arriving and Departing aircraft	
LU	allowed	х
LO LO	Describe the circumstances under which a reduction in separation minima may be	X
LO LO	Know about a clearance to 'maintain own separation' while in VMC Give a brief description of 'Essential Traffic' and 'Essential Traffic Information'	X
LO	Be familiar with the non-radar wake turbulence longitudinal separation minima	X
LO	Be familiar with the minimum separation between departing and arriving aircraft	X
LO	Be familiar with the minimum separation between departing aircraft	X
LO	Be familiar with the separation of aircraft holding in flight	Х
010 07 02 14	Miscellaneous separation procedures	1
010 08 00 14	suitable for the operation involved	
LO	Name the possible consequences for a PIC if the 'RWY-in-use' is not considered	х
	or landing direction than the one into the wind	
LO	State the reasons which could probably lead to the decision to use another take-off	х
LO	Explain the term 'Expected Approach Time' and the procedures for its use	Х
	indicates his intention to hold for weather improvements	
LO	Understand the situation when a pilot of an aircraft in an approach sequence	х
LO	Talk about the priority that will be given to aircraft for a landing	х
	holding fix for landing	
LO	Describe which flight level should be assigned to an aircraft first arriving over a	Х
	forwarded to them by ATC	
20	approach procedure being carried out, that only the final approach track has to be	Λ
LO	State in which case when the flight crew are not familiar with the instrument	x
LU	executing a visual approach and other arriving or departing aircraft	х
LO LO	State the condition to enable ATC to initiate a visual approach for an IFR flight Indicate whether or not separation will be provided by ATC between an aircraft	X
<u>010 07 02 13</u>	Separation in the vicinity of aerodromes	
010 05 00 12	ALT or less than 300 m (1 000 ft) below	
	of a flight when an aircraft is operating directly behind another aircraft at the same	
LO	State the wake turbulence radar separation for aircraft in the APP and DEP phases	Х
LO	Indicate the standard horizontal radar separation in NM	Х
	allowed	
	allowed	

LO	State to what extent the use of radar in air traffic services may be limited	Х
LO	State to what extent the use of radia in an dame services may be inneed. State what radar derived information shall be available for display to the controller	
LU		х
	as a minimum	
LO	Name the two basic identification procedures used with radar	X
LO	Define the term 'PSR'	Х
LO	Describe the circumstances under which an aircraft provided with radar service	Х
	should be informed of its position	
LO	List the possible forms of position information passed to the aircraft by radar	Х
	services	
LO	Define the term 'radar vectoring'	Х
LO	State the aims of radar vectoring as shown in ICAO Doc 4444	Х
LO	State how radar vectoring shall be achieved	Х
LO	Describe the information which shall be given to an aircraft when radar vectoring	х
	is terminated and the pilot is instructed to resume own navigation	
LO	Explain the procedures for the conduct of Surveillance Radar Approaches (SRA)	Х
LO	Describe what kind of action (concerning the transponder) the pilot is expected to	Х
	perform in case of emergency if he has previously been directed by ATC to	
	operate the transponder on a specific code	
010 07 02 19	Procedures related to emergencies, communication failure and contingencies	
LO	State the Mode and Code of SSR equipment a pilot might operate in a (general)	Х
	state of emergency or (specifically) in case the aircraft is subject to unlawful	
	interference	
LO	State the special rights an aircraft in a state of emergency can expect from ATC	X
LO	Describe the expected action of aircraft after receiving a broadcast from ATS	X
LO	concerning the emergency descent of an aircraft	Λ
LO	State how it can be ascertained, in case of a failure of two-way communication,	х
LO	whether the aircraft is able to receive transmissions from the ATS unit	Λ
LO	Explain the assumption based on which separation shall be maintained if an	X
LO	aircraft is known to experience a COM failure in VMC or in IMC	Λ
LO	State on which frequencies appropriate information, for an aircraft encountering	X
LO	two way COM failure, will be sent by ATS	Λ
LO	Describe the expected activities of an ATS-unit after having learned that an	X
LO	aircraft is being intercepted in or outside its area of responsibility	л
LO	State what is meant by the expression 'Strayed aircraft' and 'Unidentified aircraft'	х
010 08 00 00	AERONAUTICAL INFORMATION SERVICE	Λ
010 08 00 00	Definitions in ICAO Annex 15	
LO		v
LU	Recall the following definitions: Aeronautical Information Circular (AIC), Aeronautical Information Publication (AIP), AIP amendment, AIP supplement,	Х
	AIRAC, danger area, Integrated Aeronautical Information Package, international	
	airport, international NOTAM office (NOF), manoeuvring area, movement area,	
	NOTAM, pre-flight information bulletin (PIB), prohibited area, restricted area,	
	SNOWTAM, ASHTAM	
010.09.04.00		
010 08 04 00 010 08 04 01	Integrated Aeronautical Information Package	
	Aeronautical Information Publications (AIP)	v
LO	State in which main part of the AIP the following information can be found: —	х
	Differences from ICAO Standards, Recommended Practices and Procedures —	
	Location indicators, aeronautical information services, minimum flight altitude,	
	VOLMET service, SIGMET service — General rules and procedures (especially	
	general rules, VFR, IFR, ALT setting procedure, interception of civil aircraft,	
	unlawful interference, air traffic incidents), — ATS airspace (especially FIR, UIR, TMA)	
	TMA), — ATS routes (especially lower ATS routes, upper ATS routes, area	
	navigation routes) — Aerodrome data including Aprons, TWYs and check	
	locations/positions data — Navigation warnings (especially prohibited, restricted	
	and danger areas) — aircraft instruments, equipment and flight documents — AD	
	surface movement guidance and control system and markings, — RWY physical	
	characteristics, declared distances, APP and RWY lighting, — AD radio	
	navigation and landing aids, — charts related to an AD — entry, transit and	
010 00 01 00	departure of aircraft, passengers, crew and cargo	
010 08 04 02	NOTAMS	

LO	Describe how information shall be published which in principal would belong to	х
1.0	NOTAMs but includes extensive text and/or graphics	
LO	Summarise essential information which lead to the issuance of a NOTAM	Х
LO	Explain how information regarding snow, ice and standing water on AD pavements shall be reported	х
010 08 04 03	Aeronautical Information Regulation and Control (AIRAC)	
LO	List the circumstances of which the information concerned shall or should be	х
	distributed as AIRAC	
LO	State the sequence in which AIRACs shall be issued and state how many days in advance of the effective date the information shall be distributed by AIS	Х
010 08 04 05	Pre-flight and Post-flight Information/Data	
LO	Describe how a recapitulation of current NOTAM and other information of urgent	Х
	character shall be made available to flight crews	
010 09 00 00	AERODROMES (ICAO Annex 14, Volume I, Aerodrome Design and Operatio	ns)
010 09 02 00	Aerodrome data	
010 09 02 01	Aerodrome Reference Point	
LO	Describe where the aerodrome reference point shall be located and where it shall normally remain	Х
010 09 03 00	Physical Characteristics	
010 09 03 00	Runways	
LO	Acquaint yourself with the general considerations concerning runways associated	х
	with a Stopway or Clearway	Λ
010 09 03 02	Runway Strips	
LO	Explain the term 'Runway strip'	Х
010 09 03 03	Runway end safety area	
LO	Explain the term 'RWY end safety area'	Х
010 09 03 04	Clearway	
LO	Explain the term 'Clearway'	Х
010 09 03 05	Stopway	
LO	Explain the term 'Stopway'	Х
010 09 03 07	Taxiways	
LO	Describe where runway-holding positions shall be established	х
010 09 04 00	Visual aids for navigation	
010 09 04 02	Markings	
LO	Name the colours used for the various markings (RWY, TWY, aircraft stands, apron safety lines)	х
LO		Х
010 09 04 03	Lights	
LO	Describe mechanical safety considerations regarding elevated approach lights and elevated RWY, stopway and taxiway-lights	х
LO	Discuss the relationship of the intensity of RWY lighting, the approach lighting system and the use of a separate intensity control for different lighting systems	X
LO	List the conditions for the installation of an AD beacon and describe its general characteristics	x
LO	Name the different kinds of operations for which a simple APP lighting system	x
LO	shall be used Describe the basic installations of a simple APP lighting system including the	x
LO	dimensions and distances normally used Describe the principle of a precision APP category 1 lighting system including such information as location and characteristics Remark — This includes the 'Calvert' system with additional crossbars	X
LO	Describe the wing bars of PAPI and APAPI	Х
LO	Interpret what the pilot will see during approach, using PAPI, APAPI, T-VASIS and ATVASIS	x
LO	Explain the application and characteristics of: — RWY edge lights — RWY threshold and wing bar lights — RWY end lights — RWY centre line lights — RWY lead in lights — RWY touchdown zone lights — Stopway lights —	X

	Taxiway centre line lights — Taxiway edge lights — Stop bars — Intermediate	
	holding position lights — RWY guard lights — Road holding position lights	
010 09 04 04		
	Signs	
LO	State the general purpose for installing signs	Х
LO	Explain what signs are the only ones on the movement area utilising red	Х
LO	List the provisions for illuminating signs	х
LO	State the purpose for installing mandatory instruction signs	Х
LO	Name the kind of signs which mandatory instruction signs shall include	Х
LO	Name the colours used with mandatory instruction signs	Х
LO	Describe the location of: — a RWY designation sign at a taxiway/RWY	Х
	intersection — a NO ENTRY sign — a RWY holding position sign	
LO	Name the sign with which it shall be indicated that a taxiing aircraft is about to	х
	infringe an obstacle limitation surface or to interfere with the operation of radio	
	navigation aids (e.g. ILS/MLS critical/sensitive area)	
LO	Describe the various possible inscriptions on RWY designation signs and on	Х
	holding position signs	
LO	Describe the inscription on an Intermediate-holding position sign on a taxiway	х
010 09 08 00	Attachment A to ICAO Annex 14, Volume 1 — Supplementary Guidance Mate	rial
010 09 08 03	Approach lighting systems	
LO	Name the two main groups of approach lighting systems	Х
LO	Describe the two different versions of a simple approach lighting system	Х
LO	Describe the two different basic versions of precision approach lighting systems	х
	for CAT I	
LO	Describe how the arrangement of an approach lighting system and the location of	х
-	the appropriate threshold are interrelated with each other	

AMC3 FCL.615 (b) IR – Theoretical knowledge and flight instruction DETAILED THEORETICAL KNOWLEDGE SYLLABUS AND LEARNING OBJECTIVES

Subject Aircraft General Knowledge — Instrumentation (Competency-based modular training course (CB-IR(A)) for instrument rating according to Appendix 6 Aa and en route instrument rating (EIR) course according to FCL.825)

Syllabus reference	Syllabus details and associated Learning Objectives	CB- IR(A) and EIR
022 00 00 00	AIRCRAFT GENERAL KNOWLEDGE — INSTRUMENTATION	
022 02 00 00	MEASUREMENT OF AIR DATA PARAMETERS	
022 02 01 00	Pressure measurement	
022 02 01 02	Pitot/static system: design and errors	
LO	Describe the design and the operating principle of a: — static source — Pitot tube — combined Pitot/static probe	х
LO	For each of these indicate the various locations, describe the following associated errors: — position errors — instrument errors -errors due to a non-longitudinal axial flow (including manoeuvre-induced errors), and the means of correction and/or compensation	х
LO	Explain the purpose of heating and interpret the effect of heating on sensed pressure	х
LO	List the affected instruments and explain the consequences for the pilot in case of a malfunction including blockage and leakage	х
LO	Describe alternate static sources and their effects when used	Х
022 02 04 00	Altimeter	
LO	Define the following terms: -height, altitude, -indicated altitude, true altitude, - pressure altitude, density altitude	х
LO	Define the following barometric references: QNH, QFE, 1013,25 hPa	Х
LO	Explain the operating principles of an altimeter	Х

LO	Describe and compare the following three types of altimeters: — simple altimeter	Х
	(single capsule) — sensitive altimeter (multi capsule) — servo-assisted altimeter	
LO	Give examples of associated displays: pointer, multi pointer, drum, vertical straight se	cale
LO	Describe the following errors: — Pitot/static system errors — temperature error (air	Х
	column not at ISA conditions) — time lag (altimeter response to change of height)	
	and the means of correction	
LO	Give examples of altimeter corrections table from an Aircraft Operations Manual	х
	(AOM)	
LO	Describe the effects of a blockage or a leakage on the static pressure line	Х
022 02 05 00	Vertical Speed Indicator (VSI)	
LO	Explain the operating principles of a VSI	х
LO	Describe and compare the following two types of vertical speed indicators: -	х
	barometric type — inertial type (inertial information provided by an Inertial	
	Reference Unit)	
LO	Describe the following VSI errors: — Pitot/static system errors — time lag and the	х
	means of correction	
LO	Describe the effects on a VSI of a blockage or a leakage on the static pressure line	Х
022 02 06 00	Airspeed Indicator (ASI)	
LO	Define IAS, CAS, EAS, TAS and state and explain the relationship between these	Х
	speeds	
LO	Describe the following ASI errors and state when they must be considered:	х
	Pitot/static system errors — compressibility error — density error	
LO	Explain the operating principles of an ASI (as appropriate to aeroplanes or	х
	helicopters)	
LO	Describe the effects on an ASI of a blockage or a leak in the static and/or total	Х
	pressure line(s)	
022 03 00 00	MAGNETISM — DIRECT READING COMPASS AND FLUX VALVE	
022 04 00 00	GYROSCOPIC INSTRUMENTS	
022 04 00 00 022 04 01 00	Gyroscope: basic principles	
022 04 00 00 022 04 01 00 LO	Gyroscope: basic principles Define a gyro	X
022 04 00 00 022 04 01 00 LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces	X X
022 04 00 00 022 04 01 00 LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro	
022 04 00 00 022 04 01 00 LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its	X
022 04 00 00 022 04 01 00 LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis)	X
022 04 00 00 022 04 01 00 LO LO LO 022 04 02 00	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator	X
022 04 00 00 022 04 01 00 LO LO LO DO D22 04 02 00 LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis)	X
022 04 00 00 022 04 01 00 LO LO LO D22 04 02 00 LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn	X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS	X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS	X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated	X X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated Explain the purpose of a balance (slip) indicator	X X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a	X X X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn	X X X X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn Describe the construction and principles of operation of a Turn Co-ordinator (or	X X X X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn Describe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator)	X X X X X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn Describe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator) Compare the rate of turn indicator and the turn co-ordinator	X X X X X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO D LO D LO D D D LO LO LO LO D D D D D D	Gyroscope: basic principlesDefine a gyroExplain the fundamentals of the theory of gyroscopic forcesDefine the degrees of freedom of a gyroRemark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis)Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) IndicatorExplain the purpose of a rate of turn and balance (slip) indicatorDefine a rate-one turnExplain the relation between bank angle, rate of turn and TASExplain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinatedExplain the purpose of a balance (slip) indicatorDescribe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turnDescribe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator)Compare the rate of turn indicator and the turn co-ordinatorAttitude Indicator (Artificial Horizon)	X X X X X X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO LO LO	Gyroscope: basic principlesDefine a gyroExplain the fundamentals of the theory of gyroscopic forcesDefine the degrees of freedom of a gyroRemark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis)Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) IndicatorExplain the purpose of a rate of turn and balance (slip) indicatorDefine a rate-one turnExplain the relation between bank angle, rate of turn and TASExplain the relation between bank angle, rate of turn and TASExplain the purpose of a balance (slip) indicatorDescribe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turnDescribe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator)Compare the rate of turn indicator and the turn co-ordinatorAttitude Indicator (Artificial Horizon)Explain the purpose of the attitude indicator	X X X X X X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn Describe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator) Compare the rate of turn indicator and the turn co-ordinator Attitude Indicator (Artificial Horizon) Explain the purpose of the attitude indicator Describe the different designs and principles of operation of attitude indicators (air	X X X X X X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO LO LO	Gyroscope: basic principlesDefine a gyroExplain the fundamentals of the theory of gyroscopic forcesDefine the degrees of freedom of a gyroRemark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis)Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) IndicatorExplain the purpose of a rate of turn and balance (slip) indicatorDefine a rate-one turnExplain the relation between bank angle, rate of turn and TASExplain the relation between bank angle, rate of turn and TASExplain the purpose of a balance (slip) indicatorDescribe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turnDescribe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator)Compare the rate of turn indicator and the turn co-ordinatorAttitude Indicator (Artificial Horizon)Explain the purpose of the attitude indicator	X X X X X X X X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn Describe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator) Compare the rate of turn indicator and the turn co-ordinator Attitude Indicator (Artificial Horizon) Explain the purpose of the attitude indicator Describe the different designs and principles of operation of attitude indicators (air	X X X X X X X X X X X X
022 04 00 00 022 04 01 00 LO LO LO LO LO LO LO LO LO LO	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn Describe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator) Compare the rate of turn indicator and the turn co-ordinator Attitude Indicator (Artificial Horizon) Explain the purpose of the attitude indicator Describe the different designs and principles of operation of attitude indicators (air driven, electric)	X X X X X X X X X X X X X
022 04 00 00 022 04 01 00 LO <	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn Describe the rate of turn indicator and the turn co-ordinator (or Turn and Bank Indicator) Compare the rate of turn indicator and the turn co-ordinator Attitude Indicator (Artificial Horizon) Explain the purpose of the attitude indicator Describe the different designs and principles of operation of attitude indicators (air driven, electric) Describe the attitude display and instrument markings	X X X X X X X X X X X X X
022 04 00 00 022 04 01 00 LO <	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn Describe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator) Compare the rate of turn indicator and the turn co-ordinator Explain the purpose of the attitude indicator Describe the different designs and principles of operation of a turtude indicators (air driven, electric) Describe the attitude display and instrument markings Directional gyroscope	X X X X X X X X X X X X X X X
022 04 00 00 022 04 01 00 LO <	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain why the indication of a rate of turn indicator is only correct for one TAS and when turn is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn Describe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator) Compare the rate of turn indicator and the turn co-ordinator Attitude Indicator (Artificial Horizon) Explain the purpose of the attitude indicator Describe the different designs and principles of operation of attitude indicators (air driven, electric) Describe the attitude display and instrument markings Directional gyroscope Explain the purpose of the directional gyroscopes: — Air driven	X X X X X X X X X X X X X X X X X X X
022 04 00 00 022 04 01 00 LO <	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain the relation between bank angle, rate of turn and TAS Explain the run is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn Describe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator) Compare the rate of turn indicator and the turn co-ordinator Attitude Indicator (Artificial Horizon) Explain the purpose of the attitude indicator Describe the different designs and principles of operation of attitude indicators (air driven, electric) Describe the attitude display and instrument markings Directional gyroscope Explain the purpose of the directional gyroscopes: — Air driven directional gyro	X X X X X X X X X X X X X X X X X X X
022 04 00 00 022 04 01 00 LO DO <	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain the relation between bank angle, rate of turn and TAS Explain the run is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn Describe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator) Compare the rate of turn indicator and the turn co-ordinator Attitude Indicator (Artificial Horizon) Explain the purpose of the attitude indicator Describe the different designs and principles of operation of attitude indicators (air driven, electric) Describe the attitude display and instrument markings Directional gyroscope Explain the purpose of the directional gyroscopes: — Air driven directional gyro — Electric directional gyro	X X X X X X X X X X X X X X X X X X
022 04 00 00 022 04 01 00 LO <	Gyroscope: basic principles Define a gyro Explain the fundamentals of the theory of gyroscopic forces Define the degrees of freedom of a gyro Remark: As a convention, the degrees of freedom of a gyroscope do not include its own axis of rotation (the spin axis) Rate of turn indicator /-Turn Co-ordinator — Balance (Slip) Indicator Explain the purpose of a rate of turn and balance (slip) indicator Define a rate-one turn Explain the relation between bank angle, rate of turn and TAS Explain the relation between bank angle, rate of turn and TAS Explain the run is co-ordinated Explain the purpose of a balance (slip) indicator Describe the indications of a rate of turn and balance (slip) indicator during a balanced, slip or skid turn Describe the construction and principles of operation of a Turn Co-ordinator (or Turn and Bank Indicator) Compare the rate of turn indicator and the turn co-ordinator Attitude Indicator (Artificial Horizon) Explain the purpose of the attitude indicator Describe the different designs and principles of operation of attitude indicators (air driven, electric) Describe the attitude display and instrument markings Directional gyroscope Explain the purpose of the directional gyroscopes: — Air driven directional gyro	X X X X X X X X X X X X X X X X X X

022 13 00 00	INTEGRATED INSTRUMENTS — ELECTRONIC DISPLAYS	
022 13 01 00	Electronic display units	
022 13 01 01	Design, limitations	
LO	List the different technologies used e.g. CRT and LCD and the associated	х
	limitations:	
	— cockpit temperature	
	— glare	
022 13 02 00	Mechanical Integrated instruments: ADI/HSI	
LO	Describe an Attitude and Director Indicator (ADI) and a Horizontal Situation	х
	Indicator (HSI)	
LO	List all the information that can be displayed for either instruments	х
022 13 03 00	Electronic Flight Instrument Systems (EFIS)	
022 13 03 01	Design, operation	
LO	List and describe the different components of an EFIS	х
022 13 03 02	Primary Flight Display (PFD), Electronic Attitude Director Indicator (EADI)	
LO	State that a PFD (or an EADI) presents a dynamic colour display of all the	Х
	parameters necessary to control the aircraft	
LO	List and describe the following information that can be displayed on the Primary	х
	Flight Display (PFD) unit of an aircraft:	
	- Flight Mode Annunciation	
	— basic T:	
	— attitude	
	— IAS	
	— altitude	
	— heading/track indications	
	— vertical speed	
	— maximum airspeed warning	
	— selected airspeed	
	—speed trend vector	
	— selected altitude	
	— current barometric reference	
	— steering indications (FD command bars)	
	— selected heading	
	— Flight Path Vector (FPV)	
	- Radio altitude - Decision height	
	— ILS indications	
	- ACAS (TCAS) indications	
	— failure flags and messages	
022 13 03 03	Navigation Display (ND), Electronic Horizontal Situation Indicator (EHSI)	
LO	State that a ND (or an EHSI) provides a mode-selectable colour flight navigation	x
20	display	~
L	andhal	

AMC4 FCL.615 (b) IR – Theoretical knowledge and flight instruction DETAILED THEORETICAL KNOWLEDGE SYLLABUS AND LEARNING OBJECTIVES

Subject Flight Planning and Flight Monitoring (Competency-based modular training course (CB-IR(A)) for instrument rating according to Appendix 6 Aa and en route instrument (EIR) rating course according to FCL.825)

Syllabus	Syllabus details and associated Learning Objectives	CB-
reference		IR(A)
		and
		EIR
033 00 00 00	FLIGHT PLANNING AND FLIGHT MONITORING	
033 02 00 00	FLIGHT PLANNING FOR IFR FLIGHTS	
033 02 01 00	IFR Navigation plan	
033 02 01 01	Airways and routes	

LO	Select the preferred airway(s) or route(s) considering:	Х
	Altitudes and Flight levels Standard routes	
	- ATC restrictions	
	- Shortest distance	
	- Obstacles	
	- Any other relevant data	
033 02 01 02	Courses and distances from en-route charts	
LO	Determine courses and distances	Х
LO	Determine courses and distances	X
033 02 01 03	Altitudes	А
LO	Define the following altitudes: — Minimum En-route Altitude (MEA)	Х
LO	— Minimum Obstacle Clearance Altitude (MOCA)	л
	— Minimum Off Route Altitude (MORA)	
	— Grid Minimum Off-Route Altitude (Grid MORA)	
	- Maximum Authorised Altitude (MAA)	
	— Minimum Crossing Altitude (MCA)	
	— Minimum Holding Altitude (MHA)	
LO	Extract the following altitudes from the chart(s): — Minimum En-route Altitude	X
LU	(MEA)	л
	— Minimum Obstacle Clearance Altitude (MOCA)	
	— Minimum Off Route Altitude (MORA)	
	— Grid Minimum Off-Route Altitude (Grid MORA)	
	— Maximum Authorised Altitude (MAA)	
	— Minimum Crossing Altitude (MAA) — Minimum Crossing Altitude (MCA)	
033 02 01 04	— Minimum Holding Altitude (MHA)	
	Standard Instrument Departures (SIDs) and Standard Arrival Routes (STARs)	
LO	Explain the reasons for studying SID and STAR charts	X
LO	State the reasons why the SID and STAR charts show procedures only in a pictorial	Х
IO	presentation style which is not to scale	
LO	Interpret all data and information represented on SID and STAR charts,	Х
	particularly:	
	- Routings. - Distances	
	- Courses	
	- Frequencies	
IO	— Restrictions	
LO	Identify SIDs and STARs which might be relevant to a planned flight	Х
033 02 01 05	Instrument Approach Charts	
LO	State the reasons for being familiar with instrument approach procedures and	х
IO	appropriate data for departure, destination and alternate airfields	
LO	Select instrument approach procedures appropriate for departure, destination and	х
10	alternate airfields	
LO	Interpret all procedures, data and information represented on Instrument Approach	Х
	Charts, particularly: — Courses and Radials	
	— Distances	
	- Altitudes/Levels/Heights	
	- Restrictions	
	- Obstructions	
	— Frequencies	
	— Speeds and times	
	- Decision Altitudes/Heights (DA/H) and Minimum Descent Altitudes/Heights	
	(MDA/H)	
	— Visibility and Runway Visual Ranges (RVR)	
033 02 01 06	— Approach light systems Communications and Radio Navigation planning data	

LO	Find communication frequencies and call signs for the following:	Х
	— Control agencies and service facilities	
	- Flight information services (FIS)	
	— Weather information stations	
	— Automatic Terminal Information Service (ATIS)	
LO	Find the frequency and/or identifiers of radio navigation aids	Х
033 02 01 07	Completion of navigation plan	1
LO	Complete the navigation plan with the courses, distances and frequencies taken	х
	from charts	
LO	Find Standard Instrument Departure and Arrival Routes to be flown and/or to be	х
	expected	
LO	Determine the position of Top of Climb (TOC) and Top of Descent (TOD) given	х
	appropriate data	
LO	Determine variation and calculate magnetic/true courses	Х
LO	Calculate True Air Speed (TAS) given aircraft performance data, altitude and	х
	Outside Air Temperature (OAT)	
LO	Calculate Wind Correction Angles (WCA)/Drift and Ground Speeds (GS)	х
LO	Determine all relevant Altitudes/Levels particularly MEA, MOCA, MORA, MAA,	х
	MCA, MRA and MSA	
LO	Calculate individual and accumulated times for each leg to destination and alternate	х
20	airfields	~
033 03 00 00	FUEL PLANNING	
033 03 01 00	General	
LO	Convert between volume, mass and density given in different units which are	х
LO	commonly used in aviation	л
LO	Determine relevant data from flight manual, such as fuel capacity, fuel	
LU		х
	flow/consumption at different power/thrust settings, altitudes and atmospheric	
10	conditions	
LO	Calculate attainable flight time/range given fuel flow/consumption and available	х
10	amount of fuel	
LO	Calculate the required fuel given fuel flow/consumption and required time/range to	х
10	be flown	
LO	Calculate the required fuel for an IFR flight given expected meteorological	х
	conditions and expected delays under defined conditions.	
033 04 00 00	PRE-FLIGHT PREPARATION	
033 04 01 00	NOTAM briefing	
033 04 01 01	Ground facilities and services	
LO	Check that ground facilities and services required for the planned flight are	х
	available and adequate	
033 04 01 02	Departure, destination and alternate aerodromes	1
LO	Find and analyse the latest state at the departure, destination and alternate	х
	aerodromes, in particular for:	
	— Opening hours	
	— Work in Progress (WIP)	
	— Special procedures due to Work in Progress (WIP)	
	- Obstructions	
	- Changes of frequencies for communications, navigation aids and facilities	
033 04 01 03	Airway routings and airspace structure	
LO	Find and analyse the latest en-route state for:	Х
	— Airway(s) or Route(s)	
	- Restricted, Dangerous and Prohibited areas	
	- Changes of frequencies for communications, navigation aids and facilities	
033 04 02 00	Meteorological briefing	
033 04 02 02	Update of navigation plan using the latest meteorological information:	
LO	Confirm the optimum altitude/FL given wind, temperature and aircraft data	Х
LO	Confirm magnetic headings and ground speeds	X
LO	Confirm the individual leg times and the total time en route	x
LO	Confirm the total time en route for the trip to the destination	X
LO	Confirm the total time from destination to the alternate airfield	X
	commune to the internation of the internate annexes	^

033 04 02 05	Update of fuel log	
LO	Calculate revised fuel data in accordance with changed conditions	Х
033 05 00 00	ICAO FLIGHT PLAN (ATS Flight Plan)	
033 05 01 00	Individual Flight Plan	
033 05 01 01	Format of Flight Plan	
LO	State the reasons for a fixed format of an ICAO ATS Flight Plan (FPL)	Х
LO	Determine the correct entries to complete an FPL plus decode and interpret the	Х
	entries in a completed FPL, particularly for the following:	
	— Aircraft identification (Item 7)	
	— Flight rules and type of flight (Item 8)	
	— Number and type of aircraft and wake turbulence category (Item 9)	
	— Equipment (Item 10)	
	— Departure aerodrome and time (Item 13)	
	— Route (Item 15)	
	- Destination aerodrome, total estimated elapsed time and Alternate aerodrome	
	(Item 16)	
	— Other information (Item 18)	
	— Supplementary Information (Item 19)	
033 05 01 02	Completion of an ATS Flight Plan (FPL)	
LO	Complete the Flight Plan using information from the following:	х
	— Navigation plan	
	— Fuel plan	
	— Operator's records for basic aircraft information	
033 05 03 00	Submission of an ATS Flight Plan (FPL)	
LO	Explain the requirements for the submission of an ATS Flight Plan	Х
LO	Explain the actions to be taken in case of Flight Plan changes	Х
LO	State the actions to be taken in case of inadvertent changes to Track, TAS and time	х
	estimate affecting the current Flight Plan	
LO	Explain the procedures for closing a Flight Plan	Х

AMC5 FCL.615 (b) IR – Theoretical knowledge and flight instruction

DETAILED THEORETICAL KNOWLEDGE SYLLABUS AND LEARNING OBJECTIVES

Subject Human Performance (Competency-based modular training course (CB-IR (A)) for instrument rating according to Appendix 6 Aa and en route instrument rating (EIR) course according to FCL.825)

Syllabus	Syllabus and Learning Objectives	CB-
Reference		IR
		(A)
		and
0.40,00,00,00		EIR
040 00 00 00	HUMAN PERFORMANCE	
040 01 00 00	HUMAN FACTORS: BASIC CONCEPTS	
040 01 03 00	Flight safety concepts	
LO	Explain the three components of the Threat and Error Management Model (TEM).	Х
LO	Explain and give examples of latent threats	х
LO	Explain and give examples of Environmental Threats	х
LO	Explain and give examples of Organizational Threats	Х
LO	Explain and give a definition of Error according the TEM-model in ICAO Annex 1	х
LO	Give examples of different countermeasures which may be used in order to manage	х
	Threats, Errors and Undesired Aircraft States	
LO	Explain and give examples of Procedural Error	х
040 01 04 00	Safety culture	
LO	Distinguish between 'open cultures' and 'closed cultures'	Х
LO	Illustrate how Safety Culture is reflected by National Culture	Х
LO	Explain James Reason's Swiss Cheese Model	Х
LO	State important factors that promote a good Safety Culture	Х
LO	Distinguish beteween 'Just Culture' and 'Non-punative Culture'	Х

LO	Name five components which form Safety Culture (According to James Reason)	Х
040 02 00 00	BASIC AVIATION PHYSIOLOGY AND HEALTH MAINTENANCE	
040 02 01 00	Basics of flight physiology	
040 02 01 02	Respiratory and circulatory systems	
LO	Define 'linear', 'angular' and 'radial acceleration'	Х
LO	Describe the effects of acceleration on the circulation and blood volume distribution	х
LO	List the factors determining the effects of acceleration on the human body	X
LO	Describe measures which may be taken to increase tolerance to positive	X
20	acceleration	
LO	List the effects of positive acceleration with respect to type, sequence and the corresponding G-load	Х
040 02 02 00	Man and Environment: the sensory system	
LO	List the different senses	х
LO	State the multi-sensory nature of human perception	х
040 02 02 04	Equilibrium	
Functional Ana	itomy	
LO	List the main elements of the vestibular apparatus	х
LO	State the functions of the vestibular apparatus on the ground and in flight	х
LO	Distinguish between the component parts of the vestibular apparatus in the detection of linear and angular acceleration as well as on gravity	Х
LO	Explain how the semicircular canals are stimulated	Х
Motion sicknes	S	
LO	Describe air-sickness and its accompanying symptoms	Х
LO	List the causes of motion sickness	Х
LO	Describe the necessary actions to be taken to counteract the symptoms of motion sickness	Х
040 02 02 05	Integration of sensory inputs	
LO	State the interaction between vision, equilibrium, proprioception and hearing to obtain spatial orientation in flight	Х
LO	Define the term 'illusion'	х
LO	Give examples of visual illusions based on shape constancy, size constancy, aerial perspective, atmospheric perspective, the absence of focal or ambient cues,	X
LO	autokinesis, vectional false horizons and surface planes Relate these illusions to problems that may be experienced in flight and identify the	x
LO	danger attached to them State the conditions which cause the 'black hole' effect and 'empty field myopia'	v
LO	Give examples of approach and landing illusions, state the danger involved and	X X
LO	give recommendations to avoid or counteract these problems State the problems associated with flickering lights (strobe-lights, anti-collision	X
	lights, etc.)	Α
LO	Give examples of vestibular illusions such as Somatogyral (the Leans), Coriolis, Somatogravic and g-effect illusions	Х
LO	Relate the above mentioned vestibular illusions to problems encountered in flight and state the dangers involved	Х
LO	List and describe the function of the proprioceptive senses ('Seat-of-the-Pants-Sense')	х
LO	Relate illusions of the proprioceptive senses to the problems encountered during flight	х
LO	State that the 'Seat-of-the-Pants-Sense' is completely unreliable when visual contact with the ground is lost or when flying in IMC or poor visual horizon	x
LO	Differentiate between Vertigo, Coriolis effect and spatial disorientation	x
LO	Explain The Flicker Effect (Stroboscopic Effect) and discuss counter measures	x
LO	Explain how spatial disorientation can result from a mismatch in sensory input and information processing	X
LO	List the measures to prevent and/or overcome spatial disorientation	X
040 03 00 00	BASIC AVIATION PSYCHOLOGY	1
	Human error and reliability	

040 03 02 02	Mental models and situation awareness	
LO	Define the term 'situation awareness'	х
LO	List cues which indicate the loss of situation awareness and name the steps to	X
20	regain it	
LO	List factors which influence one's Situation Awareness both positively and	х
-	negatively and stress the importance of Situation Awareness in the context of flight	
	safety	
LO	Define the term 'mental model' in relation to a surrounding complex situation	х
LO	Describe the advantage/disadvantage of mental models	x
LO	Explain the relationship between personal 'mental models' and the creation of	X
20	cognitive illusions	~
040 03 02 03	Theory and model of human error	
LO	Define the term 'error'	Х
LO	Explain the concept of the 'error chain'	X
LO	Differentiate between an isolated error and an error chain	X
LO	Distinguish between the main forms/types of errors (i.e. slips, faults, omissions and	
LU	violations)	Х
LO	Discuss the above errors and their relevance in-flight	v
LO	Distinguish between an active and a latent error and give examples	X
040 03 02 04		Х
	Error generation	
LO	Distinguish between internal and external factors in error generation	X
LO	Identify possible sources of internal error generation	X
LO	Define and discuss the two errors associated with motor programmes	Х
LO	List the three main sources for external error generation in the cockpit	Х
LO	Give examples to illustrate the following factors in external error generation in the	х
	cockpit:	
	— Ergonomics	
	— Economics	
	— Social environment	
LO	Name major goals in the design of human centred man-machine interfaces	Х
LO	Define the term 'error tolerance'	Х
LO LO		
LO LO 040 03 03 00	Define the term 'error tolerance'	Х
LO LO	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts	Х
LO LO 040 03 03 00	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making	Х
LO LO 040 03 03 00 040 03 03 01	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts	X X
LO LO 040 03 03 00 040 03 03 01 LO	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts Define the term 'deciding' and 'decision-making'	x x x
LO LO 040 03 03 00 040 03 03 01 LO LO	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts Define the term 'deciding' and 'decision-making' Describe the major factors on which a decision-making should be based during the course of a flight	x x x
LO LO 040 03 03 00 040 03 03 01 LO LO	Define the term 'error tolerance'List (and describe) strategies which are used to reduce human errorDecision makingDecision-making conceptsDefine the term 'deciding' and 'decision-making'Describe the major factors on which a decision-making should be based during the course of a flightDescribe the main human attributes with regard to decision making	X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO	Define the term 'error tolerance'List (and describe) strategies which are used to reduce human error Decision making Decision-making conceptsDefine the term 'deciding' and 'decision-making'Describe the major factors on which a decision-making should be based during the course of a flightDescribe the main human attributes with regard to decision making Discuss the nature of bias and its influence on the decision making process	X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO	Define the term 'error tolerance'List (and describe) strategies which are used to reduce human error Decision making Decision-making conceptsDefine the term 'deciding' and 'decision-making'Describe the major factors on which a decision-making should be based during the course of a flightDescribe the main human attributes with regard to decision makingDiscuss the nature of bias and its influence on the decision making processDescribe the main error sources and limits in an individual's decision making	X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO	Define the term 'error tolerance'List (and describe) strategies which are used to reduce human error Decision making Decision-making conceptsDefine the term 'deciding' and 'decision-making'Describe the major factors on which a decision-making should be based during the course of a flightDescribe the main human attributes with regard to decision makingDiscuss the nature of bias and its influence on the decision making processDescribe the main error sources and limits in an individual's decision making mechanism	X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO	Define the term 'error tolerance'List (and describe) strategies which are used to reduce human errorDecision makingDecision-making conceptsDefine the term 'deciding' and 'decision-making'Describe the major factors on which a decision-making should be based during the course of a flightDescribe the main human attributes with regard to decision makingDiscuss the nature of bias and its influence on the decision making processDescribe the main error sources and limits in an individual's decision making mechanismState the factors upon which an individual's risk assessment is based	X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO	Define the term 'error tolerance'List (and describe) strategies which are used to reduce human error Decision making Decision-making conceptsDefine the term 'deciding' and 'decision-making'Describe the major factors on which a decision-making should be based during the course of a flightDescribe the main human attributes with regard to decision makingDiscuss the nature of bias and its influence on the decision making processDescribe the main error sources and limits in an individual's decision making mechanismState the factors upon which an individual's risk assessment is basedExplain the relationship between risk assessment, commitment, and pressure of	X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance'List (and describe) strategies which are used to reduce human error Decision making Decision-making conceptsDefine the term 'deciding' and 'decision-making'Describe the major factors on which a decision-making should be based during the course of a flightDescribe the main human attributes with regard to decision makingDiscuss the nature of bias and its influence on the decision making processDescribe the main error sources and limits in an individual's decision making mechanismState the factors upon which an individual's risk assessment is basedExplain the relationship between risk assessment, commitment, and pressure of time on decision making strategies	X X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO	Define the term 'error tolerance'List (and describe) strategies which are used to reduce human error Decision making Decision-making conceptsDefine the term 'deciding' and 'decision-making'Describe the major factors on which a decision-making should be based during the course of a flightDescribe the main human attributes with regard to decision making Discuss the nature of bias and its influence on the decision making processDescribe the main error sources and limits in an individual's decision making mechanismState the factors upon which an individual's risk assessment is basedExplain the relationship between risk assessment, commitment, and pressure of time on decision making strategiesDescribe the positive and negative influences exerted by other group members on	X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance'List (and describe) strategies which are used to reduce human error Decision making Decision-making conceptsDefine the term 'deciding' and 'decision-making'Describe the major factors on which a decision-making should be based during the course of a flightDescribe the main human attributes with regard to decision makingDiscuss the nature of bias and its influence on the decision making processDescribe the main error sources and limits in an individual's decision making mechanismState the factors upon which an individual's risk assessment is basedExplain the relationship between risk assessment, commitment, and pressure of time on decision making strategiesDescribe the positive and negative influences exerted by other group members on an individual's decision making process	X X X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance'List (and describe) strategies which are used to reduce human error Decision making Decision-making conceptsDefine the term 'deciding' and 'decision-making'Describe the major factors on which a decision-making should be based during the course of a flightDescribe the main human attributes with regard to decision makingDiscuss the nature of bias and its influence on the decision making processDescribe the main error sources and limits in an individual's decision making mechanismState the factors upon which an individual's risk assessment is basedExplain the relationship between risk assessment, commitment, and pressure of time on decision making strategiesDescribe the positive and negative influences exerted by other group members on an individual's decision making processExplain the general idea behind the creation of a model for decision making based	X X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance'List (and describe) strategies which are used to reduce human error Decision making Decision-making conceptsDefine the term 'deciding' and 'decision-making'Describe the major factors on which a decision-making should be based during the course of a flightDescribe the main human attributes with regard to decision makingDiscuss the nature of bias and its influence on the decision making processDescribe the main error sources and limits in an individual's decision making mechanismState the factors upon which an individual's risk assessment is basedExplain the relationship between risk assessment, commitment, and pressure of time on decision making strategiesDescribe the positive and negative influences exerted by other group members on an individual's decision making processExplain the general idea behind the creation of a model for decision making based upon:	X X X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts Define the term 'deciding' and 'decision-making' Describe the major factors on which a decision-making should be based during the course of a flight Describe the main human attributes with regard to decision making Discuss the nature of bias and its influence on the decision making process Describe the main error sources and limits in an individual's decision making mechanism State the factors upon which an individual's risk assessment is based Explain the relationship between risk assessment, commitment, and pressure of time on decision making strategies Describe the positive and negative influences exerted by other group members on an individual's decision making process Explain the general idea behind the creation of a model for decision making based upon: — definition of the aim	X X X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts Define the term 'deciding' and 'decision-making' Describe the major factors on which a decision-making should be based during the course of a flight Describe the main human attributes with regard to decision making Discuss the nature of bias and its influence on the decision making process Describe the main error sources and limits in an individual's decision making mechanism State the factors upon which an individual's risk assessment is based Explain the relationship between risk assessment, commitment, and pressure of time on decision making strategies Describe the positive and negative influences exerted by other group members on an individual's decision making process Explain the general idea behind the creation of a model for decision making based upon: — definition of the aim — collection of information	X X X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts Define the term 'deciding' and 'decision-making' Describe the major factors on which a decision-making should be based during the course of a flight Describe the main human attributes with regard to decision making Discuss the nature of bias and its influence on the decision making process Describe the main error sources and limits in an individual's decision making mechanism State the factors upon which an individual's risk assessment is based Explain the relationship between risk assessment, commitment, and pressure of time on decision making strategies Describe the positive and negative influences exerted by other group members on an individual's decision making process Explain the general idea behind the creation of a model for decision making based upon: — definition of the aim — collection of information — risk assessment	X X X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts Define the term 'deciding' and 'decision-making' Describe the major factors on which a decision-making should be based during the course of a flight Describe the main human attributes with regard to decision making Discuss the nature of bias and its influence on the decision making process Describe the main error sources and limits in an individual's decision making mechanism State the factors upon which an individual's risk assessment is based Explain the relationship between risk assessment, commitment, and pressure of time on decision making strategies Describe the positive and negative influences exerted by other group members on an individual's decision making process Explain the general idea behind the creation of a model for decision making based upon: — definition of the aim — collection of information — risk assessment — development of options	X X X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts Define the term 'deciding' and 'decision-making' Describe the major factors on which a decision-making should be based during the course of a flight Describe the main human attributes with regard to decision making Discuss the nature of bias and its influence on the decision making process Describe the main error sources and limits in an individual's decision making mechanism State the factors upon which an individual's risk assessment is based Explain the relationship between risk assessment, commitment, and pressure of time on decision making strategies Describe the positive and negative influences exerted by other group members on an individual's decision making process Explain the general idea behind the creation of a model for decision making based upon: definition of the aim collection of information risk assessment development of options evaluation of options 	X X X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts Define the term 'deciding' and 'decision-making' Describe the major factors on which a decision-making should be based during the course of a flight Describe the main human attributes with regard to decision making Discuss the nature of bias and its influence on the decision making process Describe the main error sources and limits in an individual's decision making mechanism State the factors upon which an individual's risk assessment is based Explain the relationship between risk assessment, commitment, and pressure of time on decision making strategies Describe the positive and negative influences exerted by other group members on an individual's decision making process Explain the general idea behind the creation of a model for decision making based upon: definition of the aim collection of information risk assessment development of options evaluation of options evaluation of options decision 	X X X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts Define the term 'deciding' and 'decision-making' Describe the major factors on which a decision-making should be based during the course of a flight Describe the main fuman attributes with regard to decision making Discuss the nature of bias and its influence on the decision making process Describe the main error sources and limits in an individual's decision making mechanism State the factors upon which an individual's risk assessment is based Explain the relationship between risk assessment, commitment, and pressure of time on decision making process Describe the positive and negative influences exerted by other group members on an individual's decision making process Explain the general idea behind the creation of a model for decision making based upon: — definition of the aim — collection of information — risk assessment — development of options — evaluation of options — evaluation of options — implementation	X X X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts Define the term 'deciding' and 'decision-making' Describe the major factors on which a decision-making should be based during the course of a flight Describe the main numan attributes with regard to decision making Discuss the nature of bias and its influence on the decision making process Describe the main error sources and limits in an individual's decision making mechanism State the factors upon which an individual's risk assessment is based Explain the relationship between risk assessment, commitment, and pressure of time on decision making process Describe the positive and negative influences exerted by other group members on an individual's decision making process Explain the general idea behind the creation of a model for decision making based upon: — definition of the aim — collection of information — risk assessment — development of options — evaluation of options — evaluation of options — implementation	X X X X X X X X X X X
LO LO 040 03 03 00 040 03 03 01 LO LO LO LO LO LO LO	Define the term 'error tolerance' List (and describe) strategies which are used to reduce human error Decision making Decision-making concepts Define the term 'deciding' and 'decision-making' Describe the major factors on which a decision-making should be based during the course of a flight Describe the main fuman attributes with regard to decision making Discuss the nature of bias and its influence on the decision making process Describe the main error sources and limits in an individual's decision making mechanism State the factors upon which an individual's risk assessment is based Explain the relationship between risk assessment, commitment, and pressure of time on decision making process Describe the positive and negative influences exerted by other group members on an individual's decision making process Explain the general idea behind the creation of a model for decision making based upon: — definition of the aim — collection of information — risk assessment — development of options — evaluation of options — evaluation of options — implementation	X X X X X X X X X X X

LO	Justify the need for being aware of not only one's own performance but that of	x
	others before and during a flight and the possible consequences and/or risks	
	Stress the overall importance of constantly and positively striving to monitor for	х
	errors and thereby maintaining situation awareness	
	Human overload and underload	•
	Stress	
	Explain the biological reaction to stress by means of the general adaptation syndrome (GAS)	Х
	Name the 3 phases of the GAS	х
	Name the symptoms of stress relating to the different phases of the GAS	х
LO	Explain how stress is cumulative and how stress from one situation can be transferred to a different situation	х
	Explain how successful completion of a stressful task will reduce the amount of stress experienced when a similar situation arises in the future	х
	Describe the effect of human under/overload on effectiveness in the cockpit	х
	List sources and symptoms of human underload	х
	Advanced cockpit automation	•
	Advantages and disadvantages	
LO	Define and explain the basic concept of automation	Х
	List the advantages/disadvantages of automation in the cockpit in respect of level of vigilance, attention, workload, situation awareness and crew coordination	Х
LO	State the advantages and disadvantages of the two components of the man-machine system with regard to information input and processing, decision making, and output activities	X
	Explain the 'ironies of automation'	х
	Give examples of methods to overcome the disadvantages of automation	х
	Automation complacency	
LO	State the main weaknesses in the monitoring of automatic systems	Х
LO	Explain the following terms in connection with automatic systems: — Passive monitoring — Blinkered concentration — Confusion — Mode awareness	x
	Give examples of actions which may be taken to counteract ineffective monitoring of automatic systems	Х
LO	Define 'complacency'	х
040 03 07 03	Working concepts	
	Working concepts Summarise how the negative effects of automation on pilots may be alleviated	X

AMC6 FCL.615 (b) IR – Theoretical knowledge and flight instruction DETAILED THEORETICAL KNOWLEDGE SYLLABUS AND LEARNING OBJECTIVES

Subject Meteorology (Competency-based modular training course (CB-IR (A)) for instrument rating according to Appendix 6 Aa and en route instrument rating (EIR) course according to FCL.825)

Syllabus reference	Syllabus details and associated Learning Objectives	CB- IR (A) and EIR
050 00 00 00	METEOROLOGY	
050 01 00 00	THE ATMOSPHERE	
050 01 02 00	Air temperature	
050 01 02 04	Lapse rates	
LO	Describe qualitatively and quantitatively the temperature lapse rates of the	Х

	troposphere (mean value 0.65° C/100 m or 2° C/1 000 ft and actual values)	
050 01 02 05	Development of inversions, types of inversions	
LO	Describe development and types of inversions	Х
LO	Explain the characteristics of inversions and of an isothermal layer	х
LO	Explain the reasons for the formation of the following inversions:	
-	— ground inversion (nocturnal radiation/advection), subsidence inversion, frontal	х
	inversion, inversion above friction layer, valley inversion	
	- tropopause inversion	
050 01 02 06	Temperature near the earth's surface, surface effects, diurnal and seasonal variation, e clouds, effect of wind	effect o
LO	Describe how the temperature near the earth's surface is influenced by seasonal variations	х
LO	Explain the cooling and warming of the air on the earth or sea surfaces	Х
LO	Sketch the diurnal variation of the temperature of the air in relation to the radiation of the sun and of the earth	х
LO	Describe qualitatively the influence of the clouds on the cooling and warming of the surface and the air near the surface	х
LO	Distinguish between the influence of low or high clouds, thick or thin clouds	Х
LO	Explain the influence of the wind on the cooling and warming of the air near the surfaces	Х
050 01 03 00	Atmospheric pressure	
050 01 03 01	Barometric pressure, isobars	_
LO	Define atmospheric pressure	Х
LO	List the units of measurement of the atmospheric pressure used in aviation (hPa, inches) (<i>Refer to 050 10 01 01</i>)	х
LO	Describe isobars on the surface weather charts	Х
LO	Define high, low, trough, ridge, wedge, col	Х
050 01 03 02	Pressure variation with height, contours (isohypses)	
LO	Explain the pressure variation with height	Х
LO	Describe qualitatively the variation of the barometric lapse rate	Х
	Note: The average value for the barometric lapse rate near mean sea level is 27 ft (8	
	m) per 1 hPa, at about 5500 m/AMSL is 50 ft (15 m) per 1 hPa	
LO	Describe and interpret contour lines (isohypses) on a constant pressure chart (<i>Refer</i> to 050 10 02 03)	х
050 01 03 03	Reduction of pressure to mean sea level, QFF	
LO	Define QFF	Х
LO	Explain the reduction of measured pressure to mean sea level, QFF	Х
LO	Mention the use of QFF for surface weather charts	Х
050 01 03 04	Relationship between surface pressure centres and pressure centres aloft	
LO	Illustrate with a vertical cross section of isobaric surfaces the relationship between surface pressure systems and upper air pressure systems	х
050 01 04 00	Air density	
050 01 04 01	Relationship between pressure, temperature and density	
LO	Describe the relationship between pressure, temperature and density	Х
LO	Describe the vertical variation of the air density in the atmosphere	Х
LO	Describe the effect of humidity changes on the density of air	Х
050 01 05 00	ICAO Standard Atmosphere (ISA)	
050 01 05 01	ICAO Standard Atmosphere	
LO	Explain the use of standardised values for the atmosphere	Х
LO	List the main values of the ISA (mean sea level pressure, mean sea level temperature, the vertical temperature lapse rate up to 20 km, height and temperature	х
10	of the tropopause)	
LO	Calculate the standard temperature in degree Celsius for a given flight level	Х
LO	Determine a standard temperature deviation by the difference between the given	Х
	outside air temperature and the standard temperature	
050 01 06 00	Altimetry	
050 01 06 01	Terminology and definitions	<u> </u>
LO	Define the following terms and abbreviations and explain how they are related to	х

	each other: height, altitude, pressure altitude, flight level, level, true altitude, true	
	height, elevation, QNH, QFE and standard altimeter setting	
LO	Describe the terms transition altitude, transition level, transition layer, terrain	Х
	clearance, lowest usable flight level	
050 01 06 03	Calculations	
LO	Calculate the different readings on the altimeter when the pilot changes the altimeter	х
	setting	
LO	Illustrate with a numbered example the changes of altimeter setting and the	x
_	associated changes in reading when the pilot climbs through the transition altitude or	
	descends through the transition level	
LO	Derive the reading of the altimeter of an aircraft on the ground when the pilot uses	х
	the different settings	
LO	Explain the influence of the air temperature on the distance between the ground and	х
20	the level read on the altimeter and between two flight levels	~
LO	Explain the influence of pressure areas on the true altitude	x
LO	Determine the true altitude/height for a given altitude/height and a given ISA	X
LO	temperature deviation	Λ
LO	Calculate the terrain clearance and the lowest usable flight level for given	v
	atmospheric temperature and pressure conditions	х
Note: The fall-	wing rules shall be considered for altimetry calculations:	1
~	utions are based on rounded pressure values to the nearest lower hPa	
	for the barometric lapse rate near mean sea level is 27 ft (8 m) per 1 hPa	
	or the barometric lapse rate near mean sea level is 27 ft (8 m) per 1 nPa ne the true altitude/height the following rule of thumb, called the '4 %-rule', shall be u.	and the
		sea. ine
	ight changes by 4 % for each 10°C temperature deviation from ISA	ad to be
	er information is given, the deviation of outside air temperature from ISA is considere	ea lo be
	the same given value in the whole layer	reidanad
	on of the airport has to be taken into account. The temperature correction has to be com	isiaerea
	r between ground and the position of the aircraft	
050 01 06 04	Effect of accelerated airflow due to topography	-
LO	Describe qualitatively how the effect of accelerated airflow due to topography	х
	(Bernoulli effect) affects altimetry	Х
050 02 00 00	(Bernoulli effect) affects altimetry WIND	X
050 02 00 00 050 02 02 00	(Bernoulli effect) affects altimetry WIND Primary cause of wind	Х
050 02 00 00 050 02 02 00 050 02 02 02	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer	
050 02 00 00 050 02 02 00	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the	x
050 02 00 00 050 02 02 00 050 02 02 02 LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb)	
050 02 00 00 050 02 02 00 050 02 02 02 LO LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed)	X
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations):	x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landsco	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): upe Wind speed in friction layer The wind in the friction layer blows in % of the geos	x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxin Type of landsco wind across the	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars	x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landsc wind across the over water ca 7	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): upe Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10°	x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landsco wind across the over water ca 7 over land ca 50	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geos isobars towards the low pressure. Angle between wind direction and isobars 10 % ca 10° 1% ca 30°	x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxin Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 10 % ca 30°	x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): the Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 9% ca 30° Effects of convergence and divergence	x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxin Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 9% ca 30° Effects of convergence and divergence Describe atmospheric convergence and divergence	x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 9% ca 30° Effects of convergence and divergence Describe atmospheric convergence and divergence on the following: pressure systems	x x strophic
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxin Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 9% ca 30° Effects of convergence and divergence Describe atmospheric convergence and divergence on the following: pressure systems at the surface and aloft; wind speed; vertical motion and cloud formation	x x strophic
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxin Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 9% ca 30° Effects of convergence and divergence Describe atmospheric convergence and divergence on the following: pressure systems	x x strophic
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxin Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 9% ca 30° Effects of convergence and divergence Describe atmospheric convergence and divergence on the following: pressure systems at the surface and aloft; wind speed; vertical motion and cloud formation	x x strophic
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) wate value for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 9 % ca 30° Effects of convergence and divergence Explain the effect of convergence and divergence Explain the effect of convergence and divergence on the following: pressure systems at the surface and aloft; wind speed; vertical motion and cloud formation (relationship between upper air conditions and surface pressure systems)	x x strophic x x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 10 % ca 10° 10 % ca 30° Effects of convergence and divergence Describe atmospheric convergence and divergence Explain the effect of convergence and divergence on the following: pressure systems at the surface and aloft; wind speed; vertical motion and cloud formation (relationship between upper air conditions and surface pressure systems) Local winds	x x strophic x x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) nate value for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 9% ca 30° Effects of convergence and divergence Explain the effect of convergence and divergence on the following: pressure systems at the surface and aloft; wind speed; vertical motion and cloud formation (relationship between upper air conditions and surface pressure systems) Local winds Anabatic and katabatic winds, mountain and valley winds, venturi effects, land a breezes	x x strophic x x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxin Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO LO LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) intervalue for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 9% ca 30° Effects of convergence and divergence Explain the effect of convergence and divergence on the following: pressure systems at the surface and aloft; wind speed; vertical motion and cloud formation (relationship between upper air conditions and surface pressure systems) Local winds Anabatic and katabatic winds, mountain and valley winds, venturi effects, land a breezes Describe and explain anabatic and katabatic winds	x x strophic x x and sea
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO LO LO LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) rate value for variation of wind in the friction layer (values to be used in examinations): appendix to a speed in friction layer The wind in the friction layer blows in % of the geost isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 9% ca 30° Effects of convergence and divergence Describe atmospheric convergence and divergence on the following: pressure systems at the surface and aloft; wind speed; vertical motion and cloud formation (relationship between upper air conditions and surface pressure systems) Local winds Anabatic and katabatic winds, mountain and valley winds, venturi effects, land a breezes Describe and explain anabatic and katabatic winds	x x strophic x x x and sea x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO LO LO LO LO LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) nate value for variation of wind in the friction layer (values to be used in examinations): appendix to a speed in friction layer The wind in the friction layer blows in % of the geost isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 9% ca 30° Effects of convergence and divergence Describe atmospheric convergence and divergence Explain the effect of convergence and divergence on the following: pressure systems at the surface and aloft; wind speed; vertical motion and cloud formation (relationship between upper air conditions and surface pressure systems) Local winds Anabatic and katabatic winds, mountain and valley winds, venturi effects, land a breezes Describe and explain mountain and valley winds Describe and explain the venturi effect, convergence in valleys and mountain areas	x x strophic x x x and sea x x x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landscd wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO LO LO LO LO LO LO LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) nate value for variation of wind in the friction layer (values to be used in examinations): approximation of wind in the friction layer (values to be used in examinations): approximation of wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 9% ca 30° Effects of convergence and divergence Describe atmospheric convergence and divergence Explain the effect of convergence and divergence on the following: pressure systems at the surface and aloft; wind speed; vertical motion and cloud formation (relationship between upper air conditions and surface pressure systems) Local winds Anabatic and katabatic winds, mountain and valley winds, venturi effects, land a breezes Describe and explain anabatic and katabatic winds Describe and explain mountain and valley winds Describe and explain he venturi effect, convergence in valleys and mountain areas	x x strophic x x x and sea x x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landscd wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO LO LO LO LO LO LO LO LO LO LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): approximation of wind in the friction layer (values to be used in examinations): approximation of wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0% ca 10° 9% ca 30° Effects of convergence and divergence Describe atmospheric convergence and divergence on the following: pressure systems at the surface and aloft; wind speed; vertical motion and cloud formation (relationship between upper air conditions and surface pressure systems) Local winds Anabatic and katabatic winds, mountain and valley winds, venturi effects, land a breezes Describe and explain mountain and valley winds Describe and explain the venturi effect, convergence in valleys and mountain areas Describe and explain land and sea breezes, sea breeze front	x x strophic x x x and sea x x x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landsco wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO LO LO LO LO LO LO LO LO LO LO LO LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) intervalue for variation of wind in the friction layer (values to be used in examinations): ape Wind speed in friction layer The wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0 % ca 10° 0% ca 30° Effects of convergence and divergence Describe atmospheric convergence and divergence Explain the effect of convergence and divergence Explain the effect of convergence and divergence Explain the surface and aloft; wind speed; vertical motion and cloud formation (relationship between upper air conditions and surface pressure systems) Local winds Anabatic and katabatic winds, mountain and valley winds, venturi effects, land a breezes Describe and explain nabatic and katabatic winds Describe and explain mountain and valley winds Describe and explain he venturi effect, convergence in valleys and mountain areas Describe and explain land and sea brezzes, sea breeze front	x x strophic x x x x x x x x x x x x
050 02 00 00 050 02 02 00 050 02 02 02 LO LO Note: Approxim Type of landscd wind across the over water ca 7 over land ca 50 WMO-NO. 266 050 02 02 03 LO LO LO LO LO LO LO LO LO LO LO	(Bernoulli effect) affects altimetry WIND Primary cause of wind Variation of wind in the friction layer Describe why and how the wind changes direction and speed with height in the friction layer in the northern and in the southern hemisphere (rule of thumb) Explain the relationship between isobars and wind (direction and speed) mate value for variation of wind in the friction layer (values to be used in examinations): approximation of wind in the friction layer (values to be used in examinations): approximation of wind in the friction layer blows in % of the geose isobars towards the low pressure. Angle between wind direction and isobars 0% ca 10° 9% ca 30° Effects of convergence and divergence Describe atmospheric convergence and divergence on the following: pressure systems at the surface and aloft; wind speed; vertical motion and cloud formation (relationship between upper air conditions and surface pressure systems) Local winds Anabatic and katabatic winds, mountain and valley winds, venturi effects, land a breezes Describe and explain mountain and valley winds Describe and explain the venturi effect, convergence in valleys and mountain areas Describe and explain land and sea breezes, sea breeze front	x x strophic x x x and sea x x x

LO	Describe the structure and properties of mountain waves	Х
LO	Explain how mountain waves may be identified by their associated meteorological	X
LO	phenomena	л
050 02 06 00	Turbulence	
050 02 06 00	Description and types of turbulence	
LO	Describe turbulence and gustiness	х
LO	List common types of turbulence (convective, mechanical, orographic, frontal, clear	x
LO	air turbulence)	A
050 02 06 02	Formation and location of turbulence	I
LO	Explain the formation of convective turbulence, mechanical and orographic	х
	turbulence, frontal turbulence, clear air turbulence (<i>Refer to 050 02 06 03</i>)	
LO	State where turbulence will normally be found (rough ground surfaces, relief,	х
-	inversion layers, CB, TS zones, unstable layers)	
050 03 00 00	THERMODYNAMICS	
050 03 01 00	Humidity	
050 03 01 01	Water vapour in the atmosphere	
LO	Describe humid air	Х
LO	Describe the significance of water vapour in the atmosphere for meteorology	Х
LO	Indicate the sources of atmospheric humidity	х
050 03 01 03	Temperature/dew point, relative humidity	1
LO	Define dew point	Х
LO	Recognise the dew point curve on a simplified diagram (T,P)	Х
LO	Define relative humidity	Х
LO	Explain the factors influencing the relative humidity at constant pressure	Х
LO	Explain the diurnal variation of the relative humidity	х
LO	Describe the relationship between relative humidity, the amount of water vapour and	х
-	the temperature	
LO	Describe the relationship between temperature and dew point	х
LO	Estimate the relative humidity of the air from the difference between dew point and	х
-	······································	
	temperature	
050 04 00 00	temperature CLOUDS AND FOG	
050 04 00 00 050 04 01 00	CLOUDS AND FOG	
050 04 00 00 050 04 01 00 050 04 01 01		
050 04 01 00	CLOUDS AND FOG Cloud formation and description	x
050 04 01 00 050 04 01 01	CLOUDS AND FOG Cloud formation and description Cloud formation	x x
050 04 01 00 050 04 01 01 LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation	
050 04 01 00 050 04 01 01 LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised	
050 04 01 00 050 04 01 01 LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains;	
050 04 01 00 050 04 01 01 LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection	Х
050 04 01 00 050 04 01 01 LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection Determine the cloud base and top in a simplified diagram (temperature, pressure,	Х
050 04 01 00 050 04 01 01 LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection Determine the cloud base and top in a simplified diagram (temperature, pressure, humidity)	x x
050 04 01 00 050 04 01 01 LO LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection Determine the cloud base and top in a simplified diagram (temperature, pressure, humidity) Explain the influence of relative humidity on the height of the cloud base	X X X
050 04 01 00 050 04 01 01 LO LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection Determine the cloud base and top in a simplified diagram (temperature, pressure, humidity) Explain the influence of relative humidity on the height of the cloud base Illustrate in a thermodynamic diagram the meaning of convective temperature	X X X
050 04 01 00 050 04 01 01 LO LO LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection Determine the cloud base and top in a simplified diagram (temperature, pressure, humidity) Explain the influence of relative humidity on the height of the cloud base Illustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts)	X X X X X
050 04 01 00 050 04 01 01 LO LO LO LO LO	CLOUDS AND FOGCloud formation and descriptionCloud formationExplain cloud formation by adiabatic cooling, conduction, advection and radiationDescribe the cloud formation based on the following lifting processes: unorganisedlifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains;free convectionDetermine the cloud base and top in a simplified diagram (temperature, pressure, humidity)Explain the influence of relative humidity on the height of the cloud baseIllustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts)List cloud types typical for stable and unstable air conditions	X X X X X X
050 04 01 00 050 04 01 01 LO LO LO LO LO LO LO LO	CLOUDS AND FOGCloud formation and descriptionCloud formationExplain cloud formation by adiabatic cooling, conduction, advection and radiationDescribe the cloud formation based on the following lifting processes: unorganisedlifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains;free convectionDetermine the cloud base and top in a simplified diagram (temperature, pressure, humidity)Explain the influence of relative humidity on the height of the cloud baseIllustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts)List cloud types typical for stable and unstable air conditionsSummarise the conditions for the dissipation of clouds	X X X X X X
050 04 01 00 050 04 01 01 LO LO LO LO LO LO LO LO 050 04 01 02	CLOUDS AND FOGCloud formation and descriptionCloud formationExplain cloud formation by adiabatic cooling, conduction, advection and radiationDescribe the cloud formation based on the following lifting processes: unorganisedlifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains;free convectionDetermine the cloud base and top in a simplified diagram (temperature, pressure, humidity)Explain the influence of relative humidity on the height of the cloud baseIllustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts)List cloud types typical for stable and unstable air conditionsSummarise the conditions for the dissipation of cloudsCloud types and cloud classification	X X X X X X
050 04 01 00 050 04 01 01 LO LO LO LO LO LO LO LO LO LO	CLOUDS AND FOGCloud formation and descriptionCloud formationExplain cloud formation by adiabatic cooling, conduction, advection and radiationDescribe the cloud formation based on the following lifting processes: unorganisedlifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convectionDetermine the cloud base and top in a simplified diagram (temperature, pressure, humidity)Explain the influence of relative humidity on the height of the cloud baseIllustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts)List cloud types typical for stable and unstable air conditionsSummarise the conditions for the dissipation of cloudsCloud types and cloud classificationDescribe cloud types and cloud classificationIdentify by shape and typical level the ten cloud types (genera)	X X X X X X X
050 04 01 00 050 04 01 01 LO LO LO LO LO LO LO LO LO LO	CLOUDS AND FOGCloud formation and descriptionCloud formationExplain cloud formation by adiabatic cooling, conduction, advection and radiationDescribe the cloud formation based on the following lifting processes: unorganisedlifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convectionDetermine the cloud base and top in a simplified diagram (temperature, pressure, humidity)Explain the influence of relative humidity on the height of the cloud baseIllustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts)List cloud types typical for stable and unstable air conditionsSummarise the conditions for the dissipation of cloudsCloud types and cloud classificationDescribe cloud types and cloud classificationIdentify by shape cirriform, cumuliform and stratiform clouds	X X X X X X X X X
050 04 01 00 050 04 01 01 LO LO LO LO LO LO LO LO LO LO	CLOUDS AND FOGCloud formation and descriptionCloud formationExplain cloud formation by adiabatic cooling, conduction, advection and radiationDescribe the cloud formation based on the following lifting processes: unorganisedlifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convectionDetermine the cloud base and top in a simplified diagram (temperature, pressure, humidity)Explain the influence of relative humidity on the height of the cloud baseIllustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts)List cloud types typical for stable and unstable air conditionsSummarise the conditions for the dissipation of cloudsCloud types and cloud classificationDescribe cloud types and cloud classificationIdentify by shape and typical level the ten cloud types (genera)	X X X X X X X X X X
050 04 01 00 050 04 01 01 LO LO LO LO LO LO LO LO LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection Determine the cloud base and top in a simplified diagram (temperature, pressure, humidity) Explain the influence of relative humidity on the height of the cloud base Illustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts) List cloud types typical for stable and unstable air conditions Summarise the conditions for the dissipation of clouds Cloud types and cloud classification Describe cloud types and cloud classification Identify by shape and typical level the ten cloud types (genera) Describe and identify by shape the following species and supplementary feature: castellanus, lenticularis, fractus, humilis, mediocris, congestus, calvus, capillatus and virga	X X X X X X X X X X X X
050 04 01 00 050 04 01 01 LO LO LO LO LO LO LO LO LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection Determine the cloud base and top in a simplified diagram (temperature, pressure, humidity) Explain the influence of relative humidity on the height of the cloud base Illustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts) List cloud types typical for stable and unstable air conditions Summarise the conditions for the dissipation of clouds Cloud types and cloud classification Describe cloud types and cloud classification Identify by shape and typical level the ten cloud types (genera) Describe and identify by shape the following species and supplementary feature: castellanus, lenticularis, fractus, humilis, mediocris, congestus, calvus, capillatus and	X X X X X X X X X X X X
050 04 01 00 050 04 01 01 LO LO LO LO LO LO LO LO LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection Determine the cloud base and top in a simplified diagram (temperature, pressure, humidity) Explain the influence of relative humidity on the height of the cloud base Illustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts) List cloud types typical for stable and unstable air conditions Summarise the conditions for the dissipation of clouds Cloud types and cloud classification Describe cloud types and cloud classification Identify by shape and typical level the ten cloud types (genera) Describe and identify by shape the following species and supplementary feature: castellanus, lenticularis, fractus, humilis, mediocris, congestus, calvus, capillatus and virga Distinguish between low, medium and high level clouds according to the WMO cloud (including heights)	X X X X X X X X X X X X
050 04 01 00 050 04 01 01 LO LO LO LO LO LO LO LO LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection Determine the cloud base and top in a simplified diagram (temperature, pressure, humidity) Explain the influence of relative humidity on the height of the cloud base Illustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts) List cloud types typical for stable and unstable air conditions Summarise the conditions for the dissipation of clouds Cloud types and cloud classification Describe cloud types and cloud classification Identify by shape and typical level the ten cloud types (genera) Describe and identify by shape the following species and supplementary feature: castellanus, lenticularis, fractus, humilis, mediocris, congestus, calvus, capillatus and virga Distinguish between low, medium and high level clouds according to the WMO cloud	X X X X X X X X X X X X
050 04 01 00 050 04 01 01 LO LO LO LO LO LO LO LO LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection Determine the cloud base and top in a simplified diagram (temperature, pressure, humidity) Explain the influence of relative humidity on the height of the cloud base Illustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts) List cloud types typical for stable and unstable air conditions Summarise the conditions for the dissipation of clouds Cloud types and cloud classification Describe cloud types and cloud classification Identify by shape and typical level the ten cloud types (genera) Describe and identify by shape the following species and supplementary feature: castellanus, lenticularis, fractus, humilis, mediocris, congestus, calvus, capillatus and virga Distinguish between low, medium and high level clouds according to the WMO cloud (including heights)	X X X X X X X X X X X d étage
050 04 01 00 050 04 01 01 LO LO LO LO LO LO LO LO LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection Determine the cloud base and top in a simplified diagram (temperature, pressure, humidity) Explain the influence of relative humidity on the height of the cloud base Illustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts) List cloud types typical for stable and unstable air conditions Summarise the conditions for the dissipation of clouds Cloud types and cloud classification Describe cloud types and cloud classification Identify by shape and typical level the ten cloud types (genera) Describe and identify by shape the following species and supplementary feature: castellanus, lenticularis, fractus, humilis, mediocris, congestus, calvus, capillatus and virga Distinguish between low, medium and high level clouds according to the WMO clou (including heights) — for mid-latitudes	X X X X X X X X X X X X X X X X X X X
050 04 01 00 050 04 01 01 LO LO LO LO LO LO LO LO LO LO	CLOUDS AND FOG Cloud formation and description Cloud formation Explain cloud formation by adiabatic cooling, conduction, advection and radiation Describe the cloud formation based on the following lifting processes: unorganised lifting in thin layers and turbulent mixing; forced lifting at fronts or over mountains; free convection Determine the cloud base and top in a simplified diagram (temperature, pressure, humidity) Explain the influence of relative humidity on the height of the cloud base Illustrate in a thermodynamic diagram the meaning of convective temperature (temperature at which formation of cumulus starts) List cloud types typical for stable and unstable air conditions Summarise the conditions for the dissipation of clouds Cloud types and cloud classification Describe cloud types and cloud classification Identify by shape cirriform, cumuliform and stratiform clouds Identify by shape and typical level the ten cloud types (genera) Describe and identify by shape the following species and supplementary feature: castellanus, lenticularis, fractus, humilis, mediocris, congestus, calvus, capillatus and virga Distinguish between low, medium and high level clouds according to the WMO clou (including heights) — for mid-latitudes	x x x x x x x x x x x x x x x x x x x

LO	Explain the influence of an inversion on the formation of stratus clouds	х
LO	Explain the influence of ground inversion on the formation of sudds clouds	x
LO	Determine the top of a cumulus cloud caused by an inversion on a simplified	X
	diagram	
050 04 01 04	Flying conditions in each cloud type	
LO	Assess the ten cloud types for icing and turbulence	Х
050 04 02 00	Fog, mist, haze	
050 04 02 01	General aspects	
LO	Define fog, mist and haze with reference to WMO standards of visibility range	Х
LO	Explain the formation of fog, mist and haze in general	Х
LO	Name the factors contributing in general to the formation of fog and mist	Х
LO	Name the factors contributing to the formation of haze	Х
LO	Describe freezing fog and ice fog	Х
050 04 02 02	Radiation fog	
LO	Explain the formation of radiation fog	Х
LO	Explain the conditions for the development of radiation fog	Х
LO	Describe the significant characteristics of radiation fog, and its vertical extent	Х
LO	Summarise the conditions for the dissipation of radiation fog	Х
050 04 02 03	Advection fog	
LO	Explain the formation of advection fog	Х
LO	Explain the conditions for the development of advection fog	Х
LO	Describe the different possibilities of advection fog formation (over land, sea and	Х
	coastal regions)	
LO	Describe significant characteristics of advection fog	х
LO	Summarise the conditions for the dissipation of advection fog	Х
050 04 02 04	Steam fog	
LO	Explain the formation of steam fog	Х
LO	Explain the conditions for the development of steam fog	х
LO	Describe significant characteristics of steam fog	х
LO	Summarise the conditions for the dissipation of steam fog	х
050 04 02 05	Frontal fog	
LO	Explain the formation of frontal fog	Х
LO	Explain the conditions for the development of frontal fog	х
LO	Describe significant characteristics of frontal fog	х
LO	Summarise the conditions for the dissipation of frontal fog	Х
050 04 02 06	Orographic fog (hill fog)	
LO	Summarise the features of orographic fog	Х
LO	Explain the conditions for the development of orographic fog	Х
LO	Describe significant characteristics of orographic fog	Х
LO	Summarise the conditions for the dissipation of orographic fog	х
050 05 00 00	PRECIPITATION	
050 05 01 00	Development of precipitation	
050 05 01 01	Process of development of precipitation	
LO	Distinguish between the two following processes by which precipitation is formed	Х
LO	— Summarise the outlines of the ice crystal process (Bergeron-Findeisen)	х
		i
LO	— Summarise the outlines of the coalescence process	Х
		X X
LO	— Summarise the outlines of the coalescence process	
LO LO	— Summarise the outlines of the coalescence process Describe the atmospheric conditions that favour either process Explain the development of snow, rain, drizzle and hail	Х
LO LO 050 05 02 00	— Summarise the outlines of the coalescence process Describe the atmospheric conditions that favour either process Explain the development of snow, rain, drizzle and hail Types of precipitation	Х
LO LO 050 05 02 00 050 05 02 01	— Summarise the outlines of the coalescence process Describe the atmospheric conditions that favour either process Explain the development of snow, rain, drizzle and hail	Х
LO LO 050 05 02 00 050 05 02 01	 Summarise the outlines of the coalescence process Describe the atmospheric conditions that favour either process Explain the development of snow, rain, drizzle and hail Types of precipitation Types of precipitation, relationship with cloud types List and describe the types of precipitation given in the TAF and METAR codes 	X X
LO LO 050 05 02 00 050 05 02 01	 Summarise the outlines of the coalescence process Describe the atmospheric conditions that favour either process Explain the development of snow, rain, drizzle and hail Types of precipitation Types of precipitation, relationship with cloud types List and describe the types of precipitation given in the TAF and METAR codes (drizzle, rain, snow, snow grains, ice pellets, hail, small hail, snow pellets, ice 	X X
LO LO 050 05 02 00 050 05 02 01 LO	 Summarise the outlines of the coalescence process Describe the atmospheric conditions that favour either process Explain the development of snow, rain, drizzle and hail Types of precipitation Types of precipitation, relationship with cloud types List and describe the types of precipitation given in the TAF and METAR codes (drizzle, rain, snow, snow grains, ice pellets, hail, small hail, snow pellets, ice crystals, freezing drizzle, freezing rain) 	X X
LO LO 050 05 02 00 050 05 02 01 LO LO	 Summarise the outlines of the coalescence process Describe the atmospheric conditions that favour either process Explain the development of snow, rain, drizzle and hail Types of precipitation Types of precipitation, relationship with cloud types List and describe the types of precipitation given in the TAF and METAR codes (drizzle, rain, snow, snow grains, ice pellets, hail, small hail, snow pellets, ice crystals, freezing drizzle, freezing rain) State ICAO/WMO approximate diameters for cloud, drizzle and rain drops 	X X X
LO LO 050 05 02 00 050 05 02 01 LO LO LO	 Summarise the outlines of the coalescence process Describe the atmospheric conditions that favour either process Explain the development of snow, rain, drizzle and hail Types of precipitation Types of precipitation, relationship with cloud types List and describe the types of precipitation given in the TAF and METAR codes (drizzle, rain, snow, snow grains, ice pellets, hail, small hail, snow pellets, ice crystals, freezing drizzle, freezing rain) State ICAO/WMO approximate diameters for cloud, drizzle and rain drops State approximate weights and diameters for hailstones 	X X X X X X
LO LO LO 050 05 02 00 050 05 02 01 LO LO LO LO LO	 Summarise the outlines of the coalescence process Describe the atmospheric conditions that favour either process Explain the development of snow, rain, drizzle and hail Types of precipitation Types of precipitation, relationship with cloud types List and describe the types of precipitation given in the TAF and METAR codes (drizzle, rain, snow, snow grains, ice pellets, hail, small hail, snow pellets, ice crystals, freezing drizzle, freezing rain) State ICAO/WMO approximate diameters for cloud, drizzle and rain drops 	X X X X

LO	Assign typical precipitation types and intensities to different clouds	х
050 06 00 00	AIR MASSES AND FRONTS	
050 06 01 00	Air masses	
050 06 01 01	Description, classification and source regions of air masses	
LO	Define the term air mass	Х
LO	Describe the properties of the source regions	Х
LO	Summarise the classification of air masses by source regions	Х
LO	State the classifications of air masses by temperature and humidity at source	Х
LO	State the characteristic weather in each of the air masses	х
LO	Name the three main air masses that affect Europe	Х
LO	Classify air masses on a surface weather chart	Х
	nd abbreviations of air masses used in examinations:	
— first letter: h		
	continental (c),	
	naritime (m)	
	r: type of air mass	
	Arctic (A),	
	Polar (P),	
	Fropical (T), Equatorial (E)	
— third letter:		
	cold (c),	
	varm (w)	
050 06 01 02	Modifications of air masses	
LO	List the environmental factors that affect the final properties of an air mass	х
LO	Explain how maritime and continental tracks modify air masses	х
LO	Explain the effect of passage over cold or warm surfaces	х
LO	Explain how air mass weather is affected by the season, the air mass track and by	х
	orographic and thermal effects over land	
LO	Assess the tendencies of the stability for an air mass and describe the typical	х
	resulting air mass weather including the hazards for aviation	
050 06 02 00	Fronts	
050 06 02 01	General aspects	
LO	Describe the boundaries between air masses (fronts)	X
LO	Define front and frontal surface (frontal zone)	Х
050 06 02 02	Warm front, associated clouds and weather	
LO	Define a warm front	Х
LO	Describe the cloud, weather, ground visibility and aviation hazards at a warm front	х
LO	depending on the stability of the warm air	
LO	Explain the seasonal differences in the weather at warm fronts	X
LO LO	Describe the structure, slope and dimensions of a warm front Sketch a cross-section of a warm front, showing weather, cloud and aviation hazards	X
050 06 02 03	Cold front, associated clouds and weather	Х
LO	Define a cold front	v
LO	Describe the cloud, weather, ground visibility and aviation hazards at a cold front	X X
LO	depending on the stability of the warm air	л
LO	Explain the seasonal differences in the weather at cold fronts	x
		X
	Describe the structure, slope and dimensions of a cold from	
LO	Describe the structure, slope and dimensions of a cold front Sketch a cross-section of a cold front, showing weather, cloud and aviation hazards	х
LO LO	Sketch a cross-section of a cold front, showing weather, cloud and aviation hazards	Х
LO LO 050 06 02 04	Sketch a cross-section of a cold front, showing weather, cloud and aviation hazards Warm sector, associated clouds and weather	X X
LO LO 050 06 02 04 LO	Sketch a cross-section of a cold front, showing weather, cloud and aviation hazards Warm sector, associated clouds and weather Define fronts and air masses associated with the warm sector	
LO LO 050 06 02 04 LO LO	Sketch a cross-section of a cold front, showing weather, cloud and aviation hazards Warm sector, associated clouds and weather Define fronts and air masses associated with the warm sector Describe the cloud, weather, ground visibility and aviation hazards in a warm sector	X
LO LO 050 06 02 04 LO	Sketch a cross-section of a cold front, showing weather, cloud and aviation hazardsWarm sector, associated clouds and weatherDefine fronts and air masses associated with the warm sectorDescribe the cloud, weather, ground visibility and aviation hazards in a warm sectorExplain the seasonal differences in the weather in the warm sector	X X
LO LO 050 06 02 04 LO LO	Sketch a cross-section of a cold front, showing weather, cloud and aviation hazards Warm sector, associated clouds and weather Define fronts and air masses associated with the warm sector Describe the cloud, weather, ground visibility and aviation hazards in a warm sector	X X X
LO LO 050 06 02 04 LO LO	Sketch a cross-section of a cold front, showing weather, cloud and aviation hazardsWarm sector, associated clouds and weatherDefine fronts and air masses associated with the warm sectorDescribe the cloud, weather, ground visibility and aviation hazards in a warm sectorExplain the seasonal differences in the weather in the warm sectorSketch a cross-section of a warm sector, showing weather, cloud and aviation	X X X
LO LO 050 06 02 04 LO LO LO	Sketch a cross-section of a cold front, showing weather, cloud and aviation hazardsWarm sector, associated clouds and weatherDefine fronts and air masses associated with the warm sectorDescribe the cloud, weather, ground visibility and aviation hazards in a warm sectorExplain the seasonal differences in the weather in the warm sectorSketch a cross-section of a warm sector, showing weather, cloud and aviationhazards	X X X

LO	Explain the seasonal differences in the weather behind the cold front	Х
050 06 02 06	Occlusions, associated clouds and weather	
LO	Define the term occlusion	Х
LO	Define a cold occlusion	х
LO	Define a warm occlusion	Х
LO	Describe the cloud, weather, ground visibility and aviation hazards in a cold	х
	occlusion	
LO	Describe the cloud, weather, ground visibility and aviation hazards in a warm	Х
	occlusion	
LO	Explain the seasonal differences in the weather at occlusions	Х
LO	Sketch a cross-section of cold and warm occlusions, showing weather, cloud and	х
10	aviation hazards	
LO	In a sketch plan illustrate the development of an occlusion and the movement of the occlusion point	х
050 06 02 07	Stationary front, associated clouds and weather	
LO	Define a stationary or quasi-stationary front	x
LO	Describe the cloud, weather, ground visibility and aviation hazards in a stationary or	X
LO	quasi-stationary front	л
050 06 02 08	Movement of fronts and pressure systems, life cycle	
LO	Describe the movements of fronts and pressure systems and the life cycle of a mid-	х
LO	latitude depression	A
LO	State the rules for predicting the direction and the speed of movement of fronts	х
LO	Explain the difference between the speed of movement of cold and warm fronts	х
LO	State the rules for predicting the direction and the speed of movement of frontal	х
	depressions	
LO	Describe, with a sketch if required, the genesis, development and life cycle of a	Х
	frontal depression with associated cloud and rain belts	
050 06 02 09	Changes of meteorological elements at a frontal wave	
LO	Sketch a plan and a cross-section of a frontal wave (warm front, warm sector and	х
	cold front) and illustrate the changes of pressure, temperature, surface wind and	
	wind in the vertical axis	
050 07 00 00	wind in the vertical axis PRESSURE SYSTEMS	
050 07 02 00	wind in the vertical axis PRESSURE SYSTEMS Anticyclone	
	wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and	wedges,
050 07 02 00 050 07 02 01	wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and y subsidence	-
050 07 02 00 050 07 02 01 LO	wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones	x
050 07 02 00 050 07 02 01	wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at	-
050 07 02 00 050 07 02 01 LO LO	wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level	X X
050 07 02 00 050 07 02 01 LO	wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the	x
050 07 02 00 050 07 02 01 LO LO	wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather	x x x
050 07 02 00 050 07 02 01 LO LO LO	wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones	X X X X
050 07 02 00 050 07 02 01 LO LO	 wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the formation of ridges and wedges (<i>Refer to 050 08 03 02</i>) 	x x x
050 07 02 00 050 07 02 01 LO LO LO LO	wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones	X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO	 wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the formation of ridges and wedges (<i>Refer to 050 08 03 02</i>) Describe the properties of and the weather associated with warm and cold 	X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO LO LO	 wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the properties of and the weather associated with warm and cold anticyclones 	X X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO LO LO	 wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the formation of ridges and wedges (<i>Refer to 050 08 03 02</i>) Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with ridges and wedges 	X X X X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO LO LO LO	 wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the state associated with ridges and wedges Describe the blocking anticyclone and its effects 	X X X X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO LO LO LO CO 050 07 03 00	 wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with ridges and wedges Describe the properties of and the weather associated with ridges and wedges Describe the blocking anticyclone and its effects Non frontal depressions Thermal-, orographic-, polar- and secondary depressions, troughs Describe the effect of high level divergence in producing areas of low pressure at 	X X X X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO LO LO LO LO LO LO LO LO LO	wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with ridges and wedges Describe the properties of and the weather associated with ridges and wedges Describe the properties of and the weather associated with ridges and wedges Describe the properties of and the weather associated with ridges and wedges Describe the blocking anticyclone and its effects Non frontal depressions Thermal-, orographic-, polar- and secondary depressions, troughs Describe the effect of high level divergence in producing areas of low pressure at ground level	X X X X X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO LO LO LO LO 050 07 03 00 050 07 03 01	 wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with ridges and wedges Describe the blocking anticyclone and its effects Non frontal depressions Thermal-, orographic-, polar- and secondary depressions, troughs Describe the effect of high level divergence in producing areas of low pressure at ground level Describe the formation and properties of thermal-, orographic- (lee lows), polar- and 	X X X X X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO LO LO LO LO LO LO LO LO LO	wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the formation of ridges and wedges (<i>Refer to 050 08 03 02</i>) Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with ridges and wedges Describe the properties of and the weather associated with ridges and wedges Describe the blocking anticyclone and its effects Non frontal depressions Thermal-, orographic-, polar- and secondary depressions, troughs Describe the effect of high level divergence in producing areas of low pressure at ground level Describe the formation and properties of thermal-, orographic- (lee lows), polar- and secondary depressions	X X X X X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO LO LO LO UO 050 07 03 00 050 07 03 01 LO LO	 wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the formation of ridges and wedges (<i>Refer to 050 08 03 02</i>) Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with ridges and wedges Describe the blocking anticyclone and its effects Non frontal depressions Thermal-, orographic-, polar- and secondary depressions, troughs Describe the formation and properties of thermal-, orographic- (lee lows), polar- and secondary depressions Describe the formation and properties of thermal-, orographic- (lee lows), polar- and secondary depressions Describe the formation, the properties and the associated weather of troughs 	X X X X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO LO LO LO LO U U U U U U U U	wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the formation of ridges and wedges (<i>Refer to 050 08 03 02</i>) Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with ridges and wedges Describe the properties of and the weather associated with ridges and wedges Describe the blocking anticyclone and its effects Non frontal depressions Thermal-, orographic-, polar- and secondary depressions, troughs Describe the effect of high level divergence in producing areas of low pressure at ground level Describe the formation and properties of thermal-, orographic- (lee lows), polar- and secondary depressions Describe the formation, the properties and the associated weather of troughs CLIMATOLOGY	X X X X X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO LO LO LO LO LO LO	 wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the formation of ridges and wedges (<i>Refer to 050 08 03 02</i>) Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with ridges and wedges Describe the blocking anticyclone and its effects Non frontal depressions Thermal-, orographic-, polar- and secondary depressions, troughs Describe the formation and properties of thermal-, orographic- (lee lows), polar- and secondary depressions Describe the formation, the properties and the associated weather of troughs CLIMATOLOGY Typical weather situations in the mid-latitudes 	X X X X X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO LO LO LO LO LO LO	 wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and ysubsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the formation of ridges and wedges (<i>Refer to 050 08 03 02</i>) Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with ridges and wedges Describe the properties of and the weather associated with ridges and wedges Describe the properties of and secondary depressions, troughs Describe the effect of high level divergence in producing areas of low pressure at ground level Describe the formation and properties of thermal-, orographic- (lee lows), polar- and secondary depressions Describe the formation, the properties and the associated weather of troughs CLIMATOLOGY Typical weather situations in the mid-latitudes 	X X X X X X X X X X X
050 07 02 00 050 07 02 01 LO LO LO LO LO LO LO LO LO LO	 wind in the vertical axis PRESSURE SYSTEMS Anticyclone Anticyclones, types, general properties, cold and warm anticyclones, ridges and subsidence List the different types of anticyclones Describe the effect of high level convergence in producing areas of high pressure at ground level Describe air mass subsidence, its effect on the environmental lapse rate, and the associated weather Describe the formation of warm and cold anticyclones Describe the formation of ridges and wedges (<i>Refer to 050 08 03 02</i>) Describe the properties of and the weather associated with warm and cold anticyclones Describe the properties of and the weather associated with ridges and wedges Describe the blocking anticyclone and its effects Non frontal depressions Thermal-, orographic-, polar- and secondary depressions, troughs Describe the formation and properties of thermal-, orographic- (lee lows), polar- and secondary depressions Describe the formation, the properties and the associated weather of troughs CLIMATOLOGY Typical weather situations in the mid-latitudes 	X X X X X X X X X X

	Describe the typical weather in the region of the travelling polar front waves	Х
	including the seasonal variations	
050 08 03 02	High pressure area	
LO	Describe the high pressure zones with the associated weather	Х
LO	Identify on a weather chart high pressure regions	Х
LO	Describe the weather associated with wedges in the polar air (<i>Refer to 050 07 02 01</i>)	Х
050 08 03 03	Flat pressure pattern	
LO	Identify on a surface weather chart the typical flat pressure pattern	Х
LO	Describe the weather associated with a flat pressure pattern	х
050 09 00 00	FLIGHT HAZARDS	
050 09 01 00	Icing	
050 09 01 01	Conditions for ice accretion	
LO	Summarise the general conditions under which ice accretion occurs on aircraft (temperatures of outside air; temperature of the airframe; presence of supercooled water in clouds, fog, rain and drizzle; possibility of sublimation)	X
LO	Indicate the general weather conditions under which ice accretion in venturi carburettor occurs	X
LO	Explain the general weather conditions under which ice accretion on airframe occurs	х
LO	Explain the formation of supercooled water in clouds, rain and drizzle (<i>Refer to 050 03 02 01</i>)	Х
LO	Explain qualitatively the relationship between the air temperature and the amount of supercooled water	X
LO	Explain qualitatively the relationship between the type of cloud and the size and number of the droplets, in cumuliform and stratiform clouds	х
LO	Indicate in which circumstances ice can form on an aircraft on the ground: air temperature, humidity, precipitation	Х
LO	Explain in which circumstances ice can form on an aircraft in flight: inside clouds, in precipitation, outside clouds and precipitation	Х
LO	Describe the different factors influencing the intensity of icing: air temperature, amount of supercooled water in a cloud or in precipitation, amount of ice crystals in	х
	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc)	
LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing	X
LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds	X X
	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion	
LO 050 09 01 02	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice	
LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion	Х
LO 050 09 01 02 LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice	X X
LO 050 09 01 02 LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat	X X X
LO 050 09 01 02 LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process	X X X X
LO 050 09 01 02 LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity	X X X X X
LO 050 09 01 02 LO LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice	X X X X X X X
LO 050 09 01 02 LO LO LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice Describe the conditions for the formation of rime ice	X X X X X X X X
LO 050 09 01 02 LO LO LO LO LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice Describe the conditions for the formation of rime ice Describe the aspect of rime ice: appearance, weight, solidity	X X X X X X X X X X
LO 050 09 01 02 LO LO LO LO LO LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice Describe the conditions for the formation of rime ice Describe the aspect of rime ice: appearance, weight, solidity Define mixed ice	X X X X X X X X X X X X
LO 050 09 01 02 LO LO LO LO LO LO LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice Describe the conditions for the formation of rime ice Describe the aspect of rime ice: appearance, weight, solidity Define mixed ice Describe the conditions for the formation of mixed ice	X X X X X X X X X X X X X
LO 050 09 01 02 LO LO LO LO LO LO LO LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice Describe the conditions for the formation of rime ice Describe the aspect of rime ice: appearance, weight, solidity Define mixed ice Describe the conditions for the formation of mixed ice Describe the aspect of mixed ice: appearance, weight, solidity	X X X X X X X X X X X X X X X
LO 050 09 01 02 LO LO LO LO LO LO LO LO LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice Describe the conditions for the formation of rime ice Describe the aspect of rime ice: appearance, weight, solidity Define mixed ice Describe the conditions for the formation of mixed ice Describe the conditions for the formation of mixed ice Describe the aspect of mixed ice: appearance, weight, solidity Define mixed ice	X X X X X X X X X X X X X X X X X X
LO 050 09 01 02 LO LO LO LO LO LO LO LO LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice Describe the conditions for the formation of rime ice Describe the aspect of rime ice: appearance, weight, solidity Define mixed ice Describe the conditions for the formation of mixed ice Describe the aspect of mixed ice: appearance, weight, solidity Define mixed ice Describe the conditions for the formation of mixed ice Describe the aspect of mixed ice: appearance, weight, solidity Define frost Define hoar frost	X X X X X X X X X X X X X X X X X X X
LO 050 09 01 02 LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice Describe the conditions for the formation of rime ice Describe the aspect of rime ice: appearance, weight, solidity Define mixed ice Describe the conditions for the formation of mixed ice Describe the conditions for the formation of mixed ice Describe the conditions for the formation of mixed ice Describe the aspect of mixed ice: appearance, weight, solidity Define mixed ice Describe the aspect of mixed ice: appearance, weight, solidity Describe the possible process of ice formation in snow conditions Define hoar frost Describe the conditions for the formation of hoar frost Describe the aspect of hoar frost: appearance, solidity Hazards of ice accretion, avoidance State the ICAO qualifying terms for the intensity of icing (<i>See ICAO ATM Doc</i>	X X X X X X X X X X X X X X X X X X X
LO 050 09 01 02 LO LO LO LO LO LO LO LO LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice Describe the conditions for the formation of rime ice Describe the aspect of rime ice: appearance, weight, solidity Define mixed ice Describe the conditions for the formation of mixed ice Describe the conditions for the formation of mixed ice Describe the aspect of mixed ice: appearance, weight, solidity Define mixed ice Describe the aspect of mixed ice: appearance, weight, solidity Describe the possible process of ice formation in snow conditions Define hoar frost Describe the conditions for the formation of hoar frost Describe the aspect of hoar frost: appearance, solidity Hazards of ice accretion, avoidance State the ICAO qualifying terms for the intensity of icing (See ICAO ATM Doc 4444)	X X X X X X X X X X X X X X X X X X X
LO 050 09 01 02 LO LO LO LO LO LO LO LO LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice Describe the conditions for the formation of rime ice Describe the aspect of rime ice: appearance, weight, solidity Define mixed ice Describe the conditions for the formation of mixed ice Describe the aspect of mixed ice: appearance, weight, solidity Define mixed ice Describe the aspect of mixed ice: appearance, weight, solidity Describe the conditions for the formation of hoar frost Describe the conditions for the formation of hoar frost Describe the aspect of hoar frost: appearance, solidity Hazards of ice accretion, avoidance State the ICAO qualifying terms for the intensity of icing (<i>See ICAO ATM Doc</i> 4444) Describe, in general, the hazards of icing	X X X X X X X X X X X X X X X X X X X
LO 050 09 01 02 LO LO LO LO LO LO LO LO LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice Describe the conditions for the formation of rime ice Describe the aspect of rime ice: appearance, weight, solidity Define mixed ice Describe the aspect of mixed ice: appearance, weight, solidity Describe the aspect of mixed ice: appearance, weight, solidity Describe the possible process of ice formation in snow conditions Define hoar frost Describe the conditions for the formation of hoar frost Describe the aspect of hoar frost: appearance, solidity Hazards of ice accretion, avoidance State the ICAO qualifying terms for the intensity of icing (<i>See ICAO ATM Doc</i> 4444) Describe, in general, the hazards of icing Assess the dangers of the different types of ice accretion	X X X X X X X X X X X X X X X X X X
LO 050 09 01 02 LO LO LO LO LO LO LO LO LO LO LO LO LO	the air, speed of the aircraft, shape (thickness) of the airframe parts (wings, antennas, etc) Explain the effects of topography on icing Explain the higher concentration of water drops in stratiform orographic clouds Types of ice accretion Define clear ice Describe the conditions for the formation of clear ice Explain the formation of the structure of clear ice with the release of latent heat during the freezing process Describe the aspect of clear ice: appearance, weight, solidity Define rime ice Describe the conditions for the formation of rime ice Describe the aspect of rime ice: appearance, weight, solidity Define mixed ice Describe the conditions for the formation of mixed ice Describe the aspect of mixed ice: appearance, weight, solidity Define mixed ice Describe the aspect of mixed ice: appearance, weight, solidity Describe the conditions for the formation of hoar frost Describe the conditions for the formation of hoar frost Describe the aspect of hoar frost: appearance, solidity Hazards of ice accretion, avoidance State the ICAO qualifying terms for the intensity of icing (<i>See ICAO ATM Doc</i> 4444) Describe, in general, the hazards of icing	X X X X X X X X X X X X X X X X X X X

	— in the flight planning: weather briefing, choice of track and altitude	
	— during flight: recognition of the dangereous zones, choice of appropriate track	
	and altitude	
050 09 02 00	Turbulence	
050 09 02 00	Effects on flight, avoidance	
LO	State the ICAO qualifying terms for the intensity of turbulence (See ICAO ATM Doc	Х
	4444)	
LO	Describe the effects of turbulence on an aircraft in flight	Х
LO	Indicate the possibilities of avoidance	Х
	- in the flight planning: weather briefing, choice of track and altitude	
	— during flight: choice of appropriate track and altitude	
050 09 03 00	Wind shear	
050 09 03 01	Definition of wind shear	
LO	Define wind shear (vertical and horizontal)	Х
LO	Define low level wind shear	Х
050 09 03 02	Weather conditions for wind shear	
LO	Describe conditions where and how wind shear can form (e.g. thunderstorms, squall lines, fronts, inversions, lond and see broase, friction lower, relief).	Х
050 09 03 03	lines, fronts, inversions, land and sea breeze, friction layer, relief) Effects on flight, avoidance	
LO	Describe the effects on flight caused by wind shear	v
LO	Indicate the possibilities of avoidance	X X
LO	— in the flight planning	л
	— during flight	
050 09 04 00	Thunderstorms	
050 09 04 01	Conditions for and process of development, forecast, location, type specification	
LO	Name the cloud types which indicate the development of thunderstorms	Х
LO	Describe the different types of thunderstorms, their location, the conditions for and	Х
	the process of development and list their properties (air mass thunderstorms, frontal	
	thunderstorms, squall lines, supercell storms, orographic thunderstorms)	
050 09 04 02	Structure of thunderstorms, life history	
LO	Describe and sketch the stages of the life history of a thunderstorm: initial, mature	х
LO	and dissipating stage Assess the average duration of thunderstorms and their different stages	X
LO	Describe supercell storm: initial, supercell, tornado and dissipating stage	х
LO	Summarise the flight hazards of a fully developed thunderstorm	X
LO	Indicate on a sketch the most dangerous zones in and around a thunderstorm	X
050 09 04 03	Electrical discharges	Λ
LO	Describe the basic outline of the electric field in the atmosphere	Х
LO	Describe the electrical potential differences in and around a thunderstorm	Х
LO	Describe and asses 'St. Elmo's fire'	Х
LO	Describe the development of lightning discharges	Х
LO	Describe the effect of lightning strike on aircraft and flight execution	Х
050 09 04 04	Development and effects of downbursts	
LO	Define the term downburst	Х
LO	Distinguish between macroburst and microburst	Х
	State the weather situations leading to the formation of downbursts	х
	· · · · · · · · · · · · · · · · · · ·	
LO	Describe the process of development of a downburst	Х
LO LO	Describe the process of development of a downburst Give the typical duration of a downburst	X X
LO LO LO	Describe the process of development of a downburst Give the typical duration of a downburst Describe the effects of downbursts	
LO LO LO 050 09 04 05	Describe the process of development of a downburst Give the typical duration of a downburst Describe the effects of downbursts Thunderstorm avoidance	X
LO LO LO 050 09 04 05 LO	Describe the process of development of a downburst Give the typical duration of a downburst Describe the effects of downbursts Thunderstorm avoidance Explain how the pilot can anticipate each type of thunderstorms: pre-flight weather	X
LO LO LO 050 09 04 05	Describe the process of development of a downburst Give the typical duration of a downburst Describe the effects of downbursts Thunderstorm avoidance Explain how the pilot can anticipate each type of thunderstorms: pre-flight weather briefing, observation in flight, use of specific meteorological information, use of	X X
LO LO LO 050 09 04 05	Describe the process of development of a downburst Give the typical duration of a downburst Describe the effects of downbursts Thunderstorm avoidance Explain how the pilot can anticipate each type of thunderstorms: pre-flight weather briefing, observation in flight, use of specific meteorological information, use of information given by ground weather radar and by airborne weather radar (<i>Refer to</i>	X X
LO LO LO 050 09 04 05 LO	Describe the process of development of a downburst Give the typical duration of a downburst Describe the effects of downbursts Thunderstorm avoidance Explain how the pilot can anticipate each type of thunderstorms: pre-flight weather briefing, observation in flight, use of specific meteorological information, use of information given by ground weather radar and by airborne weather radar (<i>Refer to</i> 050 10 01 04), use of the stormscope (lightning detector)	x x x
LO LO LO 050 09 04 05	Describe the process of development of a downburst Give the typical duration of a downburst Describe the effects of downbursts Thunderstorm avoidance Explain how the pilot can anticipate each type of thunderstorms: pre-flight weather briefing, observation in flight, use of specific meteorological information, use of information given by ground weather radar and by airborne weather radar (<i>Refer to</i> 050 10 01 04), use of the stormscope (lightning detector) Describe practical examples of flight techniques used to avoid the hazards of	X X
LO LO DO 050 09 04 05 LO	Describe the process of development of a downburst Give the typical duration of a downburst Describe the effects of downbursts Thunderstorm avoidance Explain how the pilot can anticipate each type of thunderstorms: pre-flight weather briefing, observation in flight, use of specific meteorological information, use of information given by ground weather radar and by airborne weather radar (<i>Refer to</i> 050 10 01 04), use of the stormscope (lightning detector)	x x x

LO	Define the tornado	Х
050 09 06 00	Inversions	
050 09 06 01	Influence on aircraft performance	
LO	Explain the influence of inversions on the aircraft performance	Х
LO	Compare the flight hazards during take-off and approach associated to a strong	Х
	inversion alone and to a strong inversion combined with marked wind shear	
050 09 08 00	Hazards in mountainous areas	
050 09 08 01	Influence of terrain on clouds and precipitation, frontal passage	
LO	Describe the influence of a mountainous terrain on cloud and precipitation	Х
LO	Describe the effects of the Foehn	Х
LO	Describe the influence of a mountainous area on a frontal passage	Х
050 09 08 02	Vertical movements, mountain waves, wind shear, turbulence, ice accretion	
LO	Describe the vertical movements, wind shear and turbulence typical of mountain	Х
	areas	
LO	Indicate in a sketch of a chain of mountains the turbulent zones (mountain waves,	Х
20	rotors)	
LO	Explain the influence of relief on ice accretion	Х
050 09 08 03	Development and effect of valley inversions	
LO	Describe the formation of valley inversion due to the katabatic winds	Х
LO	Describe the valley inversion formed by warm winds aloft	X
LO	Describe the effects of a valley inversion for an aircraft in flight	X
050 09 09 00	Visibility reducing phenomena	
050 09 09 01	Reduction of visibility caused by precipitation and obscurations	
LO	Describe the reduction of visibility caused by precipitation: drizzle, rain, snow	Х
LO	Describe the reduction of visibility caused by preophation: difference, run, show	x
	— fog, mist, haze, smoke, volcanic ash	Λ
	— sand (SA), dust (DU)	
LO	Describe the differences between the ground visibility, flight visibility, slant	х
	visibility and vertical visibility when an aircraft is above or within a layer of haze or	~
	fog	
050 09 09 02	Reduction of visibility caused by other phenomena	
LO	Describe the reduction of visibility caused by	
	— low drifting and blowing snow	Х
	— low drifting and blowing dust and sand	
	— duststorm (DS) and sandstorm (SS)	
	— icing (windshield)	
	 icing (windshield) the position of the sun relative to the visual direction 	
050 10 00 00	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds 	
	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION 	
050 10 01 00	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds 	
050 10 01 00 050 10 01 01	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations 	x
050 10 01 00 050 10 01 01 LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility 	X X
050 10 01 00 050 10 01 01 LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility 	
050 10 01 00 050 10 01 01 LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define prevailing visibility 	Х
050 10 01 00 050 10 01 01 LO LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define prevailing visibility Define ground visibility 	X X
050 10 01 00 050 10 01 01 LO LO LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define prevailing visibility Define ground visibility List the units used for visibility (m, km) 	X X X
050 10 01 00 050 10 01 01 LO LO LO LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define prevailing visibility Define ground visibility List the units used for visibility (m, km) Define runway visual range	X X X X
050 10 01 00 050 10 01 01 LO LO LO LO LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define ground visibility List the units used for visibility (m, km) Define runway visual range Describe the meteorological measurement of runway visual range	X X X X X X
050 10 01 00 050 10 01 01 LO LO LO LO LO LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define prevailing visibility Define ground visibility List the units used for visibility (m, km) Define runway visual range Describe the meteorological measurement of runway visual range Indicate where the transmissometers/forward-scatter meters are placed on the airport	X X X X X X X X
050 10 01 00 050 10 01 01 LO LO LO LO LO LO LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define prevailing visibility Define ground visibility List the units used for visibility (m, km) Define runway visual range Describe the meteorological measurement of runway visual range Indicate where the transmissometers/forward-scatter meters are placed on the airport List the units used for runway visual range (m)	X X X X X X X X X X
050 10 01 00 050 10 01 01 LO LO LO LO LO LO LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define prevailing visibility Define ground visibility List the units used for visibility (m, km) Define runway visual range Describe the meteorological measurement of runway visual range Indicate where the transmissometers/forward-scatter meters are placed on the airport List the different possibilities to transmit information about runway visual range to	X X X X X X X X
050 10 01 00 050 10 01 01 LO LO LO LO LO LO LO LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define prevailing visibility Define ground visibility List the units used for visibility (m, km) Define runway visual range Describe the meteorological measurement of runway visual range Indicate where the transmissometers/forward-scatter meters are placed on the airport List the different possibilities to transmit information about runway visual range to pilots	X X X X X X X X X X X X
050 10 01 00 050 10 01 01 LO LO LO LO LO LO LO LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define prevailing visibility Define ground visibility List the units used for visibility (m, km) Define runway visual range Describe the meteorological measurement of runway visual range Indicate where the transmissometers/forward-scatter meters are placed on the airport List the different possibilities to transmit information about runway visual range to pilots Compare visibility and runway visual range	X X X X X X X X X X X X
050 10 01 00 050 10 01 01 LO LO LO LO LO LO LO LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define prevailing visibility Define ground visibility Define runway visual range Describe the meteorological measurement of runway visual range Indicate where the transmissometers/forward-scatter meters are placed on the airport List the units used for runway visual range (m) List the different possibilities to transmit information about runway visual range to pilots Compare visibility and runway visual range List the clouds considered in meteorological reports, and how they are indicated in 	X X X X X X X X X X X X
050 10 01 00 050 10 01 01 LO LO LO LO LO LO LO LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define prevailing visibility Define ground visibility Define runway visual range Describe the meteorological measurement of runway visual range Indicate where the transmissometers/forward-scatter meters are placed on the airport List the units used for runway visual range (m) List the different possibilities to transmit information about runway visual range to pilots Compare visibility and runway visual range List the clouds considered in meteorological reports, and how they are indicated in METARs (TCU, CB) 	X X X X X X X X X X X X X
050 10 00 00 050 10 01 00 050 10 01 01 LO LO LO LO LO LO LO LO LO LO	 icing (windshield) the position of the sun relative to the visual direction the reflection of sun's rays from the top of layers of haze, fog and clouds METEOROLOGICAL INFORMATION Observation Surface observations Define visibility Describe the mereorological measurement of visibility Define prevailing visibility Define ground visibility Define runway visual range Describe the meteorological measurement of runway visual range Indicate where the transmissometers/forward-scatter meters are placed on the airport List the units used for runway visual range (m) List the different possibilities to transmit information about runway visual range to pilots Compare visibility and runway visual range List the clouds considered in meteorological reports, and how they are indicated in 	X X X X X X X X X X X X

LO	Name the unit and the reference level used for information about cloud base (ft)	х
LO	Define vertical visibility	X
LO	Explain briefly how and when the vertical visibility is measured	X
LO	Name the unit used for vertical visibility (ft)	X
050 10 01 04	Weather radar observations	1
LO	Interpret ground weather radar images	х
LO	Describe the basic principle and the type of information given by airborne weather	X
20	radar	~
LO	Describe the limits and the errors of airborne weather radar information	X
LO	Interpret typical airborne weather radar images	Х
050 10 02 00	Weather charts	
050 10 02 01	Significant weather charts	
LO	Decode and interpret significant weather charts (low, medium and high level)	Х
LO	Describe from a significant weather chart the flight conditions at designated	X
20	locations and/or along a defined flight route at a given flight level	
050 10 02 02	Surface charts	
LO	Recognize the following weather systems on a surface weather chart (analysed and	х
20	forecast): ridges, cols and troughs; fronts; frontal side, warm sector and rear side of	
	mid-latitude frontal lows; high and low pressure areas	
050 10 03 00	Information for flight planning	
050 10 03 01	Aviation weather messages	
LO	Describe, decode and interpret the following aviation weather messages (given in	Х
	written and/or graphical format): METAR, SPECI, TREND, TAF, SIGMET,	
	AIRMET, GAMET, special air-report, volcanic ash advisory information	
LO	Describe the general meaning of MET REPORT and SPECIAL	Х
LO	List, in general, the cases when a SIGMET and an AIRMET are issued	Х
LO	Describe, decode (by using a code table) and interpret the following messages:	Х
	Runway State Message (as written in a METAR), GAFOR	
Note: For Run	way State Message and GAFOR refer to Air Navigation Plan European Region ICAO De	oc 7754
050 10 03 02	Meteorological broadcasts for aviation	
LO	Describe the meteorological content of broadcasts for aviation:	
	- VOLMET, ATIS	Х
	— HF-VOLMET	
050 10 03 03	Use of meteorological documents	
LO	Describe meteorological briefing and advice	Х
LO	List the information that a flight crew can receive from meteorological services for	х
	pre-flight planning and apply the content of these information on a designated flight	
	route	
LO	List the meteorological information that a flight crew can receive from services	Х
	during flight and apply the content of these information for the continuation of the	
	flight	
050 10 03 04	Meteorological warnings	
LO	Describe and interpret aerodrome warnings and wind shear warnings and alerts	Х

AMC7 FCL.615 (b) IR – Theoretical knowledge and flight instruction DETAILED THEORETICAL KNOWLEDGE SYLLABUS AND LEARNING OBJECTIVES

Subject Radio Navigation (Competency-based modular training course (CB-IR(A)) for instrument rating according to Appendix 6 Aa and en route instrument rating (EIR) course according to FCL.825)

Syllabus reference	Syllabus details and associated Learning Objectives	CB- IR (A) and EIR
062 00 00 00	RADIO NAVIGATION	
062 02 00 00	RADIO AIDS	
062 02 01 00	Ground D/F	
062 02 01 03	Coverage and range	1
LO	Use the formula, 1,23 x $\sqrt{\text{transmitter height in feet} + 1,23}$ x $\sqrt{\text{receiver height in feet}}$,	х
	to calculate the range in NM	
062 02 02 00	NDB/ADF	
062 02 02 01	Principles	
LO	Define the abbreviation NDB Non Directional Beacon	Х
LO	Define the abbreviation ADF Automatic Direction Finder	Х
LO	State that the NDB is the ground part of the system	Х
LO	State that the ADF is the airborne part of the system	Х
LO	State that NDB operates in the LF and MF frequency bands	Х
LO	The frequency band assigned to aeronautical NDBs according to ICAO Annex 10 is 190–1750 kHz	Х
LO	Define a locator beacon. An LF/MF NDB used as an aid to final approach usually	х
	with a range, according to ICAO Annex 10, of 10-25 NM	
LO	Explain the difference between NDBs and locator beacons	х
LO	Explain which beacons transmit signals suitable for use by an ADF	х
LO	State that certain commercial radio stations transmit within the frequency band of the NDB	х
LO	Explain why it is necessary to use a directionally sensitive receiver antenna system in order to obtain the direction of the incoming radio wave	х
LO	Describe the use of NDBs for navigation	х
LO	Describe the procedure to identify an NDB station	х
LO	Interpret the term 'cone of silence' in respect of an NDB	х
LO	State that an NDB station emits a N0N/A1A or a NON/A2A signal	х
LO	State the function of the BFO (Beat Frequency Oscillator)	х
LO	State that in order to identify a NON/A1A NDB, the BFO circuit of the receiver has to be activated	Х
LO	State that the NDB emitting NON/A1A gives rise to erratic indications of the bearing while the station is identifying	х
LO	Explain that on modern aircraft the BFO is activated automatically	х
062 02 02 02	Presentation and interpretation	1
LO	Name the types of indicator in common use:	Х
	— Electronic navigation display	
	— Radio Magnetic Indicator RMI	
	— Fixed card ADF (radio compass)	
	— Moving card ADF	
LO	Describe the indications given on RMI, fixed card and moving card ADF displays	Х
LO	Given a display interpret the relevant ADF information	Х
LO	Calculate the true bearing from the compass heading and relative bearing	Х
LO	Convert the compass bearing into magnetic bearing and true bearing	х
LO	Describe how to fly the following in-flight ADF procedures according to Doc 8168 Vo — Homing and tracking and explain the influence of wind — Interceptions — Procedural turns — Holding patterns	ol. 1:

062 02 02 03	Coverage and range	
LO	State that the power limits the range of an NDB	Х
LO	State that the range of an NDB over sea is better than over land due to better ground	X
	wave propagation over seawater than over land	
LO	Describe the propagation path of NDB radio waves with respect to the ionosphere	х
	and the Earth's surface	
LO	Explain that interference between sky and ground waves at night leads to 'fading'	х
LO	Define the accuracy the pilot has to fly the required bearing in order to be considered	х
	established during approach according to ICAO DOC 8168 as within $\pm 5^{\circ}$	
LO	State that there is no warning indication of NDB failure	х
062 02 02 04	Errors and accuracy	
LO	Explain Coastal Refraction. As a radio wave travelling over land crosses the coast,	Х
	the wave speeds up over water and the wave front bends	
LO	Define Night/twilight effect. The influence of sky waves and ground waves arriving	х
	at the ADF receiver with a difference of phase and polarisation which introduce	
	bearing errors	
LO	State that interference from other NDB stations on the same frequency may occur at	х
	night due to sky wave contamination	
062 02 02 05	Factors affecting range and accuracy	
LO	State that there is no coastal refraction error when:	Х
	— The propagation direction of the wave is 90° to the coast line	
	— The NDB station is sited on the coast line	
LO	State that coastal refraction error increases with increased incidence.	х
LO	State that night effect predominates around dusk and dawn.	х
LO	Define multipath propagation of the radio wave (mountain effect).	х
LO	State that static emission energy from a cumulonimbus cloud may interfere with the	х
	radio wave and influence the ADF bearing indication.	
062 02 03 00	VOR and Doppler-VOR	
062 02 03 01	Principles	
LO	State that the frequency band allocated to VOR according to ICAO Annex 10 is	х
	VHF and the frequencies used are 108.0–117.975 MHz.	
LO	State that frequencies in the allocated VOR range with the first decimal place an odd	х
	number, are used by ILS	
LO	State that the following types of VOR are in operation:	х
	- Conventional VOR (CVOR) a first generation VOR station emitting signals by	
	means of a rotating antenna	
	— Doppler VOR (DVOR) a second generation VOR station emitting signals by	
	means of a combination of fixed antennas utilising the Doppler principle	
	— En-route VOR for use by IFR traffic	
	- Terminal VOR (TVOR) a station with a shorter range used as part of the	
	approach and departure structure at major airports	
	- Test VOR (VOT) a VOR station emitting a signal to test VOR indicators in an	
	aircraft	
LO	Describe how ATIS information is transmitted on VOR frequencies.	Х
LO	List the three main components of VOR airborne equipment:	х
	— The antenna	
	— The receiver	
	— The indicator	
LO	Describe the identification of a VOR in terms of Morse-code letters, continuous tone	х
	or dots (VOT), tone pitch, repetition rate and additional plain text	
LO	State that failure of the VOR station to stay within the required limits can cause the	х
LO	State that failure of the VOR station to stay within the required limits can cause the removal of identification and navigation components from the carrier or radiation to	Х
	State that failure of the VOR station to stay within the required limits can cause the removal of identification and navigation components from the carrier or radiation to cease	х
	State that failure of the VOR station to stay within the required limits can cause the removal of identification and navigation components from the carrier or radiation to cease Presentation and interpretation	X
062 02 03 02	State that failure of the VOR station to stay within the required limits can cause the removal of identification and navigation components from the carrier or radiation to cease Presentation and interpretation Read off the radial on a Radio Magnetic Indicator (RMI)	X X
LO 062 02 03 02 LO LO	State that failure of the VOR station to stay within the required limits can cause the removal of identification and navigation components from the carrier or radiation to cease Presentation and interpretation	
062 02 03 02 LO	State that failure of the VOR station to stay within the required limits can cause the removal of identification and navigation components from the carrier or radiation to cease Presentation and interpretation Read off the radial on a Radio Magnetic Indicator (RMI)	X
062 02 03 02 LO	State that failure of the VOR station to stay within the required limits can cause the removal of identification and navigation components from the carrier or radiation to cease Presentation and interpretation Read off the radial on a Radio Magnetic Indicator (RMI) Read off the angular displacement, in relation to a pre-selected radial on an HSI or	X

LO	Interpret VOR information as displayed on HSI, CDI and RMI	Х
LO	Describe the following in-flight VOR procedures as in DOC 8168 Vol.1:	Х
	— Tracking and explain the influence of wind when tracking	
	— Interceptions	
	— Procedural turns	
	— Holding patterns	
LO	State that when converting a radial into a true bearing, the variation at the VOR	Х
	station has to be taken into account	
062 02 03 03	Coverage and Range	
LO	Calculate the range using the formula:	х
	$1,23 \text{ x} \sqrt{\text{transmitter height in feet} + 1,23 \text{ x} \sqrt{\text{receiver height in feet}}$	
062 02 03 04	Errors and accuracy	
LO	Define the accuracy the pilot has to fly the required bearing in order to be considered	Х
	established on a VOR track when flying approach procedures according to ICAO	
	Doc 8168 as within half full scale deflection of the required track	
LO	State that due to reflections from terrain, radials can be bent and lead to wrong or	Х
	fluctuating indications which is called 'scalloping'.	
062 02 04 00	DME	
062 02 04 01	Principles	
LO	State that DME operates in the UHF band between 960–1215 MHz according to	Х
	ICAO Annex 10	
LO	State that the system comprises two basic components:	Х
	— The aircraft component, the interrogator	
	— The ground component, the transponder	
LO	State that the distance measured by DME is slant range	Х
LO	Illustrate that a position line using DME is a circle with the station at its centre	Х
LO	Describe how the pairing of VHF and UHF frequencies (VOR/DME) enables	Х
	selection of two items of navigation information from one frequency setting	
LO	Describe, in the case of co-location, the frequency pairing and identification	Х
	procedure	
LO	Explain that depending on the configuration, the combination of a DME distance	Х
	with a VOR radial can determine the position of the aircraft	
LO	Explain that military TACAN stations may be used for DME information	Х
062 02 04 02	Presentation and interpretation	
LO	Explain that when identifying a DME station co-located with a VOR station, the	Х
	identification signal with the higher tone frequency is the DME which idents	
	approximately every 40 seconds	
LO	Calculate ground distance given slant range and altitude	Х
LO	Describe the use of DME to fly a DME arc in accordance with DOC 8168 Vol. 1	Х
LO	State that a DME system may have a groundspeed read out combined with the DME	Х
0.62.02.04.02	read out	
062 02 04 03	Coverage and Range	1
LO	Explain why a ground station can generally respond to a maximum of 100 aircraft.	X
LO	Explain which aircraft will be denied a DME range first when more than 100	х
0.62.02.04.05	interrogations are being made	
062 02 04 05	Factors affecting range and accuracy	
LO	State that the groundspeed read out combined with DME is only correct when	х
LO	tracking directly to or from the DME station	
LO	State that, close to the station, the groundspeed read out combined with DME is less	х
0(2.02.05.00	than the actual groundspeed	
062 02 05 00	ILS Drinoinlag	
062 02 05 01	Principles	W
LO	Name the three main components of an ILS:	х
	— The localiser (LLZ) The glide path (CP)	
	— The glide path (GP) — Pange information (markers or DME)	
10	— Range information (markers or DME) State the site locations of the U.S. components:	v
LO	State the site locations of the ILS components: — The localiser antenna should be located on the extension of the runway centre	х
	line at the stop-end	
1		1

	- The glide path antenna should be located 300 metres beyond the runway	
	threshold, laterally displaced approximately 120 metres to the side of the runway	
1.0	centre line	
LO	Explain that marker beacons produce radiation patterns to indicate predetermined	Х
	distances from the threshold along the ILS glide path	
LO	Explain that marker beacons are sometimes replaced by a DME paired with the LLZ	Х
	frequency	
LO	State that in the ILS frequency assigned band 108,0–111,975 MHz, only frequencies	х
	with the first decimal odd are ILS frequencies	
LO	State that the LLZ operates in the VHF band 108,0-111,975 MHz according to	Х
	ICAO Annex 10	
LO	State that the GP operates in the UHF band	Х
LO	State that both the LLZ and the GP antenna radiate side lobes (false beams) which	Х
20	could give rise to false centreline and false glide path indication	
LO	Explain that the back beam from the LLZ antenna may be used as a published 'non-	Х
20	precision approach'	
LO	State that according to ICAO Annex 10 the nominal glide path is 3°	х
LO	State that according to ICAO DOC 8168, the final approach area contains a fix or	Х
	facility that permits verification of the ILS glide path/altimeter relationship. The	
062 02 05 02	outer marker or DME is usually used for this purpose.	
062 02 05 02	Presentation and interpretation	
LO	Describe the ILS identification regarding frequency and Morse code and/or plain	Х
10	text Coloulate the rote of descent for a 2 ^o alide noth angle given the groundeneed of the	
LO	Calculate the rate of descent for a 3° glide path angle given the groundspeed of the	х
	aircraft using the formula: Boto of descent (BOD) in $ft/min = groundspeed in let x 10.2$	
LO	Rate of descent (ROD) in ft/min = groundspeed in kt x 10 2 Calculate the rate of descent using the following formula when flying any glide path	
LU		Х
	angle: $POD ft/min = Speed factor (SE) \times glide path angle \times 100$	
LO	ROD ft/min = <i>Speed factor</i> (<i>SF</i>) x glide path angle x 100	
LO	Interpret the markers by sound, modulation, and frequency	X
LU	State that the outer marker cockpit indicator is coloured blue, the middle marker amber and the inner marker white	х
LO	State that a failure of either the LLZ or the GP to stay within predetermined limits	v
LO	will cause:	х
	- Removal of identification and navigation components from the carrier	
	- Radiation to cease	
	- A warning to be displayed at the designated control point	
LO	State that an ILS receiver has an automatic monitoring function	X
LO	Interpret the indications on a Course Deviation Indicator (CDI) and a Horizontal	X
LO	Situation Indicator (HSI):	л
	- Full scale deflection of the CDI needle corresponds to approximately 2,5°	
	displacement from the ILS centre line	
	- Full scale deflection on the GP corresponds to approximately 0,7° from the ILS	
	GP centre line	
LO	Interpret the aircraft's position in relation to the extended runway centre line on a	x
20	back-beam approach	
LO	Explain the setting of the course pointer of an HSI for front-beam and back-beam	х
20	approaches	
062 02 05 03	Coverage and Range	
LO	Sketch the standard coverage area of the LLZ and GP with angular sector limits in	Х
	degrees and distance limits from the transmitter in accordance with ICAO Annex 10:	
	- LLZ coverage area is 10° on either side of the centre line to a distance of 25 NM	
	from the runway, and 35° on either side of the centre line to a distance of 25 NM	
	from the runway, and 55° on entier side of the centre line to a distance of 17 NW	
	- GP coverage area is 8° on either side of the centre line to a distance of minimum	
	10 NM from the runway	
062 02 05 04	Errors and accuracy	1
LO	Explain that ILS approaches are divided into facility performance categories defined	Х
10	Explain that its approaches are divided into facility performance categories defined	л

	in ICAO Annex 10	
LO	Explain the following in accordance with ICAO DOC 8168:	х
20	— The accuracy the pilot has to fly the ILS localiser to be considered established on	А
	an ILS track is within half full scale deflection of the required track	
	— The aircraft has to be established within half scale deflection of the LLZ before	
	starting descent on the GP	
	— The pilot has to fly the ILS GP to a maximum of half scale fly-up deflection of	
	the GP in order to stay in protected airspace	
LO	State that if a pilot deviates by more than half scale deflection on the LLZ or by	Х
	more than half course fly-up deflection on the GP, an immediate missed approach	
	should be executed, because obstacle clearance may no longer be guaranteed	
062 03 00 00	RADAR	
062 03 01 00	Pulse techniques and associated terms	
LO	Name the different applications of radar with respect to ATC, MET observations and	х
	airborne weather radar	
LO	Describe the pulse technique and echo principle on which primary radar systems are	х
	based.	
LO	Describe, in general terms, the effects of the following factors with respect to the	х
	quality of the target depiction on the radar display:	
	Atmospheric conditions; super refraction and sub refraction	
	— Attenuation with distance	
	- Condition and size of the reflecting surface	
062 03 02 00	Ground Radar	
062 03 02 01	Principles	
LO	Explain that primary radar provides bearing and distance of targets.	Х
LO	Explain that primary ground radar is used to detect aircraft that are not equipped	х
	with a secondary radar transponder.	
LO	Explain why Moving Target Indicator (MTI) is used	х
062 03 02 02	Presentation and interpretation	
LO	State that modern ATC systems use computer generated display.	х
LO	Explain that the radar display enables the ATS controller to provide information,	х
	surveillance or guidance service.	
062 03 03 00	Airborne Weather Radar	
062 03 03 01	Principles	
062 03 03 01 LO	Principles List the two main tasks of the weather radar in respect of weather and navigation	X
062 03 03 01	PrinciplesList the two main tasks of the weather radar in respect of weather and navigationExplain how the antenna is attitude-stabilised in relation to the horizontal plane	X X
062 03 03 01 LO LO	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system	
062 03 03 01 LO	PrinciplesList the two main tasks of the weather radar in respect of weather and navigationExplain how the antenna is attitude-stabilised in relation to the horizontal planeusing the aircraft's attitude reference systemDescribe the cone shaped pencil beam of about 3° to 5° beam width used for	
062 03 03 01 LO LO LO	PrinciplesList the two main tasks of the weather radar in respect of weather and navigationExplain how the antenna is attitude-stabilised in relation to the horizontal planeusing the aircraft's attitude reference systemDescribe the cone shaped pencil beam of about 3° to 5° beam width used forweather depiction	X X
062 03 03 01 LO LO	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping	Х
062 03 03 01 LO LO LO LO	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them	X X
062 03 03 01 LO LO LO LO 062 03 03 02	PrinciplesList the two main tasks of the weather radar in respect of weather and navigationExplain how the antenna is attitude-stabilised in relation to the horizontal planeusing the aircraft's attitude reference systemDescribe the cone shaped pencil beam of about 3° to 5° beam width used forweather depictionExplain that in modern AWRs a single radiation pattern is used for both mappingand weather with the scanning angle being changed between themPresentation and interpretation	X X X
062 03 03 01 LO LO LO LO	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel	X X
062 03 03 01 LO LO LO LO 062 03 03 02	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch	X X X
062 03 03 01 LO LO LO LO 062 03 03 02	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch — Function switch, with modes WX, WX+T and MAP.	X X X
062 03 03 01 LO LO LO LO 062 03 03 02	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch — Function switch, with modes WX, WX+T and MAP. — Gain control setting (auto/manual)	X X X
062 03 03 01 LO LO LO 062 03 03 02 LO	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch — Function switch, with modes WX, WX+T and MAP. — Gain control setting (auto/manual) — Tilt/auto tilt switch.	X X X X
062 03 03 01 LO LO LO LO 062 03 03 02	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch — Function switch, with modes WX, WX+T and MAP. — Gain control setting (auto/manual) — Tilt/auto tilt switch. Name, for areas of differing reflection intensity, the colour gradations (green,	X X X
062 03 03 01 LO LO LO 062 03 03 02 LO LO	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch — Function switch, with modes WX, WX+T and MAP. — Gain control setting (auto/manual) — Tilt/auto tilt switch. Name, for areas of differing reflection intensity, the colour gradations (green, yellow, red and magenta) indicating the increasing intensity of precipitation	X X X X
062 03 03 01 LO LO LO 062 03 03 02 LO	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch — Function switch, with modes WX, WX+T and MAP. — Gain control setting (auto/manual) — Tilt/auto tilt switch. Name, for areas of differing reflection intensity, the colour gradations (green, yellow, red and magenta) indicating the increasing intensity of precipitation Illustrate the use of azimuth marker lines and range lines in respect of the relative	X X X X X
062 03 03 01 LO LO LO 062 03 03 02 LO LO	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch — Function switch, with modes WX, WX+T and MAP. — Gain control setting (auto/manual) — Tilt/auto tilt switch. Name, for areas of differing reflection intensity, the colour gradations (green, yellow, red and magenta) indicating the increasing intensity of precipitation Illustrate the use of azimuth marker lines and range lines in respect of the relative bearing and the distance to a thunderstorm or to a landmark on the screen	X X X X X
062 03 03 01 LO LO LO 062 03 03 02 LO LO	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch — Function switch, with modes WX, WX+T and MAP. — Gain control setting (auto/manual) — Tilt/auto tilt switch. Name, for areas of differing reflection intensity, the colour gradations (green, yellow, red and magenta) indicating the increasing intensity of precipitation Illustrate the use of azimuth marker lines and range lines in respect of the relative bearing and the distance to a thunderstorm or to a landmark on the screen Coverage and Range	X X X X X
062 03 03 01 LO LO LO LO 062 03 03 02 LO LO LO 062 03 03 03	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch — Function switch, with modes WX, WX+T and MAP. — Gain control setting (auto/manual) — Tilt/auto tilt switch. Name, for areas of differing reflection intensity, the colour gradations (green, yellow, red and magenta) indicating the increasing intensity of precipitation Illustrate the use of azimuth marker lines and range lines in respect of the relative bearing and the distance to a thunderstorm or to a landmark on the screen Coverage and Range Explain how the radar is used for weather detection and for mapping (range, tilt and	X X X X X
062 03 03 01 LO LO LO LO 062 03 03 02 LO LO LO 062 03 03 03	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch — Function switch, with modes WX, WX+T and MAP. — Gain control setting (auto/manual) — Tilt/auto tilt switch. Name, for areas of differing reflection intensity, the colour gradations (green, yellow, red and magenta) indicating the increasing intensity of precipitation Illustrate the use of azimuth marker lines and range lines in respect of the relative bearing and the distance to a thunderstorm or to a landmark on the screen Coverage and Range Explain how the radar is used for weather detection and for mapping (range, tilt and gain if available)	X X X X X
062 03 03 01 LO LO LO LO 062 03 03 02 LO LO LO LO LO LO	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch — Function switch, with modes WX, WX+T and MAP. — Gain control setting (auto/manual) — Tilt/auto tilt switch. Name, for areas of differing reflection intensity, the colour gradations (green, yellow, red and magenta) indicating the increasing intensity of precipitation Illustrate the use of azimuth marker lines and range lines in respect of the relative bearing and the distance to a thunderstorm or to a landmark on the screen Coverage and Range Explain how the radar is used for weather detection and for mapping (range, tilt and gain if available) Errors, accuracy, limitations	X X X X X
062 03 03 01 LO LO LO LO 062 03 03 02 LO LO LO LO 062 03 03 03 LO 062 03 03 04	Principles List the two main tasks of the weather radar in respect of weather and navigation Explain how the antenna is attitude-stabilised in relation to the horizontal plane using the aircraft's attitude reference system Describe the cone shaped pencil beam of about 3° to 5° beam width used for weather depiction Explain that in modern AWRs a single radiation pattern is used for both mapping and weather with the scanning angle being changed between them Presentation and interpretation Explain the functions of the following different modes on the radar control panel — Off/on switch — Function switch, with modes WX, WX+T and MAP. — Gain control setting (auto/manual) — Tilt/auto tilt switch. Name, for areas of differing reflection intensity, the colour gradations (green, yellow, red and magenta) indicating the increasing intensity of precipitation Illustrate the use of azimuth marker lines and range lines in respect of the relative bearing and the distance to a thunderstorm or to a landmark on the screen Coverage and Range Explain how the radar is used for weather detection and for mapping (range, tilt and gain if available)	X X X X X X X X X X X X X X X X X X X

	waves will penetrate	
LO	Explain why the tilt setting should be higher when the aircraft descends to a lower	x
LO	altitude	л
LO	Explain why the tilt setting should be lower when the aircraft climbs to a higher	X
	altitude	
LO	Explain why a thunderstorm may not be detected when the tilt is set too high	Х
062 03 03 06	Application for navigation	
LO	Describe the navigation function of the radar in the mapping mode	Х
LO	Describe the use of the weather radar to avoid a thunderstorm (Cb)	Х
LO	Explain how turbulence (not CAT) can be detected by a modern weather radar	Х
LO	Explain how wind shear can be detected by a modern weather radar	Х
062 03 04 00	Secondary Surveillance Radar and transponder	
062 03 04 01	Principles	
LO	Explain that the Air Traffic Control (ATC) system is based on the replies provided	Х
	by the airborne transponders in response to interrogations from the ATC secondary	
	radar	
LO	Explain that the ground ATC secondary radar uses techniques which provide the	Х
	ATC with information that cannot be acquired by primary radar	
LO	Explain that an airborne transponder provides coded reply signals in response to	х
	interrogation signals from the ground secondary radar and from aircraft equipped	
	with TCAS.	
LO	Explain the advantages of SSR over a primary radar	Х
062 03 04 02	Modes and codes	
LO	Explain that the interrogator transmits its interrogations in the form of a series of	х
	pulses.	
LO	Name and explain the Interrogation modes:	х
	1. Mode A and C	
	2. Intermode:	
	Mode A/C/S all call	
	Mode A/C only all call	
	3. Mode S:	
	Mode S only all call	
	Broadcast (no reply elicited)	
	Selective	
LO	State that Mode A designation is a sequence of four digits can be manually selected	Х
	from 4096 available codes.	
LO	State that in mode C reply the pressure altitude is reported in 100 ft increments.	X
LO	State that in addition to the information pulses provided, a special position	х
	identification pulse (SPI) can be transmitted but only as a result of a manual	
10	selection (IDENT)	
LO	Explain the need for compatibility of Mode S with Mode A and C	Х
LO	Explain that the Mode S transponders receive interrogations from other Mode S	х
10	transponders and SSR ground stations	
LO	State that Mode S surveillance protocols implicitly use the principle of selective	х
10	addressing	
LO	Explain that every aircraft will have been allocated an ICAO Aircraft Address which	х
LO	is hard coded into the airframe (Mode S address)	
LO	Interpret the following mode S terms:	х
	- Selective addressing - Mode 'all call'	
10	- Selective call	W
LO	State that Mode S interrogation contains either:	х
	- Aircraft address	
	- All-call address	
IO	- Broadcast address	
LO	State that the Aircraft Address shall be transmitted in any reply except in Mode S	х
	only all-call reply	

062 03 04 03	Presentation and interpretation	
LO	Explain how an aircraft can be identified by a unique code	Х
LO	Illustrate how the following information is presented on the radar screen:	х
	— Pressure altitude	
	— Flight level	
	— Flight number or aircraft registration	
	- Ground speed	
LO	Name and interpret the codes 7700, 7600 and 7500	Х
LO	Interpret the selector modes: OFF, Standby, ON (mode A), ALT (mode A and C) and TEST	х
LO	Explain the function of the emission of a SPI (Special Position Identification) pulse	x
LO	after pushing the IDENT button in the aircraft	л
ELEMENTAR	Y SURVEILLANCE	
LO	Explain that the elementary surveillance provides the ATC controller with aircraft	Х
-	position, altitude and identification	
LO	State that the elementary surveillance needs MODE S transponders with surveillance	Х
	identifier (SI) code capacity and the automatic reporting of aircraft identification,	
	known as ICAO level 2s	
LO	State that the SI code must correspond to the aircraft identification specified in item	х
	7 of the ICAO flight plan or to the registration marking	
062 03 04 04	Errors and Accuracy	
LO	Explain the following disadvantages of SSR (mode A/C):	Х
	- Code garbling of aircraft less than 1.7 NM apart measured in the vertical plane	
	perpendicular to and from the antenna — 'Fruiting' which results from reception of replies caused by interrogations from	
	other radar stations	
062 05 00 00	AREA NAVIGATION SYSTEMS, RNAV/FMS	
062 05 01 00	General philosophy and definitions	
062 05 01 01	Basic RNAV (B-RNAV)/precision RNAV (P-RNAV)/ RNP-PNAV	
LO	Define area navigation RNAV (ICAO Annex 11). A method of navigation	Х
	permitting aircraft operations on any desired track within the coverage of station-	
	referenced navigation signal, or within the limits of a self-contained navigation	
	system	
LO	State that basic RNAV (B-RNAV) systems require RNP 5	Х
LO	State that precision RNAV (PRNAV) systems require RNP 1	Х
062 05 01 02	Principles of 2D RNAV, 3D RNAV and 4D RNAV	
LO	State that a 2D RNAV system is able to navigate in the horizontal plane only.	Х
LO	State that a 3D RNAV system is able to navigate in the horizontal plane and in	Х
IO	addition has a guidance capability in the vertical plane.	
LO	State that a 4D RNAV system is able to navigate in the horizontal plane, has a guidance conshility in the	х
vertical plane a	guidance capability in the nd in addition has a timing function	
062 05 01 03	Required Navigation Performance (RNP) in accordance with ICAO DOC 9613	
LO	State that RNP is a concept that applies to navigation performance within an	х
	airspace	
LO	The RNP type is based on the navigation performance accuracy to be achieved	Х
	within the airspace.	
LO	State that RNP X requires a navigation performance accuracy of \Box X NM both	Х
	lateral and longitudinal 95 % of the flying time. (RNP 1 requires a navigation	
	performance of \Box 1 NM both lateral and longitudinal 95 % of the flying time)	
LO	State that RNAV equipment is one requirement, in order to receive approval to	Х
	operate in a RNP environment	
LO	State that RNAV equipment operates by automatically determining the aircraft	Х
10	position.	v
LO	State the advantages of using RNAV techniques over more conventional forms of navigation:	х
	- Establishment of more direct routes permitting a reduction in flight distance	
	- Establishment of dual or parallel routes to accommodate a greater flow of en-	
	route traffic	

		1
	- Establishment of bypass routes for aircraft over flying high-density terminal areas	
	- Establishment of alternatives or contingency routes on either a planned or ad hoc	
	basis	
	- Establishment of optimum locations for holding patterns	
1.0	Reduction in the number of ground navigation facilities	
LO	State that RNP may be specified for a route, a number of routes, an area, volume of	х
10	airspace or any airspace of defined dimensions.	
LO	State that airborne navigation equipment uses inputs from navigational systems such as VOR/DME, DME/DME, GNSS, INS and IRS.	Х
LO	State that aircraft equipped to operate to RNP 1 and better, should be able to	Х
	compute an estimate of its position error, depending on the sensors being used and	
	time elapsed	
LO	Indicate navigation equipment failure.	Х
062 05 02 00	Simple 2D RNAV	
Info: First gen	eration of radio navigation systems allowing the flight crew to select a phantom way	oint on
the RNAV pane	l and select a desired track to fly inbound to the waypoint.	
062 05 02 01	Flight deck equipment	
LO	The control unit allows the flight crew to:	Х
	— Tune the VOR/DME station used to define the phantom waypoint	
	— Define the phantom waypoint as a radial and distance (DME) form the selected	
	VOR/DME station	
	— Select desired magnetic track to follow inbound to the phantom waypoint	
	- Select between an en-route mode, an approach mode of operation and the basic	
	VOR/DME mode of operation	
LO	Track guidance is shown on the HSI/CDI.	х
062 05 02 02	Navigation computer, VOR/DME navigation	•
LO	The navigation computer of the simple 2D RNAV system computes the navigational	Х
	problems by simple sine and cosine mathematics, solving the triangular problems.	
062 05 02 03	Navigation computer input/output	
LO	State the following input data to the navigation computer is:	х
	- Actual VOR radial and DME distance from selected VOR station	
	— Radial and distance to phantom waypoint	
	— Desired magnetic track inbound to the phantom waypoint	
LO	State the following output data from the navigation computer:	х
	— Desired magnetic track to the phantom waypoint shown on the CDI at the course	
	pointer	
	— Distance from present position to the phantom waypoint	
	— Deviations from desired track as follows:	
	— In en-route mode full scale deflection on the CDI is 5 NM	
	— In approach mode full scale deflection on the CDI is 1 ¹ / ₄ NM	
	— In VOR/DME mode full scale deflection of the CDI is $10\Box$.	
LO	State that the system is limited to operate within range of selected VOR/DME	x
20	station	
062 05 03 00	4D RNAV	1
	generation of area navigation equipment allowed the flight crew to navigate on any	desired
		uesned
	Verage of VOR/DME stations	
062 05 03 01	Flight deck equipment	

LO LO LO 062 05 04 06 LO 062 06 00 00 062 06 01 00 062 06 01 01 LO	 NDB stations (alphabetic ICAO identifier) Company flight plan routes State that the navigation database is updated every 28 days. State that the navigational database is write protected, but additional space exists so that crew created navigational data may be saved in the computer memory. Such additional data will also be deleted at the 28 days navigational update of the database. Determination of the FMS-position of the aircraft State that modern FMS may use a range of sensors for calculating the position of the aircraft including VOR, DME, GPS, IRS and ILS. GLOBAL NAVIGATION SATELLITE SYSTEMS GPS/GLONASS/GALILEO Principles State that there are two main Global Navigation Satellite Systems (GNSS) currently in existence with a third which is planned to be fully operational by 2011. They are: USA NAVSTAR GPS (NAVigation System with Timing And Ranging Global 	x x x x
LO 062 05 04 06 LO 062 06 00 00 062 06 01 00 062 06 01 01	 NDB stations (alphabetic ICAO identifier) Company flight plan routes State that the navigation database is updated every 28 days. State that the navigational database is write protected, but additional space exists so that crew created navigational data may be saved in the computer memory. Such additional data will also be deleted at the 28 days navigational update of the database. Determination of the FMS-position of the aircraft State that modern FMS may use a range of sensors for calculating the position of the aircraft including VOR, DME, GPS, IRS and ILS. GLOBAL NAVIGATION SATELLITE SYSTEMS GPS/GLONASS/GALILEO Principles 	x
LO 062 05 04 06 LO 062 06 00 00 062 06 01 00	 NDB stations (alphabetic ICAO identifier) Company flight plan routes State that the navigation database is updated every 28 days. State that the navigational database is write protected, but additional space exists so that crew created navigational data may be saved in the computer memory. Such additional data will also be deleted at the 28 days navigational update of the database. Determination of the FMS-position of the aircraft State that modern FMS may use a range of sensors for calculating the position of the aircraft including VOR, DME, GPS, IRS and ILS. GLOBAL NAVIGATION SATELLITE SYSTEMS GPS/GLONASS/GALILEO 	X
LO 062 05 04 06 LO 062 06 00 00	 NDB stations (alphabetic ICAO identifier) Company flight plan routes State that the navigation database is updated every 28 days. State that the navigational database is write protected, but additional space exists so that crew created navigational data may be saved in the computer memory. Such additional data will also be deleted at the 28 days navigational update of the database. Determination of the FMS-position of the aircraft State that modern FMS may use a range of sensors for calculating the position of the aircraft including VOR, DME, GPS, IRS and ILS. GLOBAL NAVIGATION SATELLITE SYSTEMS 	X
LO 062 05 04 06 LO	 NDB stations (alphabetic ICAO identifier) Company flight plan routes State that the navigation database is updated every 28 days. State that the navigational database is write protected, but additional space exists so that crew created navigational data may be saved in the computer memory. Such additional data will also be deleted at the 28 days navigational update of the database. Determination of the FMS-position of the aircraft State that modern FMS may use a range of sensors for calculating the position of the aircraft including VOR, DME, GPS, IRS and ILS. 	X
LO 062 05 04 06	 NDB stations (alphabetic ICAO identifier) Company flight plan routes State that the navigation database is updated every 28 days. State that the navigational database is write protected, but additional space exists so that crew created navigational data may be saved in the computer memory. Such additional data will also be deleted at the 28 days navigational update of the database. Determination of the FMS-position of the aircraft State that modern FMS may use a range of sensors for calculating the position of the 	X
LO 062 05 04 06	 NDB stations (alphabetic ICAO identifier) Company flight plan routes State that the navigation database is updated every 28 days. State that the navigational database is write protected, but additional space exists so that crew created navigational data may be saved in the computer memory. Such additional data will also be deleted at the 28 days navigational update of the database. Determination of the FMS-position of the aircraft 	X
LO	 NDB stations (alphabetic ICAO identifier) Company flight plan routes State that the navigation database is updated every 28 days. State that the navigational database is write protected, but additional space exists so that crew created navigational data may be saved in the computer memory. Such additional data will also be deleted at the 28 days navigational update of the database. 	
	 NDB stations (alphabetic ICAO identifier) Company flight plan routes State that the navigation database is updated every 28 days. State that the navigational database is write protected, but additional space exists so that crew created navigational data may be saved in the computer memory. Such additional data will also be deleted at the 28 days navigational update of the 	
	 NDB stations (alphabetic ICAO identifier) Company flight plan routes State that the navigation database is updated every 28 days. State that the navigational database is write protected, but additional space exists so that crew created navigational data may be saved in the computer memory. Such 	
	 NDB stations (alphabetic ICAO identifier) Company flight plan routes State that the navigation database is updated every 28 days. State that the navigational database is write protected, but additional space exists so 	
	 NDB stations (alphabetic ICAO identifier) — Company flight plan routes State that the navigation database is updated every 28 days. 	
10	 — NDB stations (alphabetic ICAO identifier) — Company flight plan routes 	
	- NDB stations (alphabetic ICAO identifier)	
	— Airport runway data	
	— Holding patterns	
	— SID data	
	— STAR data	
	- Waypoint data (five letter ICAO identifier)	
	- VOR/DME station data (three letter ICAO identifier)	
	- Reference data for airports (four letter ICAO identifier)	
LO	State that the navigation database of the FMC may contain the following data:	Х
062 05 04 03	Navigation data base	
062 05 04 00	FMS and general terms	
	— Indicate navigation equipment failure.	
	— Conform to WGS-84 geodetic reference system;	
	quality factor or by reference to sensor differences from the computed position;	
	- Make available to the flight crew estimates of positional uncertainty, either as a	
	- Carry out RNAV holding procedures (when defined);	
	— Purge previous radio updates;	
	indicated;	
	- Fly parallel tracks at the selected offset distance; offset mode should be clearly	
	- Execute a direct clearance to any waypoint;	
	- Provide time to waypoints on the CDU;	
	— Display cross-track error on the CDU;	
	sequencing should also be provided to allow flight over, and return to, waypoints;	
	- Provide automatic sequencing through waypoints with turn anticipation. Manual	
	- Allow verification or adjustment of displayed position;	
	- Assemble flight plans by joining routes or route segments;	
	other parameters;	
	creation of waypoints defined by latitude/longitude, bearing/distance parameters or	
	waypoints from the database, or by creation of waypoints from the database, or by	
	- Assemble a flight plan, either by identifier or by selection of individual	
	the active flight plan;	
	- Where provided, assemble and verify an alternative flight plan without affecting	
	- Execute a modified flight plan only after positive action by the flight crew;	
	guidance output;	
	- Review, assemble, modify or verify a flight plan in flight, without affecting the	
	flight and store sufficient data to carry out the active flight plan;	
	- Review and modify navigation data for any part of a flight plan at any stage of	
	(CDU);	
		Х
LO	State that in order to give the flight crew control over the required lateral guidance functions, RNAV equipment should at least be able to perform the following functions: Display present position in latitude/longitude or as distance/bearing to selected waypoint; — Select or enter the required flight plan through the control and display unit	5

	- Russian GLONASS (GLObal NAvigation Satellite System)	
1.0	— European GALILEO	
LO	State that all 3 systems (will) consist of a constellation of satellites which can be used by a suitably equipped receiver to determine position	х
062 06 01 0	2 Operation	
VAVSTAR (GPS	
LO	State that there are currently two modes of operation, SPS (Standard Positioning	Х
	Service) for civilian users, and PPS (Precise Positioning Service for authorised users	
LO	SPS was originally designed to provide civil users with a less accurate positioning capability than PPS	х
LO	Name the three segments as:	х
	- Space segment	
	— Control segment	
	— User segment	
Space segm		
LO	State that the space segment consists of a notional constellation of 24 operational	х
	satellites	
LO	State that it takes 12 ¹ / ₂ minutes for a GPS receiver to receive all the data frames in the navigation message	х
LO	State that the almanac contains the orbital data about all the satellites in the GPS constellation	Х
LO	State that the ephemeris contains data used to correct the orbital data of the satellites due to small disturbances	х
LO	State that the clock correction parameters are data for correction of the satellite time	х
LO	State that UTC parameters are factors determining the difference between GPS time and UTC	х
LO	State that an ionospheric model is currently used to calculate the time delay of the signal travelling through the ionosphere.	х
LO	State that the GPS health message is used to exclude unhealthy satellites from the	х
	position solution. Satellite health is determined by the validity of the navigation data	
LO	State that GPS uses the WGS 84 model	Х
LO	State that satellites are equipped with atomic clocks, which allow the system to keep	х
<u> </u>	very accurate time reference	
Control Seg		
LO	State that the control segment comprises:	х
	— A master control station	
	— Ground antenna	
	— Monitoring stations	
User Segme		
LO	State that GPS supplies three-dimensional position fixes and speed data, plus a	х
	precise time reference	
LO	State that the GPS receiver used in aviation is a multi-channel type	Х
LO	State that a GPS receiver is able to determine the distance to a satellite, by determining the difference between the time of transmission by satellite and the time of transmission by satellite and the time	х
LO	of reception State that the initial distance calculated to the satellites is called pseudo range.	v
LU	State that the initial distance calculated to the satellites is called pseudo range	х
	because the difference between the GPS receiver and the satellite time references	
	initially creates an erroneous range	
LO	State that each range defines a sphere with its centre at the satellite	Х
	State that three satellites are needed to determine a two-dimensional position	х
LO	State that four spheres are needed to calculate a three dimensional position, hence four satellites are required	Х
LO	State that the GPS receiver is able to synchronise to the correct time base when receiving four satellites	Х
NAVSTAR (GPS Integrity	
LO	Define RAIM (Receiver Autonomous Integrity Monitoring). A technique whereby a receiver processor determines the integrity of the navigation signals	Х
LO	State that RAIM is achieved by consistency check among pseudo range measurements	X
	mousaromonto	L

LO	State that basic RAIM requires 5 satellites. A 6th is for isolating a faulty satellite	Х
10	from the navigation solution	
LO	State that when a GPS receiver uses barometric altitude as an augmentation to	х
	RAIM, the number of satellites needed for the receiver to perform the RAIM	
062 06 01 03	function may be reduced by one	
	Errors and Factors affecting accuracy	
LO	List the most significant factors affecting accuracy: — Ionospheric propagation delay	х
	- Dilution of position	
	- Satellite clock error	
	- Satellite orbital variations	
	- Multipath	
062 06 02 00	Ground, Satellite and Airborne based augmentation systems	
	Augmentation Systems (SBAS)	
LO	Explain the principle of a SBAS : to measure on the ground the signal errors	Х
20	transmitted by GNSS satellites and transmit differential corrections and integrity	
	messages for navigation satellites	
LO	State that the frequency band of the data link is identical to that of the GPS signals.	х
LO	Explain that the use of geostationary satellites enables messages to be broadcast over	X
	very wide areas	
LO	Explain that pseudo-range measurements to these geostationary satellites can also be	х
	made, as if they were GPS satellites	
LO	Stat that SBAS consists of 3 elements :	х
	— The ground infrastructure (monitoring and processing stations),	
	— The SBAS satellites,	
	— The SBAS airborne receivers.	
LO	Explain that SBAS can provide approach and landing operations with Vertical	х
	guidance (APV) and precision approach service.	
LO	Explain the difference between Coverage area and Service area	Х
LO	State that Satellite Based Augmentation Systems include:	х
	- EGNOS in Western Europe and the Mediterranean	
	— WAAS in USA	
GAGANT.	MSAS in Japan	
- GAGAN in	India	
EGNOS		
LO	State that (EGNOS) European Geostationary Navigation Overlay Service consists of	Х
LO	3 geostationary Inmarsat satellites which broadcast GPS look-alike signals	
LO	State that EGNOS is designed to improve accuracy to 1–2 m horizontally and 3–5 m	х
LO	vertically Explain that integrity and safety are improved by alerting users within 6 seconds if a	v
LO	GPS malfunction occurs (up to 3 hrs GPS alone)	х
Airborne Rase	d Augmentation Systems (ABAS)	l
LO	Explain the principle of ABAS: to use redundant elements within the GPS	Х
LO	constellation (e.g. : multiplicity of distance measurements to various satellites) or the	Λ
	combination of GNSS measurements with those of other navigation sensors (such as	
	inertial systems), to develop integrity control	
LO	State that the type of ABAS using only GNSS information is RAIM (Receiver	Х
	Autonomous Integrity Monitoring)	
LO	State that a system using information from additional on-board sensors is named	Х
	AAIM (Aircraft Autonomous Integrity Monitoring)	
LO	Explain that the typical sensors used are barometric altimeter, clock and inertial	х
	navigation system	
LO	Explain that unlike GBAS and SBAS, ABAS does not improve positioning	х

AMC8 FCL.615 (b) IR – Theoretical knowledge and flight instruction DETAILED THEORETICAL KNOWLEDGE SYLLABUS AND LEARNING OBJECTIVES

Subject IFR Communications (Competency-based modular training course (CB-IR(A)) for instrument rating according to Appendix 6 Aa and en route instrument rating (EIR) course according to FCL.825)

Syllabus reference	Syllabus details and associated Learning Objectives	CB- IR(A) and EIR
092 00 00 00	IFR COMMUNICATIONS	
092 01 00 00	DEFINITIONS	
092 01 01 00	Meanings and significance of associated terms	
LO	As for VFR plus terms used in conjunction with approach and holding procedures	Х
092 01 02 00	Air Traffic Control abbreviations	-
LO	As for VFR plus additional IFR related terms	Х
092 01 03 00	Q-code groups commonly used in RTF air-ground communications	-
LO	Define Q-code groups commonly used in RTF air to ground communications:	Х
	— Pressure settings	
	— Directions and bearings	
LO	State the procedure for obtaining a bearing information in flight	Х
092 01 04 00	Categories of messages	
LO	List the categories of messages in order of priority	X
LO	Identify the types of messages appropriate to each category	X
LO	List the priority of a message (given examples of messages to compare)	Х
092 02 00 00	GENERAL OPERATING PROCEDURES	
092 02 01 00	Transmission of letters	
LO	State the phonetic alphabet used in radiotelephony	Х
LO	Identify the occasions when words should be spelt	Х
092 02 02 00	Transmission of numbers (including level information)	
LO	Describe the method of transmitting numbers	Х
	— Pronunciation	
	— Single digits, whole hundreds and whole thousands	
092 02 03 00	Transmission of time	
LO	Describe the ways of transmitting time	Х
	— Standard time reference (UTC)	
	— Minutes, minutes and hours, when required	
<u>092 02 04 00</u>	Transmission technique	
LO	Explain the techniques used for making good R/T transmissions	Х
092 02 05 00	Standard words and phrases (relevant RTF phraseology included)	
LO	Define the meaning of standard words and phrases	Х
LO	Use correct standard phraseology for each phase of IFR flight	Х
	— Pushback	
	— IFR depature	
	— Airways clearances	
	- Position reporting	
	— Approach procedures — IFR arrivals	
002 02 06 00		inted coll
092 02 06 00	Radiotelephony call signs for aeronautical stations including use of abbrev	iateu call
LO	signs As for VFR	v
LO	Name the two parts of the call sign of an aeronautical station	X
LO	Identify the call sign suffixes for aeronautical stations	X
		X
LO	Explain when the call sign may be abbreviated to the use of suffix only Redicted phony call signs for single final using the set of phone size of the set	Х
<u>092 02 07 00</u>	Radiotelephony call signs for aircraft including use of abbreviated call signs	v
LO	As for VFR	X
LO	Explain when the suffix 'HEAVY' should be used with an aircraft call sign	X
LO	Explain the use of the phrase 'Change your call sign to'	X
LO	Explain the use of of the phrase 'Revert to flight plan call sign'	Х

092 02 08 00	Transfer of communication		
LO	Describe the procedure for transfer of communication	х	
	— By ground station		
	— By aircraft		
092 02 09 00	Test procedures including readability scale; establishment of RTF communication	on	
LO	Explain how to test radio transmission and reception	Х	
LO	State the readability scale and explain its meaning	Х	
092 02 10 00	Read back and acknowledgement requirements		
LO	State the requirement to read back ATC route clearances	Х	
LO	State the requirement to read back clearances related to runway in use	Х	
LO	State the requirement to read back other clearances including conditional clearances	Х	
LO	State the requirement to read back data such as runway, SSR codes etc	State the requirement to read back data such as runway, SSR codes etc x	
092 02 11 00	Radar procedural phraseology	Radar procedural phraseology	
LO	Use the correct phraseology for an aircraft receiving a radar service — Radar identification — Radar vectoring — Traffic information and avoidance — SSR procedures	x	
092 02 12 00	Level changes and reports		
LO	Use the correct term to describe vertical position	х	
LO	In relation to flight level (standard pressure setting)	л	
	— In relation to Altitude (metres/feet on QNH)		
	— In relation to Height (metres/feet on QFE)		
092 03 00 00	ACTION REQUIRED TO BE TAKEN IN CASE OF COMMUNICATION FAI	LURE	
LO	Describe the action to be taken in communication failure on a IFR flight	Х	
LO	Describe the action to be taken in case of communication failure on a IFR flight when flying in VMC and the flight will be terminated in VMC	Х	
LO	Describe the action to be taken in case of communication failure on a IFR flight when flying in IMC	X	
092 04 00 00	DISTRESS AND URGENCY PROCEDURES		
092 04 01 00	PAN medical		
LO	Describe the type of flights to which PAN MEDICAL applies	х	
LO	List the content of a PAN MEDICAL message in correct sequence	X	
092 04 02 00	Distress (definition — frequencies — watch of distress frequencies — distress s distress message)	ignal —	
LO	State the DISTRESS procedures	Х	
LO	Define DISTRESS	X	
LO	Identify the frequencies that should be used by aircraft in DISTRESS	X	
LO	Specify the emergency SSR codes that may be used by aircraft, and the meaning of the codes	X	
LO	Describe the action to be taken by the station which receives a DISTRESS message	Х	
LO	Describe the action to be taken by all other stations when a DISTRESS procedure is in progress	X	
LO	List the content of a DISTRESS message	X	
092 04 03 00	Urgency (definition — frequencies — urgency signal — urgency message)		
LO	State the URGENCY procedures	Х	
LO	Define URGENCY	X	
LO	Identify the frequencies that should be used by aircraft in URGENCY	X	
LO	Describe the action to be taken by the station which receives an URGENCY message	Х	
LO	List the content of an URGENCY signal/message in the correct sequence	X	
092 05 00 00	RELEVANT WEATHER INFORMATION TERMS (IFR)	Λ	
092 05 00 00 092 05 01 00	Aerodrome weather		
LO	As for VFR plus the following	v	
LO	Runway visual range	X	
LO	Braking action (friction coefficient)	X	
092 05 02 00	Weather broadcast	Х	
092 03 02 00	weather producast		

LO	As for VED also the following	
	As for VFR plus the following	X
LO	Explain when aircraft routine meteorological observations should be made	
LO	Explain when aircraft Special meteorological observations should be made	Х
092 06 00 00	GENERAL PRINCIPLES OF VHF PROPAGATION AND ALLOCATION	ON OF
	FREQUENCIES	
LO	Describe the radio frequency spectrum with particular reference to VHF	Х
LO	State the names of the bands into which the radio frequency spectrum is divided	Х
LO	Identify the frequency range of the VHF band	Х
LO	Name the band normally used for Aeronautical Mobile Service voice	Х
	communications	
LO	State the frequency separation allocated between consecutive VHF frequencies	Х
LO	Describe the propagation characteristics of radio transmissions in the VHF band	Х
LO	Describe the factors which reduce the effective range and quality of radio	Х
	transmissions	
LO	State which of these factors apply to the VHF band	Х
LO	Calculate the effective range of VHF transmissions assuming no attenuating factors	Х
092 07 00 00	MORSE CODE	
LO	Identify radio navigation aids (VOR, DME, NDB, ILS) from their Morse code	Х
	identifiers	
LO	SELCAL, TCAS, ACARS phraseology and procedures	Х

AMC1 FCL.625(c) IR — Validity, revalidation and renewal RENEWAL OF INSTRUMENT RATING: REFRESHER TRAINING

- (a) Paragraph (b)(1) of FCL.740 determines that if the instrument rating has lapsed, the applicant shall go through refresher training at an ATO, to reach the level of proficiency needed to pass the instrument element of the skill test prescribed in Appendix 9 to Part-FCL. The amount of refresher training needed should be determined on a case-by-case basis by the ATO, taking into account the following factors:
 - (1) the experience of the applicant. To determine this, the ATO should evaluate the pilot's log book, and, if necessary, conduct a test in an FSTD.
 - (2) the amount of time lapsed since the expiry of the validity period of the rating. The amount of training needed to reach the desired level of proficiency should increase with the time lapsed. In some cases, after evaluating the pilot, and when the time lapsed is very limited (less than 3 months), the ATO may even determine that no further refresher training is necessary. The following may be taken as guidance when determining the needs of the applicant:
 - (i) expiry for a period shorter than 3 months: no supplementary requirements;
 - (ii) expiry for longer than 3 months but shorter than 1 year: a minimum of one training session;
 - (iii) expiry for longer than 1 year but shorter than 7 years: a minimum of three training sessions;
 - (iv) expiry for longer than 7 years: the applicant should undergo the full training course for the issue of the IR.
- (b) Once the ATO has determined the needs of the applicant, it should develop an individual training programme, which should be based on the initial training for the issue of instrument ratings and focus on the aspects where the applicant has shown the greatest needs.
- (c) After successful completion of the training, the ATO should give a certificate to the applicant, to be submitted to the competent authority when applying for the renewal.

SUBPART I — ADDITIONAL RATINGS

AMC1 FCL.800 Aerobatic rating

THEORETICAL KNOWLEDGE AND FLYING TRAINING

- (a) The aim of the aerobatic training is to qualify licence holders to perform aerobatic manoeuvres.
- (b) The ATO should issue a certificate of satisfactory completion of the instruction to licence endorsement.
- (c) Theoretical knowledge
 - The theoretical knowledge syllabus should cover the revision or explanation of:
 - (1) human factors and body limitation:
 - (i) spatial disorientation;
 - (ii) airsickness;
 - (iii) body stress and G-forces, positive and negative;
 - (iv) effects of grey- and blackouts.
 - (2) technical subjects:
 - (i) legislation affecting aerobatic flying to include environmental and noise subjects;
 - (ii) principles of aerodynamics to include slow flight, stalls and spins, flat and inverted;
 - (iii) general airframe and engine limitations (if applicable).
 - (3) limitations applicable to the specific aircraft category (and type):
 - (i) air speed limitations (aeroplane, helicopter, TMG and sailplane, as applicable);
 - (ii) symmetric load factors (type-related, as applicable);
 - (iii) rolling Gs (type-related, as applicable).
 - (4) aerobatic manoeuvres and recovery:
 - (i) entry parameters;
 - (ii) planning systems and sequencing of manoeuvres;
 - (iii) rolling manoeuvres;
 - (iv) looping manoeuvres;
 - (v) combination manoeuvres;
 - (vi) entry and recovery from developed spins, flat, accelerated and inverted.
 - (5) emergency procedures:
 - (i) recovery from unusual attitudes;
 - (ii) drills to include the use of parachutes (if worn) and aircraft abandonment.
- (d) Flying training

The exercises of the aerobatic flying training syllabus should be repeated as necessary until the applicant achieves a safe and competent standard. Having completed the flight training, the student pilot should be able to perform a solo flight containing a sequence of aerobatic manoeuvres. The dual training and the supervised solo training flights should be tailored to the category of aircraft and limited to the permitted manoeuvres of that type of aircraft. The exercises should comprise at least the following practical training items:

- (1) confidence manoeuvres and recoveries:
 - (i) slow flights and stalls;
 - (ii) steep turns;
 - (iii) side slips;
 - (iv) engine restart in-flight (if applicable);
 - (v) spins and recovery;
 - (vi) recovery from spiral dives;
 - (vii)recovery from unusual attitudes.
- (2) aerobatic manoeuvres:
 - (i) Chandelle;
 - (ii) Lazy Eight;
 - (iii) rolls;
 - (iv) loops;
 - (v) inverted flight;
 - (vi) Hammerhead turn;
 - (vii)Immelmann.

AMC1 FCL.805 Sailplane towing and banner towing rating THEORETICAL KNOWLEDGE AND FLYING TRAINING

- (a) The aim of the towing instruction is to qualify licence holders to tow banners or sailplanes.
- (b) The ATO should issue a certificate of satisfactory completion of the instruction that can be used for licence endorsement.
- (c) Theoretical knowledge: towing of sailplanes
 - The theoretical knowledge syllabus for towing of sailplanes should cover the revision or explanation of:
 - (1) regulations about towing flights;
 - (2) equipment for the towing activity;
 - (3) sailplane towing techniques, including:
 - (i) signals and communication procedures;
 - (ii) take-off (normal and crosswind);
 - (iii) in-flight launch procedures;
 - (iv) descending on tow;
 - (v) sailplane release procedure;
 - (vi) tow rope release procedure;
 - (vii)landing with tow rope connected (if applicable);
 - (viii) emergency procedures during tow, including equipment malfunctions;
 - (ix) safety procedures;
 - (x) flight performance of the applicable aircraft type when towing sailplanes;
 - (xi) look-out and collision avoidance;
 - (xii) performance data sailplanes, including:
 - (A) suitable speeds;
 - (B) stall characteristics in turns.
- (d) Theoretical knowledge: banner towing
 - The theoretical knowledge syllabus for banner towing should cover the revision or explanation of:
 - (1) regulations about banner towing;
 - (2) equipment for the banner towing activity;
 - (3) ground crew coordination;
 - (4) pre-flight procedures;
 - (5) banner towing techniques, including:
 - (i) take-off launch;
 - (ii) banner pickup manoeuvres;
 - (iii) flying with a banner in tow;
 - (iv) release procedure;
 - (v) landing with a banner in tow (if applicable);
 - (vi) emergency procedures during tow, including equipment malfunctions;
 - (vii) safety procedures;
 - (viii) flight performance of the applicable aircraft type when towing a heavy or light banner;
 - (ix) prevention of stall during towing operations.
- (e) Flying training: towing of sailplanes

The exercises of the towing training syllabus for towing sailplanes should be repeated as necessary until the student achieves a safe and competent standard and should comprise at least the following practical training items:

- (1) take-off procedures (normal and crosswind take-offs);
- (2) 360 $^\circ$ circles on tow with a bank of 30 $^\circ$ and more;
- (3) descending on tow;
- (4) release procedure of the sailplane;
- (5) landing with the tow rope connected (if applicable);
- (6) tow rope release procedure in-flight;
- (7) emergency procedures (simulation);
- (8) signals and communication during tow.

(f) Flying training: banner towing

The exercises of the towing training syllabus for banner towing should be repeated as necessary until the student achieves a safe and competent standard and should comprise at least the following practical training items:

- (1) pickup manoeuvres;
- (2) towing in-flight techniques;
- (3) release procedures;
- (4) flight at critically low air speeds;
- (5) maximum performance manoeuvres;
- (6) emergency manoeuvres to include equipment malfunctions (simulated);
- (7) specific banner towing safety procedures;
- (8) go-around with the banner connected;
- (9) loss of engine power with the banner attached (simulated).

AMC1 FCL.810 (b) Night rating

PPL (H) NIGHT RATING COURSE

- (a) The aim of the course is to qualify PPL(H) holders to exercise the privileges of the licence at night.
- (b) The ATO should issue a certificate of satisfactory completion of the instruction that can be used for licence endorsement.
- (c) Theoretical knowledge

The theoretical knowledge syllabus should cover the revision or explanation of:

- (1) night VMC minima;
- (2) rules about airspace control at night and facilities available;
- (3) rules about aerodrome ground, runway, landing site and obstruction lighting;
- (4) aircraft navigation lights and collision avoidance rules;
- (5) physiological aspects of night vision and orientation;
- (6) dangers of disorientation at night;
- (7) dangers of weather deterioration at night;
- (8) instrument systems or functions and errors;
- (9) instrument lighting and emergency cockpit lighting systems;
- (10) map marking for use under cockpit lighting;
- (11) practical navigation principles;
- (12) radio navigation principles;
- (13) planning and use of safety altitude;
- (14) danger from icing conditions, avoidance and escape manoeuvres.
- (d) Flying training

The exercises of the night rating flight syllabus should be repeated as necessary until the student achieves a safe and competent standard:

- (1) In all cases, exercises 4 to 6 of the night rating flight syllabus should be completed.
- (2) For exercises 1 to 3, up to 50 % of the required flight training may be completed in an FSTD(H). However, all items within each exercise should be conducted in a helicopter in-flight.
- (3) Items marked (*) should be completed in simulated IMC and may be completed in daylight.
- (4) The flying exercises should comprise:
 - (i) Exercise 1:
 - (A) revise basic manoeuvres when flying by sole reference to instruments*;
 - (B) explain and demonstrate transition to instrument flight from visual flight*;
 - (C) explain and revise recovery from unusual attitudes by sole reference to instruments*.
 - (ii) Exercise 2:

Explain and demonstrate the use of radio navigation aids when flying by sole reference to instruments, to include position finding and tracking*.

- (iii) Exercise 3:
 - Explain and demonstrate the use of radar assistance*.
- (iv) Exercise 4:
 - (A) explain and demonstrate the use and adjustment of landing light;
 - (B) explain and demonstrate night hovering:
 - (a) higher and slower than by day;

- (b) avoidance of unintended sideways or backwards movements.
- (C) explain and demonstrate night take-off techniques;
- (D) explain and demonstrate night circuit technique;
- (E) explain and demonstrate night approaches (constant angle) with or without visual approach aids to:
 - (a) heliports;
 - (b) illuminated touchdown areas.
- (F) practise take-off's, circuits and approaches;
- (G) explain and demonstrate night emergency procedures to include:
 - (a) simulated engine failure (to be terminated with power recovery at a safe altitude);
 - (b) simulated engine failure, including SE approach and landing (ME only);
 - (c) simulated inadvertent entry to IMC (not on base leg or final);
 - (d) simulated hydraulic control failure (to include landing);
 - (e) internal and external lighting failure;
 - (f) other malfunctions and emergency procedures as required by the aircraft flight manual.
- (v) Exercise 5:
- Solo night circuits.
- (vi) Exercise 6:
 - (A) explain and demonstrate night cross-country techniques;
 - (B) practise night cross-country dual and as SPIC to a satisfactory standard.

AMC1 FCL.815 Mountain rating

THEORETICAL KNOWLEDGE AND FLYING TRAINING

THEORETICAL KNOWLEDGE	
WHEEL	SKI
1. Equipment	
W.1.1 Personal equipment for the flight	S.1.1 Personal equipment for the flight
W.1.2 Aircraft equipment for the flight	S.1.2 Aircraft equipment for the flight
2. Take-off techniques	
W.2.1 Technique for approach and landing	S.2.1 Technique for approach and landing
on a mountain surface	on a mountain surface
	S.2.2 Landing technique on skis
W.2.2 Rolling techniques of the aircraft on	S.2.3 Rolling techniques of the aircraft on
various runway profiles	skis about the snow nature
W.2.3 Take-off technique	S.2.4 Take-off technique on surfaces
	covered with snow
W.2.4 Aircraft and engine performances	S.2.5. Aircraft and engine performances
about altitude	about altitude
3. Rules	
W.3.1 Mountain rating	S.3.1 Mountain rating
W.3.2 Overflight rules	S.3.2 Overflight rules
W.3.3 Surfaces classification	S.3.3 Surfaces classification
W.3.4 PIC responsibilities	S.3.4 PIC responsibilities
W.3.5 Responsibilities of the surface manager	S.3.5 Responsibilities of the surface manager
W.3.6 Flight plan	S.3.6 Flight plan
	S.3.7 Certification of the ski mounted aeroplanes
4. Meteorology	
W.4.1 Movements of the air mass	S.4.1 Movements of the air mass
W.4.2 Flight consequences	S.4.2 Flight consequences
W.4.3 Relief effect on the movement of the air	S.4.3 Relief effect on the movement of the air masses
masses	S.4.4 Altimetry
W.4.4 Altimetry	
	1

5. Human Performance and Limitations	
W.5.1 The cold	S.5.1 The cold
W.5.2 The food	S.5.2 The food
W.5.3 The hypoxia	S.5.3 The hypoxia
W.5.4 The radiance	S.5.4 The radiance
W.5.5 The thirst	S.5.5 The thirst
W.5.6 The tiredness	S.5.6 The tiredness
W.5.7 Turbulence effects in altitude	S.5.7 Turbulence effects in altitude
6. Navigation	
W.6.1 Progress of the flight	S.6.1 Progress of the flight
W.6.2 Dead reckoning	S.6.2 Dead reckoning
W.6.3 The path over the relief	S.6.3 The path over the relief
W.6.4 Progress in the valleys	S.6.4 Progress in the valleys
W.6.5 Detection of obstacles (high voltage	S.6.5 Detection of obstacles (high voltage lines,
lines, chairlifts, cables, etc.).	chairlifts, cables, etc.)
7. Specific items	
× V	S.7.1 Knowledge of the snow and assessment of the
	snow nature in-flight
	S.7.2 Knowledge of the glacier
	S.7.3 Life of the glacier
	S.7.4 Formation of the cracks
	S.7.5 Snow bridges
	S.7.6 Avalanches
8. Survival	
	S.8.1 Ways of survival (psychological aspects)
	S.8.2 Use of the equipments
	S.8.3 Removal of snow from the aircraft
	S.8.4 Building of a shelter
	S.8.5 How to eat and feed
FLIGHT INSTRUCTION	
WHEEL	SKI
	SKI
I Navigation	
· · · · · · · · · · · · · · · · · · ·	
W.I.1 Flight techniques in the valleys	S.I.I Flight techniques in the valleys
W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges	S.I.2 Flight over mountain passes and ridges.
W.I.1 Flight techniques in the valleys	
W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges	S.I.2 Flight over mountain passes and ridges.
W.I.1 Flight techniques in the valleysW.I.2 Flight over mountain passes and ridgesW.I.3 U-turn in narrow valleys	S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys
W.I.1 Flight techniques in the valleysW.I.2 Flight over mountain passes and ridgesW.I.3 U-turn in narrow valleysW.I.4 Choice of the flight path of aerologyW.I.5 Map reading	S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading II. – Arrival and reconnaissance 	S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival 	S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the arrival and overflight pattern 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the arrival and overflight pattern W.II.3 Choice of the landing pattern 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the arrival and overflight pattern W.II.3 Choice of the landing pattern W.II.4 Aerology awareness 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the arrival and overflight pattern W.II.3 Choice of the landing pattern W.II.4 Aerology awareness W.II.5 Evaluation of the length of the runway 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the arrival and overflight pattern W.II.3 Choice of the landing pattern W.II.4 Aerology awareness W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the arrival and overflight pattern W.II.3 Choice of the landing pattern W.II.4 Aerology awareness W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) W.II.7 Collision avoidance. 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length S.II.6 Evaluation of the runway profile (slope and banking) S.II.7 Collision avoidance
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the arrival and overflight pattern W.II.3 Choice of the landing pattern W.II.4 Aerology awareness W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) W.II.8 Definition of the references for the landing 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length S.II.6 Evaluation of the runway profile (slope and banking) S.II.7 Collision avoidance S.II.8 Definition of the references for the landing
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the arrival and overflight pattern W.II.3 Choice of the landing pattern W.II.4 Aerology awareness W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) W.II.7 Collision avoidance. W.II.8 Definition of the references for the landing (touchdown point) 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length S.II.6 Evaluation of the runway profile (slope and banking) S.II.7 Collision avoidance S.II.8 Definition of the references for the landing (touchdown point)
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the altitude of arrival W.II.2 Choice of the landing pattern W.II.3 Choice of the landing pattern W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) W.II.7 Collision avoidance. W.II.8 Definition of the references for the landing (touchdown point) W.II.9 Determination of the circuit pattern altitude 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.I.5 Map reading S.I.1 Choice of the arrival altitude S.I.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length S.II.6 Evaluation of the runway profile (slope and banking) S.II.7 Collision avoidance S.II.8 Definition of the references for the landing (touchdown point) S.II.9 Determination of the circuit pattern altitude
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the altitude of arrival W.II.2 Choice of the landing pattern W.II.3 Choice of the landing pattern W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) W.II.7 Collision avoidance. W.II.8 Definition of the references for the landing (touchdown point) W.II.9 Determination of the circuit pattern altitude W.II.10 Choice of the final speed depending 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length S.II.6 Evaluation of the runway profile (slope and banking) S.II.7 Collision avoidance S.II.8 Definition of the references for the landing (touchdown point)
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the altitude of arrival W.II.2 Choice of the landing pattern W.II.3 Choice of the landing pattern W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) W.II.7 Collision avoidance. W.II.8 Definition of the references for the landing (touchdown point) W.II.9 Determination of the circuit pattern altitude 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length S.II.6 Evaluation of the runway profile (slope and banking) S.II.7 Collision avoidance S.II.8 Definition of the references for the landing (touchdown point) S.II.9 Determination of the circuit pattern altitude S.II.10 Choice of the final speed depending on the runway
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the altitude of arrival W.II.2 Choice of the landing pattern W.II.3 Choice of the landing pattern W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) W.II.7 Collision avoidance. W.II.8 Definition of the references for the landing (touchdown point) W.II.9 Determination of the circuit pattern altitude W.II.10 Choice of the final speed depending 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length S.II.6 Evaluation of the runway profile (slope and banking) S.II.7 Collision avoidance S.II.8 Definition of the references for the landing (touchdown point) S.II.9 Determination of the circuit pattern altitude S.II.10 Choice of the final speed depending on the runway profile S.II.11 Choice of the take-off axis
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the altitude of arrival W.II.2 Choice of the landing pattern W.II.3 Choice of the landing pattern W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) W.II.7 Collision avoidance. W.II.8 Definition of the references for the landing (touchdown point) W.II.9 Determination of the circuit pattern altitude W.II.10 Choice of the final speed depending 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length S.II.6 Evaluation of the references for the landing (touchdown point) S.II.9 Determination of the circuit pattern altitude S.II.10 Choice of the final speed depending on the runway profile S.II.11 Choice of the take-off axis S.II.12. Choice of the landing axis
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the altitude of arrival W.II.2 Choice of the landing pattern W.II.3 Choice of the landing pattern W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) W.II.7 Collision avoidance. W.II.8 Definition of the references for the landing (touchdown point) W.II.9 Determination of the circuit pattern altitude W.II.10 Choice of the final speed depending 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length S.II.6 Evaluation of the runway profile (slope and banking) S.II.7 Collision avoidance S.II.8 Definition of the references for the landing (touchdown point) S.II.9 Determination of the circuit pattern altitude S.II.10 Choice of the final speed depending on the runway profile S.II.11 Choice of the take-off axis
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the altitude of arrival W.II.2 Choice of the landing pattern W.II.3 Choice of the landing pattern W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) W.II.7 Collision avoidance. W.II.8 Definition of the references for the landing (touchdown point) W.II.9 Determination of the circuit pattern altitude W.II.10 Choice of the final speed depending 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length S.II.6 Evaluation of the references for the landing (touchdown point) S.II.9 Determination of the circuit pattern altitude S.II.10 Choice of the final speed depending on the runway profile S.II.11 Choice of the landing axis S.II.12 Choice of the parking area S.II.14 Observation of the obstacles on the
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the altitude of arrival W.II.2 Choice of the and ing pattern W.II.3 Choice of the landing pattern W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) W.II.7 Collision avoidance. W.II.8 Definition of the references for the landing (touchdown point) W.II.9 Determination of the circuit pattern altitude W.II.10 Choice of the final speed depending 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length S.II.6 Evaluation of the references for the landing (touchdown point) S.II.9 Determination of the circuit pattern altitude S.II.10 Choice of the final speed depending on the runway profile S.II.11 Choice of the landing axis S.II.13 Choice of the parking area
 W.I.1 Flight techniques in the valleys W.I.2 Flight over mountain passes and ridges W.I.3 U-turn in narrow valleys W.I.4 Choice of the flight path of aerology W.I.5 Map reading <i>II. – Arrival and reconnaissance</i> W.II.1 Choice of the altitude of arrival W.II.2 Choice of the altitude of arrival W.II.2 Choice of the landing pattern W.II.3 Choice of the landing pattern W.II.5 Evaluation of the length of the runway W.II.6 Evaluation of the runway profile (slope and banking) W.II.7 Collision avoidance. W.II.8 Definition of the references for the landing (touchdown point) W.II.9 Determination of the circuit pattern altitude W.II.10 Choice of the final speed depending 	 S.I.2 Flight over mountain passes and ridges. S.I.3 U-turn in narrow valleys S.I.4 Choice of the flight path of aerology S.I.5 Map reading S.II.1 Choice of the arrival altitude S.II.2 Choice of the arrival and overflight pattern S.II.3 Description of the circuit pattern S.II.4 Aerology awareness S.II.5 Evaluation of the runway length S.II.6 Evaluation of the references for the landing (touchdown point) S.II.9 Determination of the circuit pattern altitude S.II.10 Choice of the final speed depending on the runway profile S.II.11 Choice of the landing axis S.II.12 Choice of the parking area S.II.14 Observation of the obstacles on the ground (cracks, snow bridges, avalanches)

III – Approach and landing	
W.III.1 Landing pattern altitude W.III.2 Precision of flight along the landing path W.III.3 Corrections on the landing path (accuracy and effectiveness)	S.III.1 Landing pattern altitude S.III.2 Precision of flight along the landing path S.III.3 Corrections on the landing path (accuracy and effectiveness)
W.III.4 Landing (precision of the flare and of the touchdown point)W.III.5 Taxiing (use of the engine power) on various profilesW.III.6 Parking of the aircraft (depending on the runway profile, the traffic, etc.)	 S.III.4 Landing (precision of the flare and of the touchdown point) S.III.5 Taxi of the aircraft on various snows and various runway profiles S.III.6 Parking of the aircraft (depending on the snow nature and the profile of the apron) S.III.7 Turns on various snow nature and various ground profiles
IV. – Take-off	
W.IV.1 Safety checks before take-off W.IV.2 Lining up on the runway W.IV.3 Control of the runway axis during take-off W.IV.4 Choice and use of the visual references of the take-off axis	S. IV.1 Safety checks before take-off. S.IV.2 Lining up on the runway S.IV.3 Control of the runway axis during take-off S.IV.4 Choice and use of the visual references of the take-off axis S.IV.5 Acceleration depending on the nature of the snow S.IV.6 Short take-off S.IV.7 Take-off avoiding the skid of the skis
V Survival	
	S.V.1 Use of the snowshoes S.V.2 Use of the markings

AMC2 FCL.815 Mountain rating SKILL TEST AND PROFICIENCY CHECK

The skill test for the issue or the proficiency check for the revalidation or renewal of a mountain rating should contain the following elements:

(a) oral examination

This part should be done before the flight and should cover all the relevant parts of the theoretical knowledge. At least one question for each of the following sections should be asked:

- (1) specific equipment for a mountain flight (personal and aircraft);
- (2) rules of the mountain flight.If the oral examination reveals a lack in theoretical knowledge, the flight test should not be done and the skill test is failed.
- (b) practical skill test

During the flight test, two sites different from the departure airport should be used for recognition, approach, landing and take-off. For the mountain rating ski or the extension from wheel to ski, one of the two different sites should be a glacier.

AMC1 FCL.820 Flight test rating TRAINING COURSE

GENERAL

- (a) Competency-based training:
 - (1) Training courses for the flight test rating should be competency-based. The training programme should follow as much as possible the syllabus outlined below, but may be adapted taking into account the previous experience, skill and theoretical knowledge level of the applicants.
 - (2) It should also be recognised that the syllabi below assume that suitable flight test experience will be gained subsequent to attendance at the course. Should the applicant be significantly experienced

already, then consideration should be made of that experience and it is possible that course content might be reduced in areas where that experience has been obtained.

- (3) Furthermore, it should be noted that flight test ratings are specific to both a certain category of aircraft (aeroplanes or helicopters) and to a certain category of flight test (category 1 or 2). Therefore, holders of a flight test rating wishing to extend their privileges to further categories of aircraft or to further categories of flight test (this is only relevant for holders of a category 2 flight test rating since the category one flight test rating includes the privileges for category 2 test flights) should not be requested to undertake the same course as an 'ab-initio' applicant. In these cases, the ATO should develop specific 'bridge courses' taking into account the same principles mentioned above.
- (4) To allow proper consideration of the applicant's previous experience, a pre-entry assessment of the applicant's skills should be undertaken by the applicant, on the basis of which the ATO may evaluate the level of the applicant to better tailor the course. Thus, the syllabilisted below should be regarded as a list of individual demonstrable competencies and qualifications rather than a list of mandatory training objectives.
- (b) Continuous evaluation

Training courses for the flight test rating should be built on a continuous evaluation model to guarantee that successful completion of the course ensures that the applicant has reached the level of competence (both theoretical and practical) to be issued a flight test rating.

CONTENT OF THE COURSE

- (c) In addition, the content of the course should vary taking into account whether the applicant seeks privileges for a category 1 or 2 flight test rating, as well as the relevant category of aircraft, and their level of complexity. To better take these factors into account, training courses for the flight test rating have been divided into two conditions:
 - (1) condition 1 courses apply to category 1 flight test ratings on:
 - (i) helicopters certificated in accordance with the standards of CS-27 or CS-29 or equivalent airworthiness codes;
 - (ii) aeroplanes certificated in accordance with:
 - (A) the standards of CS-25 or equivalent airworthiness codes; or
 - (B) the standards of CS-23 or equivalent airworthiness codes, within the commuter category or having an M_D above 0.6 or a maximum ceiling above 25 000 ft.
 - (2) condition 2 training courses apply to:
 - (i) category 2 flight test ratings for:
 - (A) helicopters certificated in accordance with the standards of CS-27 or CS-29 or equivalent airworthiness codes;
 - (B) aeroplanes certificated in accordance with:
 - (a) the standards of CS-25 or equivalent airworthiness codes; or
 - (b) the standards of CS-23 or equivalent airworthiness codes (included those mentioned in (c)(1)(ii)(B)), except for aeroplanes with a maximum take-off mass of less than 2 000 kg.
 - (ii) category 1 flight tests for aeroplanes certificated in accordance with the standards of CS-23, with a maximum take-off mass of more than 2 000kg, with the exclusion of those mentioned in (c)(1)(ii)(B) (which are subject to condition 1 courses).

AEROPLANES

- (d) Condition 1 courses for aeroplanes
 - (1) These courses should include approximately:
 - (i) 350 hours of ground training;
 - (ii) 100 hours of flight test training, during which at least 15 flights should be made without an instructor on board;
 - (iii) principles of test management and risk and safety managements should be integrated throughout the course. In addition, principles and methods applicable to the certification activity, as well as safety assessments should be taught.
 - (2) These courses should include instruction on at least 10 different aeroplane types, of which at least one should be certificated in accordance with CS-25 standards or equivalent airworthiness codes.
 - (3) During the course the student should be required to develop at least five substantial flight test reports.
 - (4) The student should be evaluated through examinations on all of the theoretical knowledge subjects, and undertake a final in-flight test upon completion of the syllabus.
 - (5) Syllabus. The following subjects should be covered in the course:

CONDITION 1 - AEROPLAN	ES			
Theoretical knowledge	 (a) aerodynamics; (b) stability and control or handling qualities; (c) engines and performance; (d) measurements and flight test instrumentation (including telemetry). 			
	(a) performance: (at least one flight test report should be developed)	 (1) air speed calibration; (2) climb ME; (3) take-off and landing, including turboprop or turbofan OEI. 		
	(b) engines	Turboprop or turbofan limitations and relight envelope		
Flight test techniques and flight training	(c) handling qualities (at least two flight test reports should be developed)	 (1) flight controls characteristics; (2) longitudinal handling qualities; (3) longitudinal manoeuvre stability; (4) take-off and landing MET or ME turbofan, including vmcq and vmu; (5) lateral, directional handling qualities; (6) handling qualities evaluation; (7) variable stability demo flights including HOFCS; (8) stalls; (9) spins; (10) vmca. 		
	(d) systems (at least one flight test report should be developed)	At least three different systems, for example: (1) autopilot or AFCS; (2) glass cockpit evaluation; (3) radio navigation, instruments qualification and integrated avionics; (4) TAWS;		
		(5) ACAS.		
	(e) high speed certification test			
]	(f) final evaluation exercise (a flight	test report should be developed)		

- (e) Condition 2 courses for aeroplanes
 - (1) These courses should include approximately:
 - (i) 150 hours of ground training;
 - (ii) 50 hours of flight test training, during which at least eight flights should be made without an instructor on board.

Principles of test management and risk and safety managements should be integrated throughout the course. In addition, principles and methods applicable to the certification activity, as well as safety assessments should be taught.

- (2) These courses should include instruction on at least seven different aeroplane types, of which at least one should be certificated in accordance with CS-25 standards or equivalent airworthiness codes.
- (3) During the course the student should be required to develop at least three substantial flight test reports.
- (4) The student should be evaluated through examinations on all of the theoretical knowledge subjects, and undertake a final in-flight test upon completion of the syllabus.
- (5) Syllabus. The following subjects should be covered in the course:

aerodynamics; stability and control or handling engines and performance; measurements and flight test inst performance: (at least one flight report should be developed)	<pre>qualities; rumentation (including telemetry). (1) air speed calibration; (2) climb ME; (3) take-off and landing, MET or</pre>
performance: (at least one flight	(1) air speed calibration;(2) climb ME;
	ME turbofan
nandling qualities	 (1) flight control characteristics; (2) longitudinal static, dynamic stability and control or handling qualities; (3) lateral, directional stability and control or handling qualities; (4) stalls; (5) spins.
systems least one flight test report ild be developed)	At least three different systems, for example: (1) autopilot or AFCS; (2) glass cockpit evaluation; (3) radio navigation, instruments qualification and integrated avionics; (4) TAWS; (5) ACAS.
	ystems least one flight test report

HELICOPTERS

- (f) Condition 1 courses for helicopters:
 - (1) These courses should include approximately:
 - (i) 350 hours of ground training;
 - (ii) 100 hours of flight test training, during which at least 20 flights should be made without an instructor on board.

Principles of test management and risk and safety managements should be integrated throughout the course. In addition, principles and methods applicable to the certification activity, as well as safety assessments should be taught.

- (2) These courses should include instruction on at least eight different helicopter types, of which at least one should be certificated in accordance with CS-29 standards or equivalent airworthiness codes.
- (3) During the course the student should be required to develop at least five substantial flight test reports.
- (4) The student should be evaluated through examinations on all of the theoretical knowledge subjects, and undertake a final in-flight test upon completion of the syllabus.
- (5) Syllabus. The following subjects should be covered in the course:

CONDITION 1 - HELICOPTER	S			
Theoretical knowledge	 (a) aerodynamics; (b) stability and control or handling qualities; (c) engines and performance; (d) measurements and flight test instrumentation (including telemetry). 			
Flight test techniques and flight training	(a) performance: (at least one flight test report should be developed)	 (1) air speed calibration; (2) level flight, climb and descent, vertical and hover performance; 		
	(b) engines	(1) digital engine governing;(2) turbine or piston engine evaluation.		
	(c) handling qualities (at least two flight test reports	 (1) flight control characteristics; (2) longitudinal static, dynamic stability and control or handling qualities; (3) lateral, directional stability and control or handling sublition; 		
	should be developed)	 control or handling qualities; (4) ADS 33; (5) teetering rotor assessment; (6) rigid rotor assessment; (7) variable stability demo flights including HOFCS. 		
	(d) systems (at least one flight test report should be developed)	At least three different systems, for example: (1) navigation management systems; (2) autopilot or AFCS;		
		(3) night vision goggles or electro- optics;(4) glass cockpit evaluation;		
	(e) height and velocity envelope and EOL, including relights			
	(f) category A procedure			
	(g) vibrations and rotor adjustments (h) auto rotations			
		(i) final evaluation exercise (a flight test report should be developed)		

(g) Condition 2 courses for helicopters

- (1) These courses should include approximately:
 - (i) 150 hours of ground training;
 - (ii) 50 hours of flight test training, during which at least eight flights should be made without an instructor on board.

Principles of test management and risk and safety management should be integrated throughout the course. In addition, principles and methods applicable to the certification activity, as well as safety assessments should be taught.

- (2) These courses should include instruction on at least four different helicopters types, of which at least one should be certificated in accordance with CS-29 standards or equivalent airworthiness codes.
- (3) During the course the student should be required to develop at least three substantial flight test reports.
- (4) The student should be evaluated through examinations on all of the theoretical knowledge subjects, and undertake a final in-flight test upon completion of the syllabus.
- (5) Syllabus. The following subjects should be covered in the course:

CONDITION 2 - HELICOPTER	S		
Theoretical knowledge	 (a) aerodynamics; (b) stability and control or handling qualities; (c) engines and performance; (d) measurements and flight test instrumentation (including telemetry). 		
Flight test techniques and flight training	(a) performance: (at least one flight test report should be developed)	 (1) air speed calibration; (2) level flight, climb and descent, vertical and hover performance; 	
	(b) engines	(1) digital engine governing;(2) turbine or piston engine evaluation.	
	(c) handling qualities (at least two flight test reports should be developed)	 (1) flight control characteristics; (2) longitudinal static, dynamic stability and control or handling qualities; (3) lateral, directional stability and control or handling qualities; 	
	(d) systems (at least one flight test report should be developed)	At least three different systems, for example: (1) navigation management systems; (2) autopilot or AFCS; (3) night vision goggles or electro-	
		optics; (4) glass cockpit evaluation;	
	(g) vibrations and rotor adjustments(i) final evaluation exercise (a flight test report should be developed)		

SUBPART H — CLASS AND TYPE RATINGS

GM1 FCL.700 Circumstances in which class or type ratings are required LIST OF CLASS OR TYPE RATINGS

The following tables contain lists of aeroplanes or TMG that are included in class ratings.

Manufacturer	Aeroplanes		Licence Endorsemen
	SEP (land)		
	SEP (land) with variable pitch propellers	(D)	SEP (land)
All manufacturers	SEP (land) with retractable undercarriage		
	SEP (land) with turbo or super charged engines		
	SEP (land) with cabin pressurisation		
	SEP (land) with tail wheels		
	SEP (land) with EFIS		
	SEP (land) with SLPC		
	SEP (sea)		
	SEP (sea) with variable pitch propellers	(D)	SEP (sea)
	SEP (sea) with turbo or super charged engines		
	SEP (sea) with cabin pressurisation		
	SEP (sea) with EFIS		
	SEP (sea) with SLPC		
All	MEP (land)	(D)	MEP (land)
manufacturers	MEP (sea)	(D)	MEP (sea)
(b) Class ratings (ae	proplane): SP and SEP TMG (land):		
All	All TMGs having an integrally mounted, non-retractable		TMG
	engine and a non-retractable propeller	1	1

(c) Additional class and type rating lists and endorsement lists are published by EASA.

(d) Whenever (D) is indicated in one of the lists mentioned in paragraphs (a) to (c), it indicates that difference training in accordance with FCL.710 is required.

GM1 FCL.710 Class and type ratings — variants

Differences and familiarisation training

- (a) Differences training require the acquisition of additional knowledge and training on an appropriate training device or the aircraft.
- (b) Familiarisation training requires the acquisition of additional knowledge.

AMC1 FCL.725 (a) Requirements for the issue of class and type ratings SYLLABUS OF THEORETICAL KNOWLEDGE FOR CLASS OR TYPE RATINGS

I. SE AND ME AEROPLANES

- (a) Detailed listing for aeroplane structure and equipment, normal operation of systems and malfunctions:
 - (1) dimensions: minimum required runway width for 180 $^{\circ}$ turn.
 - (2) engine including auxiliary power unit:
 - (i) type of engine or engines;
 - (ii) in general, function of the following systems or components:

- (A) engine;
- (B) auxiliary power unit;
- (C) oil system;
- (D) fuel system;
- (E) ignition system;
- (F) starting system;
- (G) fire warning and extinguishing system;
- (H) generators and generator drives;
- (I) power indication;
- (J) reverse thrust;
- (K) water injection.
- (iii) on piston or turbine-propeller engines additionally:
- (A) propeller system;
- (B) feathering system.
- (iv) engine controls (including starter), engine instruments and indications in the cockpit, their function, interrelation and interpretation;
- (v) engine operation, including APU, during engine start, start and engine malfunctions, procedures for normal operation in the correct sequence.
- (3) fuel system:
 - (i) location of the fuel tanks, fuel pumps, fuel lines to the engines, tank capacities, valves and measuring;
 - (ii) location of the following systems:
 - (A) filtering;
 - (B) heating;
 - (C) fuelling and defueling;
 - (D) dumping;
 - (E) venting.
 - (iii) in the cockpit:
 - (A) the monitors and indicators of the fuel system;
 - (B) quantity and flow indication, interpretation.
 - (iv) procedures:
 - (A) fuel procedures distribution into the various tanks;
 - (B) fuel supply, temperature control and fuel dumping.
- (4) pressurisation and air conditioning:
 - (i) components of the system and protection devices;
 - (ii) cockpit monitors and indicators;
 - (iii) interpretation about the operational condition;
 - (iv) normal operation of the system during start, cruise, approach and landing, air conditioning airflow and temperature control.
- (5) ice and rain protection, windshield wipers and rain repellent:
 - (i) ice protected components of the aeroplane including engines, heat sources, controls and indications;
 - (ii) operation of the anti-icing or de-icing system during take-off, climb, cruise and descent, conditions requiring the use of the protection systems;
 - (iii) controls and indications of the windshield wipers and rain repellent systems operation.
- (6) hydraulic system:
 - (i) components of the hydraulic system(s), quantities and system pressure, hydraulically actuated components associated to the respective hydraulic system;
 - (ii) controls, monitors and indicators in the cockpit, function and interpretation of indications.
- (7) landing gear:
 - (i) main components of the:
 - (A) main landing gear;
 - (B) nose gear;
 - (C) gear steering;
 - (D) wheel brake system, including anti-skid.
 - (ii) gear retraction and extension (including changes in trim and drag caused by gear operation);
 - (iii) required tyre pressure, or location of the relevant placard;
 - (iv) controls and indicators including warning indicators in the cockpit in relation to the retraction or extension condition of the landing gear and brakes;

- (v) components of the emergency extension system.
- (8) flight controls and high lift devices:
 - (i) (A) aileron system;
 - (B) elevator system;
 - (C) rudder system;
 - (D) trim system;
 - (E) spoiler system;
 - (F) lift devices;
 - (G) stall warning system;
 - (H) take-off configuration warning system.
 - (ii) flight control system from the cockpit controls to the flight control or surfaces;
 - (iii) controls, monitors and indicators including warning indicators of the systems mentioned under (8)
 - (i), interrelation and dependencies.
- (9) electrical power supply:
 - (i) number, power, voltage, frequency and location of the main power system (AC or DC), auxiliary power system location and external power system;
 - (ii) location of the controls, monitors and indicators in the cockpit;
 - (iii) flight instruments, communication and navigation systems, main and back-up power sources;
 - (iv) location of vital circuit breakers;
 - (v) generator operation and monitoring procedures of the electrical power supply.
- (10) flight instruments, communication, radar and navigation equipment, autoflight and flight data recorders:
 - (i) visible antennae;
 - (ii) controls and instruments of the following equipment in the cockpit during normal operation:
 - (A) flight instruments;
 - (B) flight management systems;
 - (C) radar equipment, including radio altimeter;
 - (D) communication and navigation systems;
 - (E) autopilot;
 - (F) flight data recorder, cockpit voice recorder and data-link communication recording function;
 - (G) TAWS;
 - (H) collision avoidance system;
 - (I) warning systems.
- (11) cockpit, cabin and cargo compartment:
 - (i) operation of the exterior, cockpit, cabin and cargo compartment lighting and the emergency lighting;
 - (ii) operation of the cabin and cargo doors, stairs, windows and emergency exits;
 - (iii) main components of the oxygen system and their location, oxygen masks and operation of the oxygen systems for the crew and passengers, required amount of oxygen by means of a table or diagram.
- (12) emergency equipment operation and correct application of the following emergency equipment in the aeroplane:
 - (i) portable fire extinguisher;
 - (ii) first-aid kits;
 - (iii) portable oxygen equipment;
 - (iv) emergency ropes;
 - (v) life-jacket;
 - (vi) life rafts;
 - (vii)emergency transmitters;
 - (viii) crash axes;
 - (ix) megaphones;
 - (x) emergency signals.
- (13) pneumatic system:
 - (i) components of the pneumatic system, pressure source and actuated components;
 - (ii) controls, monitors and indicators in the cockpit and function of the system;
 - (iii) vacuum system.
- (b) Limitations:
 - (1) general limitations:
 - (i) certification of the aeroplane, category of operation, noise certification and maximum and minimum performance data for all flight profiles, conditions and aircraft systems:

- (A) maximum tail and crosswind-components at take-off and landing;
- (B) maximum speeds for flap extension v_{fo} ;
- (C) at various flap settings v_{fe};
- (D) for landing gear operation v_{lo} , M_{lo} ;
- (E) for extended landing gear v_{le} , M_{le} ;
- (F) for maximum rudder deflection v_a , M_a ;
- (G) for tyres;
- (H) one propeller feathered.
- (ii) (A) minimum control speed air v_{mca} ;
 - (B) minimum control speed ground v_{mcg} ;
 - (C) stall speed under various conditions v_{so} , v_{s1} ;
 - (D) maximum speed v_{ne}, M_{ne};
 - (E) maximum speed for normal operation $v_{\text{mo}},\,M_{\text{mo}};$
 - (F) altitude and temperature limitations;
 - (G) stick shaker activation.
- (iii) (A) maximum airport pressure altitude, runway slope;
 - (B) maximum taxi mass;
 - (C) maximum take-off mass;
 - (D) maximum lift off mass;
 - (E) maximum landing mass;
 - (F) zero fuel mass;
 - (G) maximum dumping speed v_{dco} , M_{dco} , v_{dce} , M_{dce} ;
 - (H) maximum load factor during operation;
 - (I) certificated range of centre of gravity.
- (2) engine limitations:
 - (i) operating data of the engines:
 - (A) time limits and maximum temperatures;
 - (B) minimum RPMs and temperatures;
 - (C) torque;
 - (D) maximum power for take-off and go-around on pressure altitude or flight altitude and temperature;
 - (E) piston engines: certified range of mixture;
 - (F) minimum and maximum oil temperature and pressure;
 - (G) maximum starter time and required cooling;
 - (H) time between two start attempts for engines and auxiliary power unit;
 - (I) for propeller: maximum RPM of propeller triggering of automatic feathering device.
 - (ii) certified oil grades.
- (3) systems limitations:
 - (i) operating data of the following systems:
 - (A) pressurisation, air conditioning maximum pressures;
 - (B) electrical power supply, maximum load of main power system (AC or DC);
 - (C) maximum time of power supply by battery in case of emergency;
 - (D) mach trim system and yaw damper speed limits;
 - (E) autopilot limitations of various modes;
 - (F) ice protection;
 - (G) speed and temperature limits of window heat;
 - (H) temperature limits of engine and wing anti-ice.
 - (ii) fuel system: certified fuel specifications, minimum and maximum pressures and temperature of the fuel.
 - (4) minimum equipment list.
- (c) Performance, flight planning and monitoring:
 - (1) performance calculation about speeds, gradients, masses in all conditions for take-off, en-route, approach and landing according to the documentation available (for example for take-off v_1 , v_{mbe} , v_r , v_{lof} , v_2 , take-off distance, maximum take-off mass and the required stop distance) on the following factors:
 - (i) accelerate or stop distance;
 - (ii) take-off run and distance available (TORA, TODA);
 - (iii) ground temperature, pressure altitude, slope, wind;
 - (iv) maximum load and maximum mass (for example ZFM);

- (v) minimum climb gradient after engine failure;
- (vi) influence of snow, slush, moisture and standing water on the runway;
- (vii) possible single or dual engine failure during cruise flight;
- (viii) use of anti-icing systems;
- (ix) failure of water injection system or antiskid system;
- (x) speeds at reduced thrust, v_1 , v_{1red} , v_{mbe} , v_{mu} , v_r , v_{lof} , v_2 ;
- (xi) safe approach speed v_{ref} on v_{mca} and turbulent conditions;
- (xii) effects of excessive approach speed and abnormal glideslope on the landing distance;
- (xiii) minimum climb gradient during approach and landing;
- (xiv) limiting values for a go-around with minimum fuel;
- (xv) maximum allowable landing mass and the landing distance for the destination and alternate aerodrome on the following factors:
 - (A) available landing distance;
 - (B) ground temperature, pressure altitude, runway slope and wind;
 - (C) fuel consumption to destination or alternate aerodrome;
 - (D) influence of moisture on the runway, snow, slush and standing water;
 - (E) failure of the water injection system or the anti skid system;
 - (F) influence of thrust reverser and spoilers.
- (2) flight planning for normal and abnormal conditions:
 - (i) optimum or maximum flight level;
 - (ii) minimum required flight altitude;
 - (iii) drift down procedure after an engine failure during cruise flight;
 - (iv) power setting of the engines during climb, cruise and holding under various circumstances, as well as the most economic cruising flight level;
 - (v) calculation of a short range or long range flight plan;
 - (vi) optimum and maximum flight level and power setting of the engines after engine failure.
- (3) flight monitoring.
- (d) Load and balance and servicing:
 - (1) load and balance:
 - (i) load and trim sheet on the maximum masses for take-off and landing;
 - (ii) centre of gravity limits;
 - (iii) influence of fuel consumption on the centre of gravity;
 - (iv) lashing points, load clamping, maximum ground load.
 - (2) servicing on ground, servicing connections for:
 - (i) fuel;
 - (ii) oil;
 - (iii) water;
 - (iv) hydraulic;
 - (v) oxygen;
 - (vi) nitrogen;
 - (vii)conditioned air;
 - (viii) electric power;
 - (ix) start air;
 - (x) toilet and safety regulations.
- (e) Emergency procedures:
 - (1) recognition of the situation as well as immediate memory actions in correct sequence and for those conditions recognised as emergencies by the manufacturer and competent authority for certification:
 - (i) engine failure during take-off before and after v_1 , as well as in-flight;
 - (ii) malfunctions of the propeller system;
 - (iii) engine overheat, engine fire on ground and in-flight;
 - (iv) wheel well fire;
 - (v) electrical smoke or fire;
 - (vi) rapid decompression and emergency descent;
 - (vii)air-conditioning overheat, anti-ice system overheat;
 - (viii) fuel pump failure;
 - (ix) fuel freezing overheat;
 - (x) electric power failure;
 - (xi) equipment cooling failure;

(xii)flight instrument failure;

- (xiii) partial or total hydraulic failure;
- (xiv) failures at the lift devices and flight controls including boosters;
- (xv) cargo compartment smoke or fire.
- (2) actions according to the approved abnormal and emergency checklist:
 - (i) engine restart in-flight;
 - (ii) landing gear emergency extension;
 - (iii) application of the emergency brake system;
 - (iv) emergency extension of lift devices;
 - (v) fuel dumping;
 - (vi) emergency descent.
- (f) Special requirements for extension of a type rating for instrument approaches down to decision heights of less than 200 ft (60 m):
 - (1) airborne and ground equipment:
 - (i) technical requirements;
 - (ii) operational requirements;
 - (iii) operational reliability;
 - (iv) fail operational;
 - (v) fail passive;
 - (vi) equipment reliability;
 - (vii) operating procedures;
 - (viii) preparatory measures;
 - (ix) operational downgrading;
 - (x) communications.
 - (2) procedures and limitations:
 - (i) operational procedures;
 - (ii) crew coordination.
- (g) Special requirements for 'glass cockpit' aeroplanes with EFIS Additional learning objectives:
 - (1) general rules of aeroplanes computer hardware and software design;
 - (2) logic of all crew information and alerting systems and their limitations;
 - (3) interaction of the different aeroplane computer systems, their limitations, the possibilities of computer fault recognition and the actions to be performed on computer failures;
 - (4) normal procedures including all crew coordination duties;
 - (5) aeroplane operation with different computer degradations (basic flying).
- (h) Flight management systems.

II. SE AND ME HELICOPTERS

- (a) Detailed listing for helicopters structure, transmissions, rotors and equipment, normal and abnormal operation of systems:
 - (1) dimensions.
 - (2) engine including aux. power unit, rotor and transmissions; if an initial type rating for a turbine engine helicopter is applied for, the applicant should have received turbine engine instruction:
 - (i) type of engine or engines;
 - (ii) in general, the function of the following systems or components:
 - (A) engine;
 - (B) auxiliary power unit;
 - (C) oil system;
 - (D) fuel system;
 - (E) ignition system;
 - (F) starting system;
 - (G) fire warning and extinguishing system;
 - (H) generators and generator drive;
 - (I) power indication;
 - (J) water or methanol injection.

- (iii) engine controls (including starter), engine instruments and indications in the cockpit, their function and interrelation and interpretation;
- (iv) engine operation, including APU, during engine start and engine malfunctions, procedures for normal operation in the correct sequence;
- (v) transmission system:
 - (A) lubrication;
 - (B) generators and generator drives;
 - (C) freewheeling units;
 - (D) hydraulic drives;
 - (E) indication and warning systems.
- (vi) type of rotor systems: indication and warning systems.
- (3) fuel system:
 - (i) location of the fuel tanks, fuel pumps, fuel lines to the engines tank capacities, valves and measuring;
 - (ii) the following systems:
 - (A) filtering;
 - (B) fuelling and defuelling heatings;
 - (C) dumping;
 - (D) transferring;
 - (E) venting.
 - (iii) in the cockpit: the monitors and indicators of the fuel system, quantity and flow indication, interpretation;
 - (iv) fuel procedures distribution into the various tanks fuel supply and fuel dumping.
- (4) air conditioning:
 - (i) components of the system and protection devices;
 - (ii) cockpit monitors and indicators;
 - Note: interpretation about the operational condition: normal operation of the system during start, cruise approach and landing, air conditioning airflow and temperature control.
- (5) ice and rain protection, windshield wipers and rain repellent:
 - (i) ice protected components of the helicopter, including engines and rotor systems, heat sources, controls and indications;
 - (ii) operation of the anti-icing or de-icing system during take-off, climb, cruise and descent, conditions requiring the use of the protection systems;
 - (iii) controls and indications of the windshield wipers and rain repellent system operation.
- (6) hydraulic system:
 - (i) components of the hydraulic system(s), quantities and system pressure, hydraulically actuated components associated to the respective hydraulic system;
 - (ii) controls, monitors and indicators in the cockpit, function and interrelation and interpretation of indications.
- (7) landing gear, skids fixed and floats:
 - (i) main components of the:
 - (A) main landing gear;
 - (B) nose gear;
 - (C) tail gear;
 - (D) gear steering;
 - (E) wheel brake system.
 - (ii) gear retraction and extension;
 - (iii) required tyre pressure, or location of the relevant placard;
 - (iv) controls and indicators including warning indicators in the cockpit in relation to the retraction or extension condition of the landing gear;
 - (v) components of the emergency extension system.
- (8) flight controls, stab- and autopilot systems: controls, monitors and indicators including warning indicators of the systems, interrelation and dependencies.
- (9) electrical power supply:
 - (i) number, power, voltage, frequency and if applicable phase and location of the main power system (AC or DC) auxiliary power system location and external power system;
 - (ii) location of the controls, monitors and indicators in the cockpit;
 - (iii) main and back-up power sources flight instruments, communication and navigation systems, main and back-up power sources;

- (iv) location of vital circuit breakers;
- (v) generator operation and monitoring procedures of the electrical power supply.
- (10) flight instruments, communication, radar and navigation equipment, autoflight and flight data recorders:
 - (i) antennas;
 - (ii) controls and instruments of the following equipment in the cockpit:
 - (A) flight instruments (for example air speed indicator, pitot static system, compass system, flight director);
 - (B) flight management systems;
 - (C) radar equipment (for example weather radar, transponder);
 - (D) communication and navigation system (for example HF, VHF, ADF, VOR/DME, ILS, marker beacon) and area navigation systems;
 - (E) stabilisation and autopilot system;
 - (F) flight data recorder, cockpit voice recorder, data-link communication recording function and radio altimeter;
 - (G) collision avoidance system;
 - (H) TAWS;
 - (I) HUMS.
- (11) cockpit, cabin and cargo compartment:
 - (i) operation of the exterior, cockpit, cabin and cargo compartment lighting and the emergency lighting;
 - (ii) operation of the cabin doors and emergency exits.
- (12) emergency equipment:
 - (i) operation and correct application of the following mobile emergency equipment in the helicopter:
 - (A) portable fire extinguisher;
 - (B) first-aid kits;
 - (C) portable oxygen equipment;
 - (D) emergency ropes;
 - (E) life-jacket;
 - (F) life rafts;
 - (G) emergency transmitters;
 - (H) crash axes;
 - (I) megaphones;
 - (J) emergency signals;
 - (K) torches.
 - (ii) operation and correct application of the fixed emergency equipment in the helicopter: emergency floats.
- (b) Limitations:
 - (1) general limitations, according to the helicopter flight manual;
 - (2) minimum equipment list.
- (c) Performance, flight planning and monitoring:
 - (1) performance calculation about speeds, gradients, masses in all conditions for take-off, en-route, approach and landing:
 - (i) take-off:
 - (A) hover performance in and out of ground effect;
 - (B) all approved profiles, cat A and B;
 - (C) HV diagram;
 - (D) take-off and rejected take-off distance;
 - (E) take-off decision point (TDP) or (DPATO);
 - (F) calculation of first and second segment distances;
 - (G) climb performance.
 - (ii) en-route:
 - (A) air speed indicator correction;
 - (B) service ceiling;
 - (C) optimum or economic cruising altitude;
 - (D) max endurance;
 - (E) max range;
 - (F) cruise climb performance.

(iii) landing:

- (A) hovering in and out of ground effect;
- (B) landing distance;
- (C) landing decision point (LDP) or (DPBL).
- (iv) knowledge or calculation of: v_{lo}, v_{le}, v_{mo}, v_x, v_y, v_{toss}, v_{ne}, Vmax range, Vmini.
- (2) flight planning for normal and abnormal conditions:
 - (i) optimum or maximum flight level;
 - (ii) minimum required flight altitude;
 - (iii) drift down procedure after an engine failure during cruise flight;
 - (iv) power setting of the engines during climb, cruise and holding under various circumstances as well as at the most economic cruising flight level;
 - optimum and maximum flight level and power setting after an engine failure. (v)
- (3) effect of optional equipment on performance.
- (d) Load, balance and servicing:
 - (1) load and balance:
 - (i) load and trim sheet on the maximum masses for take-off and landing;
 - (ii) centre of gravity limits;
 - (iii) influence of the fuel consumption on the centre of gravity;
 - (iv) lashing points, load clamping, max ground load.
 - (2) servicing on the ground, servicing connections for:
 - (i) fuel;
 - (ii) oil, etc.;
 - (iii) and safety regulations for servicing.
- (e) Emergency procedures.
- (f) Special requirements for extension of a type rating for instrument approaches down to a decision height of less than 200 ft (60 m):
 - (1) airborne and ground equipment:
 - (i) technical requirements;
 - (ii) operational requirements;
 - (iii) operational reliability;
 - (iv) fail operational;
 - (v) fail passive;
 - (vi) equipment reliability;
 - (vii)operating procedures;
 - (viii) preparatory measures;
 - (ix) operational downgrading;
 - (x) communication.
 - (2) procedures and limitations:
 - (i) operational procedures;
 - (ii) crew co-ordination.
- (g) Special requirements for helicopters with EFIS.
- (h) Optional equipment.

III. AIRSHIPS

- (a) Detailed listing for airship structure and equipment, normal operation of systems and malfunctions: (1) dimensions;

 - (2) structure and envelope:
 - (i) internal structure;
 - (ii) envelope;
 - (iii) pressure system;
 - (iv) gondola;
 - (v) empennage.

- (3) flight controls;
- (4) systems:
 - (i) hydraulic;
 - (ii) pneumatic.
- (5) landing gear;
- (6) fuel system;
- (7) fire warning and extinguishing system;
- (8) emergency equipment;
- (9) electrical systems;
- (10) avionics, radio navigation and communication equipment;
- (11) instrumentation;
- (12) engines and propellers;
- (13) heating, ventilation and air-condition;
- (14) operational procedures during start, cruise, approach and landing:
 - (i) normal operations;
 - (ii) abnormal operations.
- (b) Limitations:
 - (1) general limitations:
 - (i) certification of the airship, category of operation, noise certification and maximum and minimum performance data for all flight profiles, conditions and aircraft systems;
 - (ii) speeds;
 - (iii) altitudes.
 - (2) engine limitations;
 - (3) systems limitations;
 - (4) minimum equipment list.
- (c) Performance and flight planning:
 - (1) performance calculation;
 - (2) flight planning.
- (d) Load and balance and servicing:
 - (1) load and balance;
 - (2) servicing.
- (e) Emergency procedures:
 - (1) recognition of emergency situations;
 - (2) actions according to the approved abnormal and emergency checklist.

AMC2 FCL.725 (a) Requirements for the issue of class and type ratings

TRAINING COURSE

FLIGHT INSTRUCTION FOR TYPE RATINGS: HELICOPTERS

- (a) The amount of flight instruction depends on:
 - (i) complexity of the helicopter type, handling characteristics, level of technology;
 - (ii) category of helicopter (SEP or SE turbine helicopter, ME turbine and MP helicopter);
 - (iii) previous experience of the applicant;
 - (iv) the availability of FSTDs.
- (b) FSTDs

The level of qualification and the complexity of the type will determine the amount of practical training that may be accomplished in FSTDs, including completion of the skill test. Before undertaking the skill test, a student should demonstrate competency in the skill test items during the practical training.

(c) Initial issue

The flight instruction (excluding skill test) should comprise:

Helicopter types	In helicopter	In helicopter and FSTD associated training Credits		
SEP (H)		Using FFS C/D: At least 2 hrs helicopter and at least 6 hrs total		
SEF (H)	5.1	Using FTD 2/3: At least 4 hrs helicopter and at least 6 hrs total		
SET(H) under 3175 kg	5 hrs	Using FFS C/D: At least 2 hrs helicopter and at least 6 hrs total		
МТОМ		Using FTD 2/3: At least 4 hrs helicopter and at least 6 hrs total		
SET(H) at or over 3175	8 hrs	Using FFS C/D: At least 2 hrs helicopter and at least 10 hrs total		
kg MTOM		Using FTD 2/3: At least 4 hrs helicopter and at least 10 hrs total		
SPH MET (H) CS and FAR		Using FFS C/D: At least 2 hrs helicopter and at least 10 hrs total		
27 and 29		Using FTD 2/3: At least 4 hrs helicopter and at least 10 hrs total		
МРН	10 hrs	Using FFS C/D: At least 2 hrs helicopter, and at least 12 hrs total		
		Using FTD 2/3: At least 4 hrs helicopter, and at least 12 hrs total		

(d) Additional types

The flight instruction (excluding skill test) should comprise:

Helicopter types	In helicopter	In helicopter and FSTD associated training Credits		
SEP(H) to SEP(H) within	2.1	Using FFS C/D: At least 1 hr helicopter and at least 3 hrs total		
AMC1 FCL.740.H (a)(3)	2 hrs	Using FTD 2/3: At least 1 hr helicopter and at least 4 hrs total		
SEP(H) to SEP(H) not included in AMC1	5 has	Using FFS C/D: At least 1 hr helicopter and at least 6 hrs total		
FCL.740.H (a)(3)	5 hrs	Using FTD 2/3: At least 2 hr helicopter and at least 7 hrs total		
	2 har	Using FFS C/D: At least 1 hr helicopter and at least 3 hrs total		
SET(H) to SET(H)	2 hrs	Using FTD 2/3: At least 1 hr helicopter and at least 4 hrs total		
SE difference training	1 hr	N/A		
MET(H) to MET(H)	3 hrs	Using FFS C/D: At least 1 hr helicopter and at least 4 hrs total		
MET(H) to MET(H)		Using FTD 2/3: At least 2 hrs helicopter and at least 5 hrs total		
ME difference training	1 hrs	N/A		
MPH to MPH	5 hrs	Using FFS C/D: At least 1 hr helicopter and at least 6 hrs total		
		Using FTD 2/3: At least 2 hrs helicopter and at least 7 hrs total		
Extend privileges on the same type rating from SPH to MPH (except for initial MP issue), or from MPH to SPH	2 hrs	Using FFS C/D: At least 1 hr helicopter and at least 3 hrs total		

(e) Holders of an IR (H) wishing to extend the IR (H) to further types should have additionally 2 hours flight training on type by sole reference to instruments according to IFR which may be conducted in an FFS C/D or FTD 2/3. Holders of an SE IR (H) wishing to extend the IR privileges to an ME IR (H) for the first time should complete at least 5 hours training.

AMC1 FCL.740 (b)(1) Validity and renewal of class and type ratings

RENEWAL OF CLASS AND TYPE RATINGS: REFRESHER TRAINING

- (a) Paragraph (b)(1) of FCL.740 determines that if a class or type rating has lapsed, the applicant shall take refresher training at an ATO. The objective of the training is to reach the level of proficiency necessary to safely operate the relevant type or class of aircraft. The amount of refresher training needed should be determined on a case-by-case basis by the ATO, taking into account the following factors:
 - (1) the experience of the applicant. To determine this, the ATO should evaluate the pilot's log book, and, if necessary, conduct a test in an FSTD;
 - (2) the complexity of the aircraft;
 - (3) the amount of time lapsed since the expiry of the validity period of the rating. The amount of training needed to reach the desired level of proficiency should increase with the time lapsed. In some cases, after evaluating the pilot, and when the time lapsed is very limited (less than 3 months), the ATO may even determine that no further refresher training is necessary. When determining the needs of the pilot, the following items can be taken into consideration:
 - (i) expiry shorter than 3 months: no supplementary requirements;
 - (ii) expiry longer than 3 months but shorter than 1 year: a minimum of two training sessions;
 - (iii) expiry longer than 1 year but shorter than 3 years: a minimum of three training sessions in which the most important malfunctions in the available systems are covered;
 - (iv) expiry longer than 3 years: the applicant should again undergo the training required for the initial issue of the rating or, in case of helicopter, the training required for the 'additional type issue', according to other valid ratings held.
- (b) Once the ATO has determined the needs of the applicant, it should develop an individual training programme that should be based on the initial training for the issue of the rating and focus on the aspects where the applicant has shown the greatest needs.
- (c) After successful completion of the training, the ATO should give a certificate, or other documental evidence that the training has been successfully achieved to the applicant, to be submitted to MCAA when applying for the renewal. The certificate or documental evidence needs to contain a description of the training programme.

AMC1 FCL.720.A (b)(2)(i) Experience requirements and prerequisites for the issue of class or type ratings — aeroplanes

ADDITIONAL THEORETICAL KNOWLEDGE FOR A CLASS OR TYPE RATING FOR HIGH PERFORMANCE SP AEROPLANES

- (a) A number of aeroplanes certificated for SP operation have similar performances, systems and navigation capabilities to those more usually associated with MP types of aeroplanes, and regularly operate within the same airspace. The level of knowledge required to operate safely in this environment is not part of, or not included to the necessary depth of knowledge in the training syllabi for the PPL, CPL or IR(A) but these licence holders may fly as PIC of such aeroplanes. The additional theoretical knowledge required to operate such aeroplanes safely is obtained by completion of a course at an ATO.
- (b) The aim of the theoretical knowledge course is to provide the applicant with sufficient knowledge of those aspects of the operation of aeroplanes capable of operating at high speeds and altitudes, and the aircraft systems necessary for such operation.
- (c) The course should cover at least the following items of the aeroplane syllabus to the ATPL(A) level:

LO number	LO topics
021 00 00 00	AIRCRAFT GENERAL KNOWLEGDE: AIRFRAME AND
	SYSTEMS, ELECTRICS, POWERPLANT AND EMERGENCY
	EQUIPMENT
021 02 02 01	Alternating current: general
to	Generators
021 02 02 03	AC power distribution
021 01 08 03	Pressurisation (Air driven systems - piston engines)
021 01 09 04	Pressurisation (Air driven systems - turbojet and turbo propeller)
021 03 01 06	Engine performance - piston engines
021 03 01 07	Power augmentation (turbo or supercharging)
021 03 01 08	Fuel
021 03 01 09	Mixture
021 03 02 00	Turbine engines
to	
021 03 04 09	
021 04 05 00	Aircraft oxygen equipment
032 03 00 00	Performance class B: ME aeroplanes
032 03 01 00	Performance of ME aeroplanes not certificated under CS and FAR
to	25: entire subject
032 03 04 01	
040 00 00 00	HUMAN PERFORMANCE
040 02 01 00	Basic human physiology
to	and
040 02 01 03	High altitude environment
050 00 00 00	METEOROLOGY
050 02 07 00	Jet streams
to	CAT
050 02 08 01	Standing waves
050 09 01 00	Flight hazards
to	Icing and turbulence
050 09 04 05	Thunderstorms
062 02 00 00	Basic radar principles
062 02 01 00	Basic radar principles
to	Airborne radar
062 02 05 00	SSR
081 00 00 00	PRINCIPLES OF FLIGHT: AEROPLANES
081 02 01 00	Transonic aerodynamics: entire subject
to	Mach number or shockwaves
081 02 03 02	buffet margin or aerodynamic ceiling

- (d) Demonstration of acquisition of this knowledge is undertaken by passing an examination set by ATO. A successful pass of this examination results in the issue of a certificate indicating that the course and examination have been completed.
- (e) The certificate represents a 'once only' qualification and satisfies the requirement for the addition of all future high performance aeroplanes to the holder's licence. The certificate is valid indefinitely and is to be submitted with the application for the first HPA type or class rating.
- (f) A pass in any theoretical knowledge subjects as part of the HPA course will not be credited against meeting future theoretical examination requirements for issue of a CPL (A), IR (A) or ATPL (A).

AMC1 FCL.725.A (b) Theoretical knowledge and flight instruction for the issue of class and type ratings — aeroplanes CLASS RATING SEA

(a) The theoretical knowledge instruction should be conducted by an instructor having appropriate experience of class rating sea.

- (b) Depending on the equipment and systems installed, the instruction should include, but not be limited to, the following content:
 - (1) theoretical knowledge:
 - (i) the aim of the training is to teach:
 - (A) the importance of preparation for flight and the safe planning taking into consideration all the factors for manoeuvring the aircraft on the wind, tidal currents, high and low water times and water movements at sea, river estuaries and lakes In addition, icing conditions, ice covered water and broken ice flows;
 - (B) the techniques about the most critical moments at take-off, landing, taxiing and mooring the aircraft;
 - (C) the construction methods and characteristics of floats and water rudders and the importance of checking for leaks in the floats;
 - (D) the necessary requirements for the compliance of the rules for the avoidance of collisions at sea, in regard to sea charts, buoys and lights and horns.
 - (ii) after completing the training, the student should be able to:
 - (A) describe the factors that have significance for planning and decision about initiation of seaplane flying and alternative measures for completion of flight;
 - (B) describe how the water level is affected by air pressure, wind, tide, regularisations and the flight safety depending on changes in the water level;
 - (C) describe the origin of different ice conditions in water areas;
 - (D) interpret nautical charts and maps about depths and shoals and risk for water currents, shifts of the wind, turbulence;
 - (E) decide what required equipment to bring during seaplane flying according to the operational requirements;
 - (F) describe the origin and extension of water waves, swells and water currents and their effect on the aeroplane;
 - (G) describe how water and air forces effect the aeroplane on water;
 - (H) describe the effect of water resistance on the aeroplanes' performance on glassy water and during different wave conditions;
 - (I) describe the consequences of taxiing with too high engine RPM;
 - (J) describe the effect of pressure and temperature on performance at take-off and climb from lakes located at higher altitude;
 - (K) describe the effect of wind, turbulence, and other meteorological conditions of special importance for flight over lakes, islands in mountain areas and other broken ground;
 - (L) describe the function of the water rudder and its handling, including the effect of lowered water rudder at take-off and landing;
 - (M) describe the parts of the float installation and their function;
 - (N) describe the effect of the floats on the aeroplanes' aerodynamics and performance in water and in air;
 - (O) describe the consequences of water in the floats and fouling of float bottoms;
 - (P) describe aviation requirements that apply specifically for the conduct of aircraft activity on water;
 - (Q) describe requirements about animal, nature and environment protection of significance for flight by seaplane, including flight in national parks;
 - (R) describe the meaning of navigation buoys;
 - (S) describe the organisation and working methods of the Sea Rescue Service;
 - (T) describe the requirements in ICAO Annex 2 as set out in paragraph 3.2.6 'Water operation', including relevant parts of the Convention on the International Regulations for Preventing Collisions at Sea.
 - (2) practical training:
 - (i) the aim of the practical training is to learn:
 - (A) the skills in manoeuvring aeroplanes on water and in mooring the aeroplane;
 - (B) the skills required for the reconnaissance of landing and mooring areas from the air, including the take-off area;
 - (C) the skills for assessing the effects of different water depths, shoals, wind, height of waves and swell;
 - (D) the skills for flying with floats about their effect on performance and flight characteristics;
 - (E) the skills for flying in broken ground during different wind and turbulence conditions;
 - (F) the skills for take-off and landing on glassy water, different $^\circ$ of swell and water current conditions.

- (ii) after the training, the student should be able to:
 - (A) handle the equipment that shall be brought during seaplane flying;
 - (B) perform pre-flight daily inspection on aeroplane, float installation and special seaplane equipment, including emptying of floats;
 - (C) sail, taxi and turn the aeroplane at swell with correct handling of the water rudder;
 - (D) taxi on the step and perform turns;
 - (E) establish the wind direction with the aeroplane;
 - (F) take necessary actions if loss of steering ability and person falling overboard;
 - (G) make land and moor aeroplane at bridge, buoy and beach with the use of appropriate knots to secure the aircraft;
 - (H) maintain given rate of descent by means of variometer only;
 - (I) perform take-off and landing on glassy water with and without outer references;
 - (J) perform take-off and landing under swell;
 - (K) perform power-off landing;
 - (L) from the air, reconnaissance of landing, mooring and take-off areas, observing;
 - (M) wind direction and strength during landing and take-off;
 - (N) surrounding terrain;
 - (O) overhead wires and other obstacles above and under water;
 - (P) congested areas;
 - (Q) determine wind direction and assess wind strength from water level and when airborne;
 - (R) state, for the aeroplane type in question;
 - (a) maximum wave height allowed;
 - (b) maximum number of ERPM allowed during taxi;
 - (S) describe how flying with floats affects the performance and flight characteristics of the aeroplane;
 - (T) take corrective action at critical moments due to wind shear and turbulence;
 - (U) navigate on the water with reference to buoys markers, obstacles and other traffic on the water.
- (c) For the initial issue of class rating sea for SP, SE and ME aeroplanes, the number of multi-choice questions in the written or computer-based examination should at least comprise thirty questions, and may be conducted by the training organisation. The pass mark should be 75 %.

AMC1 FCL.735.A; FCL.735.H; FCL.735.As

MULTI-CREW COOPERATION COURSE

- (a) Competency is a combination of knowledge, skills and attitudes required to perform a task to the prescribed standard.
- (b) The objectives of MCC training are to develop the technical and non-technical components of the knowledge, skills and attitudes required to operate a multi-crew aircraft.
- (c) Training should comprise both theoretical and practical elements and be designed to achieve the following competencies:

Competency	Performance indicators	Knowledge	Practical exercises
Communication	 (a) Know what, how much and who to communicate to; (b) Ensure the recipient is ready and able to receive the information; (c) Pass messages and Information clearly, accurately, timely and adequately; (d) Check if the other personhas the correct understanding when passing important information; (e) Listen actively, patiently and demonstrate understanding when receiving information; (f) Ask relevant and effective questions, and offer suggestions; (g) Use appropriate body language, eye contact and tone; (h) Open and receptive to other people's view. 	 (a) Human Factors, TEM and CRM; (b) Application of TEM and CRM principles to training. 	In a commercial air transport environment, apply multi- crew procedures, including principles of TEM and CRM to the following: (a) Pre-flight preparation: (1) FMS initialisation; (2) radio and navigation equipment preparation; (3) flight documentation; (4) Computation of take-off performance data. (b) Take-off and climb: (1) before take-off checks; (2) normal take-offs; (3) rejected take-offs; (4) take-offs with abnormal and emergency situations included. (c) Cruise: emergency descent.
Leadership and team working	 (a) Friendly, enthusiastic, motivating and considerate of others; (b) Use initiative, give direction and take responsibility when required; (c) Open and honest about thoughts, concerns and intentions; (d) Give and receive criticism and praise well, and admit mistakes; (e) Confidently do and say what is important to him or her; (f) Demonstrate respect and tolerance towards other people; (g) Involve others in planning and share activities fairly. 		 (d) Descent and approach: (1) instrument flight procedures; (2) holding; (3) precision approach using raw data; (4) precision approach using flight director; (5) precision approach using autopilot; (6) one-engine-inoperative approach; (7) non-precision and circling approaches; (8) computation of approach and landing data; (9) all engines go-around; (10) go-around with one engine inoperative; (11) wind shear during approach.

Competency	Performance indicators	Knowledge	Practical exercises
Situation	(a) Aware of what the aircraft		
awareness	and its systems are doing;		(e) landing: transition from
			instrument to visual flight on
	(b) Aware of where the		reaching decision altitude or
	aircraft is and its		height or minimum descent
	environment;		altitude or height;9
	c) Keep track of time and		
	fuel;		(f) after landing and post
	(d) Aware of the condition of		flight procedures;
	people involved in the		inght proceedies,
	operation including		(g) selected emergency and
	passengers;		abnormal procedures.
	(e) Recognise what is likely		abilormai procedures.
	to happen, plan and stay		
	ahead of the game;		
	(f) Develop what-if scenarios		
	and make pre-decisions;		
	(g) Identify threats to the		
	safety of the aircraft and of		
	the people.		
	(a) Calm, relaxed, careful and		
	not impulsive;		
	(b) Prepare, prioritise and		
	schedule tasks effectively;		
	(c) Use time efficiently when		
	carrying out tasks;		
	(d) Offer and accept		
	assistance, delegate when		
	necessary and ask for help		
	early;		
Workload	(e) Review and monitor and		
management	cross-check actions		
8	conscientiously;		
	(f) Follow procedures		
	appropriately and		
	consistently;		
	(g) Concentrate on one thing		
	at a time, ensure tasks are		
	completed and does not		
	become distracted;		
	(h) Carry out instructions as		
	directed.		
	(a) Identify and verify why		
	(a) Identify and verify why things have gone wrong and		
	do not jump to conclusions or		
	make assumptions;		
	(b) Seek accurate and		
	adequate information from		
Problem	appropriate resources;		
solving and	(c) Persevere in working		
decision	through a problem;		
making	(d) Use and agree an		
_	appropriate decision making		
	process;		
	(e) Agree essential and		
	desirable criteria and		
	prioritises;		
	1		

		1	
Monitoring	 (f) Consider as many options as practicable; (g) Make decisions when they need to, reviews and changes if required; (h) Consider risks but do not take unnecessary risks. (a) Monitor and cross-checks all actions; (b) Monitor aircraft trajectory 	 (a) SOPs; (b) Aircraft systems; 	
and cross- checking	in critical flight phases; (c) Take appropriate actions in response to deviations from the flight path.	(c) Undesired aircraft states.	
Task sharing	 (a) Apply SOPs in both PF and PNF roles; (b) Makes and responds to standard callouts. Utilise checklists 	(a) PF and PNF roles;(b) SOPs.	
Use of checklists	appropriately according to SOPs.	(a) SOPs;(b) Checklist philosophy.	
Briefings	Prepare and deliver appropriate briefings.	(a) SOPs;(b) Interpretation of FMSdata and in-flightdocumentation.	
Flight management	 (a) Maintain a constant awareness of the aircraft automation state; (b) Manage automation to achieve optimum trajectory and minimum workload; (c) Take effective recovery actions from automation anomalies; (d) Manage aircraft navigation, terrain clearance; (e) Manage aircraft fuel state and take appropriate actions. 	 (a) Understanding of aircraft performance and configuration; (b) Systems; (c) SOPs; (d) Interpretation of FMS data and in-flight documentation; (e) Minimum terrain clearance; (F) Fuel management IFR and VFR regulation. 	
FMS use	Programme, manage and monitor FMS in accordance with SOPs.	(a) Systems (FMS);(b) SOPs;(c) Automation.	
Systems normal operations	Perform and monitor normal systems operation in accordance with SOPs.	(a) Systems; (b) SOPs.	
Systems abnormal and emergency operations	 (a) Perform and monitor abnormal systems operation in accordance with SOPs; (b) Utilise electronic and paper abnormal checklists in accordance with SOPs. 	 (a) Systems; (b) SOPs; (c) Emergency and abnormal procedures and checklists; (d) Recall items. 	
Environment, weather and ATC	 (a) Communicate effectively with ATC; (b) Avoid misunderstandings by requesting clarification; (c) Adhere to ATC instructions; (d) Construct a mental model of the local ATC and weather environment. 	 (a) Systems; (b) SOPs; (c) ATC environment and phraseology; (d) Procedures for hazardous weather conditions. 	

CERTIFICATE OF COMPLETION FORM

CERTIFICATE OF CO	OMPLETION OF MC	C-TR	AINING	
Applicant's last name(s):			First name(s):	
Type of licence:			Number:	State:
ME/IR:		OR	ME/IR skill test:	
Issued on:			passed on:	
	Signature of applica	nt:		
The satisfactory complet	ion of MCC-Training c	accorda	ing to requirements is certific	ed below:
TRAINING				
Multi-crew co-operation	training received dur	ing pe	eriod:	
from:	to:		at:	ATO / operator*
Location and date:			Signature of head of ATO or authorised instructor*:	
Type and number of licence and state of issue:			Name(s) in capital letters of authorised instructor:	
* Delete as appropriate				

AMC1 FCL.740.H (a)(3) Revalidation of type ratings — helicopters

Only the following SEP helicopter types can be considered for crediting of the proficiency check. Other SEP helicopters (for example the R22 and R44) should not be given credit for.

Manufacturer	Helicopter type and licence
	endorsement
Agusta-Bell	
SEP	Bell47
Bell Helicopters	
SEP	Bell47
Brantley	
SEP	Brantley B2
Breda Nardi	
SEP	HU269
Enstrom	
SEP	ENF28
Hélicoptères Guimbal	
SEP	Cabri G2
Hiller	
SEP	UH12
Hughes or Schweizer	
SEP	HU269
Westland	
SEP	Bell47

GM1 FCL.720.PL Experience requirements and prerequisites for the issue of type ratings — powered-lift aircraft

The endorsement of a powered-lift type rating to an aeroplane or helicopter licence does not confer upon its holder the privileges to fly helicopters or aeroplanes, respectively.

SUBPART J — INSTRUCTORS

GM1 FCL.900 Instructor certificates GENERAL

- (a) Nine instructor categories are recognised:
 - (1) FI certificate: aeroplane (FI(A)), helicopter (FI(H)), airship (FI(As)), sailplane (FI(S)) and balloon (FI(B));
 - (2) TRI certificate: aeroplane (TRI(A)), helicopter (TRI(H)), powered-lift aircraft (TRI(PL));
 - (3) CRI certificate: aeroplane (CRI(A));
 - (4) IRI certificate: aeroplane (IRI(A)), helicopter (IRI(H)) and airship (IRI(As));
 - (5) SFI certificate: aeroplane (SFI(A)), helicopter (SFI(H)) and powered-lift aircraft (SFI(PL));
 - (6) MCCI certificate: aeroplanes (MCCI(A)), helicopters (MCCI(H)), powered-lift aircraft(MCCI(PL)) and airships (MCCI(As));
 - (7) STI certificate: aeroplane (STI(A)) and helicopter (STI(H));
 - (8) MI certificate: (MI);
 - (9) FTI certificate: (FTI).
- (b) For categories (1) to (4) and for (8) and (9) the applicant needs to hold a pilot licence. For categories (5) to (7) no licence is needed, only an instructor certificate.
- (c) A person may hold more than one instructor certificate.

SPECIAL CONDITIONS

- (a) When new aircraft are introduced, requirements such as to hold a licence and rating equivalent to the one for which instruction is being given, or to have adequate flight experience, may not be possible to comply with. In this case, to allow for the first instruction courses to be given to applicants for licences or ratings for these aircraft, competent authorities need the possibility to issue a specific certificate that does not have to comply with the requirements established in this Subpart.
- (b) MCAA would only give these certificates to holders of other instruction qualifications. As far as possible, preference would be given to persons with at least 100 hours of experience in similar types or classes of aircraft.
- (c) When the new aircraft type introduced in an operator's fleet already, MCAA would only give the specific certificate to an applicant that is qualified as PIC on that aircraft.
- (d) The certificate would ideally be limited in validity to the time needed to qualify the first instructors for the new aircraft in accordance with this Subpart, but in any case it should not exceed the 1 year established in the rule.

AMC1 FCL.920 Instructor competencies and assessment

- (a) Training should be both theoretical and practical. Practical elements should include the development of specific instructor skills, particularly in the area of teaching and assessing threat and error management and CRM.
- (b) The training and assessment of instructors should be made against the following performance standards:

Competence	Performance	Knowledge		
Prepare resources	(a) ensures adequate facilities;(b) prepares briefing material;(c) manages available tools.	(a) understand objectives;(b) available tools;(c) competency-based training methods.		
Create a climate conducive to learning	 (a) establishes credentials, role models appropriate behaviour; (b) clarifies roles; (c) states objectives; (d) ascertains and supports trainees needs. 	(a) barriers to learning;(b) learning styles.		
Present knowledge	(a) communicates clearly;(b) creates and sustains realism;(c) looks for training opportunities.	teaching methods.		

Integrate TEM or CRM	makes TEM or CRM links with technical training.	HF, TEM or CRM.	
Manage time to achieve training objectives	allocates time appropriate to achieving competency objective.	syllabus time allocation.	
Facilitate learning	 (a) encourages trainee participation; (b) shows motivating, patient, confident and assertive manner; (c) conducts one-to-one coaching; (d) encourages mutual support. 	 (a) facilitation; (b) how to give constructive feedback; (c) how to encourage trainees to ask questions and seek advice; 	
Assesses trainee performance	 (a) assesses and encourages trainee self- assessment of performance against competency standards; (b) makes assessment decision and provide clear feedback; (c) observes CRM behaviour. 	(a) observation techniques;(b) methods for recording observations.	
Monitor and review progress	 (a) compares individual outcomes to defined objectives; (b) identifies individual differences in learning rates; (c) applies appropriate corrective action. 	(a) learning styles;(b) strategies for training adaptation to meet individual eeds.	
Evaluate training	(a) elicits feedback from trainees;(b) tracks training session processes against competence criteria;(c) keeps appropriate records.	(a) competency unit sessions and associated elements;(b) performance criteria	
Report outcome	reports accurately using only observed actions and events.	(a) phase training objectives;(b) individual versus systemic weaknesses.	

AMC1 FCL.925 Additional requirements for instructors for the MPL MPL INSTRUCTOR COURSE

- (a) The objectives of the MPL instructors training course are to train applicants to deliver training in accordance with the features of a competency-based approach to training and assessment.
- (b) Training should be both theoretical and practical. Practical elements should include the development of specific instructor skills, particularly in the area of teaching and assessing threat and error management and CRM in the multi-crew environment.
- (c) The course is intended to adapt instructors to conduct competency-based MPL training. It should cover the items specified below:

THEORETICAL KNOWLEDGE

- (d) Integration of operators and organisations providing MPL training:
 - (1) reasons for development of the MPL;
 - (2) MPL training course objective;
 - (3) adoption of harmonised training and procedures;
 - (4) feedback process.
- (e) The philosophy of a competency-based approach to training: principles of competency-based training.
- (f) Regulatory framework, instructor qualifications and competencies:
 - (1) source documentation;
 - (2) instructor qualifications;
 - (3) syllabus structure.
- (g) Introduction to Instructional systems design methodologies (see ICAO PANS-TRG Doc):
 - (1) analysis;
 - (2) design and production;
 - (3) evaluation and revision.
- (h) Introduction to the MPL training scheme:
 - (1) training phases and content;
 - (2) training media;
 - (3) competency units, elements and performance criteria.
- (i) Introduction to human performance limitations, including the principles of threat and error management and appropriate countermeasures developed in CRM:
 - (1) definitions;
 - (2) appropriate behaviours categories;
 - (3) assessment system.
- (j) Application of the principles of threat and error management and CRM principles to training:
 - (1) application and practical uses;
 - (2) assessment methods;
 - (3) individual corrective actions;
 - (4) debriefing techniques.
- (k) The purpose and conduct of assessments and evaluations:
 - (1) basis for continuous assessment against a defined competency standard;
 - (2) individual assessment;
 - (3) collection and analysis of data;
 - (4) training system evaluation.

PRACTICAL TRAINING

- (1) Practical training may be conducted by interactive group classroom modules, or by the use of training devices. The objective is to enable instructors to:
 - (1) identify behaviours based on observable actions in the following areas:
 - (i) communications;
 - (ii) team working;
 - (iii) situation awareness;
 - (iv) workload management;
 - (v) problem solving and decision making.
 - (2) analyse the root causes of undesirable behaviours;
 - (3) debrief students using appropriate techniques, in particular:
 - (i) use of facilitative techniques;
 - (ii) encouragement of student self-analysis.
 - (4) agree corrective actions with the students;
 - (5) determine achievement of the required competency.

AMC2 FCL.925 (d)(1) Additional requirements for instructors for the MPL RENEWAL OF PRIVILEGES: REFRESHER TRAINING

- (a) Paragraph (d) of FCL.925 determines that if the applicant has not complied with the requirements to maintain his/her privileges to conduct competency-based approach training, he or she shall receive refresher training at an ATO to reach the level of competence necessary to pass the assessment of instructor competencies. The amount of refresher training needed should be determined on a case-by-case basis by the ATO, taking into account the following factors:
 - (1) the experience of the applicant;
 - (2) the amount of time lapsed since the last time the applicant has conducted training in an MPL course. The amount of training needed to reach the desired level of competence should increase with the time lapsed. In some cases, after evaluating the instructor, and when the time lapsed is very limited, the ATO may even determine that no further refresher training is necessary.
- (b) Once the ATO has determined the needs of the applicant, it should develop an individual training programme, which should be based on the MPL instructor course and focus on the aspects where the applicant has shown the greatest needs.

GM1 FCL.925 Additional requirements for instructors for the MPL

MPL INSTRUCTORS

The following table summarises the instructor qualifications for each phase of MPL integrated training course:

Phase of training	Qualification
Line flying under supervision according to operational requirements	Line training captain or TRI(A)
Phase 4: Advanced base training	TRI(A)
Phase 4: Advanced skill test	TRE(A)
Phase 4: Advanced	SFI(A) or TRI(A)
Phase 3: Intermediate	SFI(A) or TRI(A)
Phase 2: Basic	 (a) FI(A) or IRI(A) and IR(A)/ME/MCC and 1500 hours multi-crew environment and IR(A) instructional privileges, or (b) FI(A) and MCCI(A), or (c) FI(A) and SFI(A), or (d) FI(A) and TRI(A)
Phase 1: Core flying skills	FI(A) and 500 hours, including 200 hours of instruction Instructor qualifications and privileges should be in accordance with the training items within the phase. STI for appropriate exercises conducted in an FNPT or BITD.

AMC1 FCL.935 Assessment of competence

GENERAL

- (a) The format and application form for the assessment of competence are determined by MCAA.
- (b) When an aircraft is used for the assessment, it should meet the requirements for training aircraft.
- (c) If an aircraft is used for the test or check, the examiner acts as the PIC, except in circumstances agreed upon by the examiner when another instructor is designated as PIC for the flight.
- (d) During the skill test the applicant occupies the seat normally occupied by the instructor (instructors seat if in an FSTD, or pilot seat if in an aircraft), except in the case of balloons. The examiner, another instructor or, for MPA in an FFS, a real crew under instruction, functions as the 'student'. The applicant is required to explain the relevant exercises and to demonstrate their conduct to the 'student', where appropriate.

Thereafter, the 'student' executes the same manoeuvres (if the 'student' is the examiner or another instructor, this can include typical mistakes of inexperienced students). The applicant is expected to correct mistakes orally or, if necessary, by intervening physically.

- (e) The assessment of competence should also include additional demonstration exercises, as decided by the examiner and agreed upon with the applicant before the assessment. These additional exercises should be related to the training requirements for the applicable instructor certificate.
- (f) All relevant exercises should be completed within a period of 6 months. However, all exercises should, where possible, be completed on the same day. In principle, failure in any exercise requires a retest covering all exercises, with the exception of those that may be retaken separately. The examiner may terminate the assessment at any stage if they consider that a retest is required.

AMC2 FCL.935 Assessment of competence MCCI. STI AND MI

In the case of the MCCI, STI and MI, the instructor competencies are assessed continuously during the training course.

AMC3 FCL.935 Assessment of competence CONTENT OF THE ASSESSMENT FOR THE FI

(a) In the case of the FI, the content of the assessment of competence should be the following:

SECTION 1 THEORETICAL KNOWLEDGE ORAL

- 1.1 Air law
- 1.2 Aircraft general knowledge
- 1.3 Flight performance and planning
- 1.4 Human performance and limitations
- 1.5 Meteorology
- 1.6 Navigation
- 1.7 Operational procedures
- 1.8 Principles of flight
- 1.9 Training administration

Sections 2 and 3 selected main exercises: SECTION 2 PRE-FLIGHT BRIEFING

- 2.1 Visual presentation
- 2.3 Technical accuracy
- 2.4 Clarity of explanation
- 2.5 Clarity of speech
- 2.6 Instructional technique
- 2.7 Use of models and aids
- 2.8 Student participation

SECTION 3 FLIGHT

- 3.1 Arrangement of demo
- 3.2 Synchronisation of speech with demo
- 3.3 Correction of faults
- 3.4 Aircraft handling
- 3.5 Instructional technique
- 3.6 General airmanship and safety
- 3.7 Positioning and use of airspace

SECTION 4 ME EXERCISES

- 4.1 Actions following an engine failure shortly after take-off¹
- 4.2 SE approach and go-around¹
- 4.3 SE approach and landing¹

¹ These exercises are to be demonstrated at the assessment of competence for FI for ME aircraft.

SECTION 5 POST-FLIGHT DE-BRIEFING

- 5.1 Visual presentation
- 5.2 Technical accuracy
- 5.3 Clarity of explanation
- 5.4 Clarity of speech
- 5.5 Instructional technique
- 5.6 Use of models and aids
- 5.7 Student participation
- (b) Section 1, the oral theoretical knowledge examination part of the assessment of competence, is for all FI and is subdivided into two parts:
 - (1) The applicant is required to give a lecture under test conditions to other 'student(s)', one of whom will be the examiner. The test lecture is to be selected from items of section 1. The amount of time for preparation of the test lecture is agreed upon beforehand with the examiner. Appropriate literature may be used by the applicant. The test lecture should not exceed 45 minutes;
 - (2) The applicant is tested orally by an examiner for knowledge of items of section 1 and the 'core instructor competencies: teaching and learning' content given in the instructor courses.
- (c) Sections 2, 3 and 5 are for all FIs. These sections comprise exercises to demonstrate the ability to be an FI (for example instructor demonstration exercises) chosen by the examiner from the flight syllabus of the FI training courses. The applicant is required to demonstrate FI abilities, including briefing, flight instruction and de-briefing.
- (d) Section 4 comprises additional instructor demonstration exercises for an FI for ME aircraft. This section, if applicable, is done in an ME aircraft, or an FFS or FNPT II simulating an ME aircraft. This section is completed in addition to sections 2, 3 and 5.

AMC4 FCL.935 Assessment of competence

CONTENT OF THE ASSESSMENT FOR THE SFI

The assessment should consist of at least 3 hours of flight instruction related to the duties of an SFI on the applicable FFS or FTD 2/3.

AMC5 FCL.935 Assessment of competence REPORT FORMS FOR THE INSTRUCTOR CERTIFICATES

(a) Assessment of competence form for the FI, IRI and CRI certificates:

APPLICATION AND REPORT FORM FOR THE INSTRUCTOR ASSESSMENT OF COMPETENCE1Applicants personal particulars:Image: Colspan="3">Image: Colspan="3"Applicant's last name(s):Image: Colspan="3">Image: Colspan="3"Date of birth:Image: Colspan="3">Image: Colspan="3"Address:Image: Colspan="3">Country:

2 Licence deta	ails						
Licence type:				Number:			
Class ratings included the licence:		Exp. Date:					
Type ratings included the licence:	$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \end{array}$	3 4					
Other ratings included the licence:	2	3 4					
3 Pre-course f	flying experie	nce					
Total flying hours	PIC SI or TMG h			EP 6 months	Instrument fl instruction		Cross-country hours
4 Pre-entry fl	ight test						
I recommend		for the	FI course.				
Name of ATO:				Date of fli	ght test:		
Name(s) of FI conduc	cting the test (c	apital let	ters):	Licence n	umber:		
Signature:							
5 Declaration	by the applic	ant					
<i>I have received a cou</i> (tick as applicable)	rse of training	g in acco	rdance with	the syllabi	is for the:		
FI certificate FI(A)/(H	H)/(As)	IRI ce	rtificate IRI	(A)/(H)/(As	S) CRI	certific	ate CRI(A)
Applicant's name(s): (capital letters)				Signature:			
6 Declaration	by the CFI						
I certify that		has	satisfactoril	y completed	l an approved c	ourse a	of training for the
	FI certificate FI(A)/(H)/(As) IRI certificate IRI(A)/(H)/(As) CRI certificate CRI(A)					cate CRI(A)	
	in accordance with the relevant syllabus. Flying hours during the course: Aircraft or FSTDs used :						
Name(s) of CFI: Name of ATO:			Signature	2:			

7 Flight instructor examiner's certificate I have tested the applicant according to to Part-FCL A. FLIGHT INSTRUCTOR EXAMINER'S ASSESSMENT (in case of partial pass): Theoretical oral examination: Skill test: Failed Failed Passed Passed I recommend further flight or ground training I do not consider further flight or theoretical with an instructor before re-test (tick as instruction necessary before re-test applicable) **B. FLIGHT INSTRUCTOR EXAMINER'S ASSESSMENT:** (tick as applicable) CRI certificate FI certificate **IRI** certificate Name(s) of FIE (capital letters): Signature: Licence number: Date:

(b) Report form for the FI for sailplanes

APPLICATION AND REPORT FORM FOR THE FI(S) ASSESSMENT OF COMPETENCE 1 Applicants personal particulars: Applicant's last name(s): First name(s): First name(s): Date of birth: Image: Country: Tel (work): Address: Country: Image: Country:

2 Licence details					
Licence type:		Number:			
TMG extension:					
3 Pre-course flying experience					
Total flying hours	PIC hours	Sailplane (PIC hours and take-offs)	TMG (PIC hours and take-offs)		
4 Pre-entry flight test					
I recommendfor the FI course.					
Name of ATO:		Date of flight test:			
Name(s) of FI conducting the test (capital letters):		Licence number:			
Signature:		1			

5 Declaration by the applicant					
<i>I have received a course of tra</i> (tick as applicable)	with the syllabus for t	he:	FI certificate FI(S)		
Applicant's name(s): (capital letters)	Signature:				
6 Declaration by the chief flight instructor CFI					
I certify that has satisfactorily completed an approved course of training for the					
FI certificate FI(S)	In accordance	e with the relevant syl	labus.		
Flying hours during the course:	Take-offs du	ring the course:	g the course: Sailplanes, powered sail TMGs used :		es or
Name(s) of CFI:	·	Signature:			
Name of ATO:					
7 Flight instructor examiner's certificate					
I have tested the applicant according to to Part-FCL					
A. FLIGHT INSTRUCTOR EXAMINER'S ASSESSMENT (in case of partial pass):					
Theoretical oral examination:			Skill test:		
Passed	Failed	Passed		Failed	
I recommend further flight or ground training with a FI before re-test (<i>tick as applicable</i>)			I do not consider further flight or theoretical instruction necessary before re-test		
B. FLIGHT INSTRUCTOR EXAMINER'S ASSESSMENT: (tick as applicable)					
FI certificate					
Name(s) of FIE (capital letters)		Signature:			
Licence number:		Date:			

(c) Report form for the FI for balloons:

APPLICATION AND REPORT FORM FOR THE FI(B) ASSESSMENT OF COMPETENCE						
1 Applicants personal particulars:						
Applicant's last name(s)):	F	First name	e(s):		
Date of birth:		Т	Tel (home):		Tel (work):	
Address:		С	Country:			
2 Licence detail	s					
Licence type:		N	Number:			
Class extensions:	1	0	Groups:			
	2	Groups:				
	3	0	Groups:			
3 Pre-course fly	ing experience					
Total flying hours in different groups	PIC hours	Hot-air ba	lloon	Gas balloon	L	Hot-air airship

4 Pre-entry flight test					
I recommendfor the FI course.					
Name of ATO:		Date of flight test:			
Name(s) of FI conducting the test (cap	pital letters):	Licence number:			
Signature:					
5 Declaration by the applicat	nt				
<i>I have received a course of training i</i> (tick as applicable)	in accordance with	the syllabus for the:	FI certificate FI(B)		
Applicant's name(s): (capital letters)		Signature:			
6 Declaration by the chief flig	ght instructor CF	I			
I certify that has satisfactorily completed an approved course of training for the					
FI certificate FI(B)	In accordance wi	th the relevant syllabus.			
Flying hours during the course:	Take-offs during				
Name(s) of CFI:		Signature:			
Name of ATO:		_			
7 Flight instructor examiner's certificate					
I have tested the applicant according to to Part-FCL					
A. FLIGHT INSTRUCTOR EXAMINER'S ASSESSMENT (in case of partial pass):					
Theoretical oral examination:		Skill test:			
Passed	Failed	Passed Failed			
I recommend further flight or ground training with a FI before re-test (<i>tick as applicable</i>)		I do not consider further flight or theoretical instruction necessary before re-test			
B. FLIGHT INSTRUCTOR EXAMINER'S ASSESSMENT: (tick as applicable)					
FI certificate					
Name(s) of FIE (capital letters):		Signature:		•	
Licence number:		Date:			

AMC1 FCL.930.FI FI — Training course

FI(A), FI(H) AND FI(AS) TRAINING COURSE

GENERAL

- (a) The aim of the FI training course is to train aircraft licence holders to the level of competence defined in FCL.920.
- (b) The training course should develop safety awareness throughout by teaching the knowledge, skills and attitudes relevant to the FI task including at least the following:
 - (1) refresh the technical knowledge of the student instructor;
 - (2) train the student instructor to teach the ground subjects and air exercises;
 - (3) ensure that the student instructor's flying is of a sufficiently high standard;
 - (4) teach the student instructor the principles of basic instruction and to apply them at the PPL level.

FLIGHT INSTRUCTION

- (c) The remaining 5 hours in FCL.930.FI (b)(3) may be mutual flying (that is, two applicants flying together to practice flight demonstrations).
- (d) The skill test is additional to the course training time.

CONTENT

- (e) The training course consists of two parts:
 - (1) Part 1, theoretical knowledge, including the teaching and learning instruction that should comply with AMC1 FCL.920;
 - (2) Part 2, flight instruction.

Part 1

TEACHING AND LEARNING

(a) The course should include at least 125 hours of theoretical knowledge instruction, including at least 25 hours teaching and learning instruction.

CONTENT OF THE TEACHING AND LEARNING INSTRUCTIONS (INSTRUCTIONAL TECHNIQUES):

- (b) The learning process:
 - (1) motivation;
 - (2) perception and understanding;
 - (3) memory and its application;
 - (4) habits and transfer;
 - (5) obstacles to learning;
 - (6) incentives to learning;
 - (7) learning methods;
 - (8) rates of learning.
- (c) The teaching process:
 - (1) elements of effective teaching;
 - (2) planning of instructional activity;
 - (3) teaching methods;
 - (4) teaching from the 'known' to the 'unknown';
 - (5) use of 'lesson plans'.
- (d) Training philosophies:
 - (1) value of a structured (approved) course of training;
 - (2) importance of a planned syllabus;
 - (3) integration of theoretical knowledge and flight instruction;
- (e) Techniques of applied instruction:
 - (1) theoretical knowledge: classroom instruction techniques:
 - (i) use of training aids;
 - (ii) group lectures;
 - (iii) individual briefings;
 - (iv) student participation or discussion.
 - (2) flight: airborne instruction techniques:
 - (i) the flight or cockpit environment;
 - (ii) techniques of applied instruction;
 - (iii) post-flight and in-flight judgement and decision making.
- (f) Student evaluation and testing:
 - (1) assessment of student performance:
 - (i) the function of progress tests;
 - (ii) recall of knowledge;
 - (iii) translation of knowledge into understanding;
 - (iv) development of understanding into actions;
 - $(v) \;\; \mbox{the need to evaluate rate of progress.}$
 - (2) analysis of student errors:
 - (i) establish the reason for errors;
 - (ii) tackle major faults first, minor faults second;

- (iii) avoidance of over criticism;
- (iv) the need for clear concise communication.
- (g) Training programme development:
 - (1) lesson planning;
 - (2) preparation;
 - (3) explanation and demonstration;
 - (4) student participation and practice;
 - (5) evaluation.
- (h) Human performance and limitations relevant to flight instruction:
 - (1) physiological factors:
 - (i) psychological factors;
 - (ii) human information processing;
 - (iii) behavioural attitudes;
 - (iv) development of judgement and decision making.
 - (2) threat and error management.
- (i) Specific hazards involved in simulating systems failures and malfunctions in the aircraft during flight:
 - (1) importance of 'touch drills';
 - (2) situational awareness;
 - (3) adherence to correct procedures.
- (j) Training administration:
 - (1) flight or theoretical knowledge instruction records;
 - (2) pilot's personal flying logbook;
 - (3) the flight or ground curriculum;
 - (4) study material;
 - (5) official forms;
 - (6) flight manual or equivalent document (for example owner's manual or pilot's operating handbook);
 - (7) flight authorisation papers;
 - (8) aircraft documents;
 - (9) the private pilot's licence regulations.

A. Aeroplanes

Part 2

AIR EXERCISES

- (a) The air exercises are similar to those used for the training of PPL (A) but with additional items designed to cover the needs of an FI.
- (b) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide: therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 - (1) the applicant's progress and ability;
 - (2) the weather conditions affecting the flight;
 - (3) the flight time available;
 - (4) instructional technique considerations;
 - (5) the local operating environment.
- (c) It follows that student instructors will eventually be faced with similar interrelated factors. They should be shown and taught how to construct flight lesson plans, taking these factors into account, so as to make the best use of each flight lesson, combining parts of the set exercises as necessary.

GENERAL

- (d) The briefing normally includes a statement of the aim and a brief allusion to principles of flight only if relevant. An explanation is to be given of exactly what air exercises are to be taught by the instructor and practised by the student during the flight. It should include information on how the flight will be conducted, who is to fly the aeroplane and what airmanship, weather and flight safety aspects currently apply. The nature of the lesson will govern the order in which the constituent parts are to be taught.
- (e) The four basic components of the briefing will be:
 - (1) the aim;
 - (2) principles of flight (briefest reference only);
 - (3) the air exercise(s) (what, and how and by whom);
 - (4) airmanship (weather, flight safety etc.).

PLANNING OF FLIGHT LESSONS

(f) The preparation of lesson plans is an essential prerequisite of good instruction and the student instructor is to be given supervised practice in the planning and practical application of flight lesson plans.

GENERAL CONSIDERATIONS

- (g) The student instructor should complete flight training to practise the principles of basic instruction at the PPL(A) level.
- (h) During this training, except when acting as a student pilot for mutual flights, the student instructor occupies the seat normally occupied by the FI(A).
- (i) It is to be noted that airmanship and look-out is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at all times.
- (j) If the privileges of the FI(A) certificate are to include instruction for night flying, exercises 19 and 20 of the flight instruction syllabus should be undertaken at night in addition to by day either as part of the course or subsequent to certification issue.
- (k) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.

SYLLABUS OF FLIGHT INSTRUCTION CONTENTS

LONG BRIEFINGS AND AIR EXERCISES

Note: though exercise 11b is not required for the PPL (A) course, it is a requirement for the FI course.

EXERCISE 1: FAMILIARISATION WITH THE AEROPLANE

- (a) Long briefing objectives:
 - (1) introduction to the aeroplane;
 - (2) explanation of the cockpit layout;
 - (3) aeroplane and engine systems;
 - (4) checklists, drills and controls;
 - (5) propeller safety;
 - (i) precautions general;
 - (ii) precautions before and during hand turning;
 - (iii) hand swinging technique for starting (if applicable to type).
 - (6) differences when occupying the instructor's seat;
 - (7) emergency drills:
 - (i) action if fire in the air and on the ground: engine, cock or cabin and electrical fire;
 - (ii) system failure as applicable to type;
 - (iii) escape drills: location and use of emergency equipment and exits.
- (b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 2: PREPARATION FOR AND ACTION AFTER FLIGHT

- (a) Long briefing objectives:
 - (1) flight authorisation and aeroplane acceptance, including technical log (if applicable) and certificate of maintenance;
 - (2) equipment required for flight (maps, etc.);
 - (3) external checks;
 - (4) internal checks;
 - (5) student comfort, harness, seat or rudder pedal adjustment;
 - (6) starting and warming up checks;
 - (7) power checks;
 - (8) running down, system checks and switching off the engine;
 - (9) leaving the aeroplane, parking, security and picketing;
 - (10) completion of authorisation sheet and aeroplane serviceability documents.
- (b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 3: AIR EXPERIENCE

- (a) Long briefing objectives: Note: there is no requirement for a long briefing for this exercise.
- (b) Air exercise:
 - (1) air experience;
 - (2) cockpit layout, ergonomics and controls;
 - (3) cockpit procedures: stability and control.

EXERCISE 4: EFFECTS OF CONTROLS

- (a) Long briefing objectives:
 - (1) function of primary flying controls: when laterally level and banked;
 - (2) further effect of ailerons and rudder;

- (3) effect of inertia;
- (4) effect of air speed;
- (5) effect of slipstream;
- (6) effect of power;
- (7) effect of trimming controls;
- (8) effect of flaps;
- (9) operation of mixture control;
- (10) operation of carburettor heat control;
- (11) operation of cabin heat or ventilation systems;
- (b) Air exercise:
 - (1) primary effects of flying controls: when laterally level and banked;
 - (2) further effects of ailerons and rudder;
 - (3) effect of air speed;
 - (4) effect of slipstream;
 - (5) effect of power;
 - (6) effect of trimming controls;
 - (7) effect of flaps;
 - (8) operation of mixture control;
 - (9) operation of carburettor heat control;
 - (10) operation of cabin heat or ventilation systems;
 - (11) effect of other controls as applicable.

EXERCISE 5: TAXIING

- (a) Long briefing objectives:
 - (1) pre-taxiing checks;
 - (2) starting, control of speed and stopping;
 - (3) engine handling;
 - (4) control of direction and turning (including manoeuvring in confined spaces);
 - (5) parking area procedures and precautions;
 - (6) effect of wind and use of flying controls;
 - (7) effect of ground surface;
 - (8) freedom of Rudder movement;
 - (9) marshalling signals;
 - (10) instrument checks;
 - (11) ATC procedures;
 - (12) emergencies: steering failure and brake failure.
- (b) Air exercise:
 - (1) pre-taxiing checks;
 - (2) starting, control of speed and stopping;
 - (3) engine handling;
 - (4) control of direction and turning;
 - (5) turning in confined spaces;
 - (6) parking area procedures and precautions;
 - (7) effect of wind and use of flying control;
 - (8) effect of ground surface;
 - (9) freedom of Rudder movement;
 - (10) marshalling signals;
 - (11) instrument checks;
 - (12) ATC procedures;
 - (13) emergencies: steering failure and brake failure.

EXERCISE 6: STRAIGHT AND LEVEL FLIGHT

- (a) Long briefing objectives:
 - (1) the forces;
 - (2) longitudinal stability and control in pitch;
 - (3) relationship of CG to control in pitch;
 - (4) lateral and directional stability (control of lateral level and balance);
 - (5) attitude and balance control;

- (6) trimming;
- (7) power settings and air speeds;
- (8) drag and power curves;
- (9) range and endurance.
- (b) Air exercise:
 - (1) at normal cruising power;
 - (2) attaining and maintaining straight and level flight;
 - (3) demonstration of inherent stability;
 - (4) control in pitch, including use of elevator trim control;
 - (5) lateral level, direction and balance, use of rudder trim controls as applicable at selected air speeds (use of power):
 - (i) effect of drag and use of power (two air speeds for one power setting);
 - (ii) straight and level in different aeroplane configurations (flaps and landing gear);
 - (iii) use of instruments to achieve precision flight.

EXERCISE 7: CLIMBING

- (a) Long briefing objectives:
 - (1) the forces;
 - (2) relationship between power or air speed and rate of climb (power curves maximum rate of climb (v_y));
 - (3) effect of mass;
 - (4) effect of flaps;
 - (5) engine considerations;
 - (6) effect of density altitude;
 - (7) the cruise climb;
 - (8) maximum angle of climb (v_x) .
- (b) Air exercise:
 - (1) entry and maintaining the normal maximum rate climb;
 - (2) levelling off;
 - (3) levelling off at selected altitudes;
 - (4) climbing with flaps down;
 - (5) recovery to normal climb;
 - (6) en-route climb (cruise climb);
 - (7) maximum angle of climb;
 - (8) use of instruments to achieve precision flight.

EXERCISE 8: DESCENDING

- (a) Long briefing objectives:
 - (1) the forces;
 - (2) glide descent: angle, air speed and rate of descent;
 - (3) effect of flaps;
 - (4) effect of wind;
 - (5) effect of mass;
 - (6) engine considerations;
 - (7) power assisted descent: power or air speed and rate of descent;
 - (8) cruise descent;
 - (9) sideslip.
- (b) Air exercise:
 - (1) entry and maintaining the glide;
 - (2) levelling off;
 - (3) levelling off at selected altitudes;
 - (4) descending with flaps down;
 - (5) powered descent: cruise descent (including effect of power and air speed);
 - (6) side-slipping (on suitable types);
 - (7) use of instrument to achieve precision flight.

EXERCISE 9: TURNING

(a) Long briefing objectives:

- (1) the forces;
- (2) use of controls;
- (3) use of power;
- (4) maintenance of attitude and balance;
- (5) medium level turns;
- (6) climbing and descending turns;
- (7) slipping turns;
- (8) turning onto selected headings: use of gyro heading indicator and magnetic compass.
- (9)
- (b) Air exercise:
 - (1) entry and maintaining medium level turns;
 - (2) resuming straight flight;
 - (3) faults in the turn (incorrect pitch, bank and balance);
 - (4) climbing turns;
 - (5) descending turns;
 - (6) slipping turns (on suitable types);
 - (7) turns to selected headings: use of gyro heading indicator and magnetic compass
 - (8) use of instruments to achieve precision flight;

Note: stall or spin awareness and avoidance training consists of exercises 10a, 10b and 11a.

EXERCISE 10a: SLOW FLIGHT

- (a) Long briefing objectives:
 - (1) aeroplane handling characteristics during slow flight at:
 - (i) $v_{s1} \& v_{so} + 10$ knots;
 - (ii) $v_{s1} \& v_{so} + 5$ knots.
 - (2) slow flight during instructor induced distractions;
 - (3) effect of overshooting in configurations where application of engine power causes a strong 'nose-up' trim change.
- (b) Air exercise:
 - (1) safety checks;
 - (2) introduction to slow flight;
 - (3) controlled slow flight in the clean configuration at:
 - (i) $v_{s1} + 10$ knots and with flaps down;
 - (ii) $v_{so} + 10$ knots;
 - (iii) straight and level flight;
 - (iv) level turns;
 - (v) climbing and descending;
 - (vi) climbing and descending turns.
 - (4) controlled slow flight in the clean configuration at:
 - (i) $v_{s1} + 5$ knots and with flaps down;
 - (ii) $v_{so} + 5$ knots;
 - (iii) straight and level flight;
 - (iv) level turns;
 - (v) climbing and descending;
 - (vi) climbing and descending turns;

(vii) descending 'unbalanced' turns at low air speed: the need to maintain balanced flight.

- (5) 'instructor induced distractions' during flight at low air speed: the need to maintain balanced flight and a safe air speed;
- (6) effect of going around in configurations where application of engine power causes a strong 'nose up' trim change.

EXERCISE 10b: STALLING

- (a) Long briefing objectives:
 - (1) characteristics of the stall;
 - (2) angle of attack;
 - (3) effectiveness of the controls at the stall;
 - (4) factors affecting the stalling speed:

- (i) effect of flaps, slats and slots;
- (ii) effect of power, mass, CG and load factor.
- (5) effects of unbalance at the stall;
- (6) symptoms of the stall;
- (7) stall recognition and recovery;
- (8) stalling and recovery:
 - (i) without power;
 - (ii) with power on;
 - (iii) with flaps down;
 - (iv) maximum power climb (straight and turning flight to the point of stall with uncompensated yaw);
 - (v) stalling and recovery during manoeuvres involving more than 1 G (accelerated stalls, including secondary stalls and recoveries);
 - (vi) recovering from incipient stalls in the landing and other configurations and conditions;
 - (vii)recovering at the incipient stage during change of configuration;
 - (viii) stalling and recovery at the incipient stage with 'instructor induced' distractions.
- Note: consideration is to be given to manoeuvre limitations and references to the flight manual or equivalent document (for example owner's manual or pilot's operating handbook) in relation to mass and balance limitations. The safety checks should take into account the minimum safe altitude for initiating such exercises in order to ensure an adequate margin of safety for the recovery. If specific procedures for stalling or spinning exercises and for the recovery techniques are provided by the flight manual or equivalent document (for example owner's manual or pilot's operating handbook), they have to be taken into consideration. These factors are also covered in the next exercise spinning.

(b) Air exercise:

- (1) safety checks;
- (2) symptoms of the stall;
- (3) stall recognition and recovery:
 - (i) without power;
 - (ii) with power on;
 - (iii) recovery when a wing drops at the stall;
 - (iv) stalling with power 'on' and recovery;
 - (v) stalling with flap 'down' and recovery;
 - (vi) maximum power climb (straight and turning flight) to the point of stall with uncompensated yaw: effect of unbalance at the stall when climbing power is being used;
 - (vii) stalling and recovery during manoeuvres involving more than 1 G (accelerated stalls, including secondary stalls and recoveries);

(viii)recoveries from incipient stalls in the landing and other configurations and conditions;

- (ix) recoveries at the incipient stage during change of configuration;
- (x) instructor induced distractions during stalling.

Note: consideration of manoeuvre limitations and the need to refer to the aeroplane manual and weight (mass) and balance calculations. The safety checks should take into account the minimum safe altitude for initiating such exercises in order to ensure an adequate margin of safety for the recovery. If specific procedures for stalling or spinning exercises and for the recovery techniques are provided by the flight manual or equivalent document (for example owner's manual or pilot's operating handbook), they have to be taken into consideration. These factors are to be covered in the next exercise: spinning.

EXERCISE 11a: SPIN RECOVERY AT THE INCIPIENT STAGE

- (a) Long briefing objectives:
 - (1) causes, stages, autorotation and characteristics of the spin;
 - (2) recognition and recovery at the incipient stage: entered from various flight attitudes;
 - (3) aeroplane limitations.
- (b) Air exercise:
 - (1) aeroplane limitations;
 - (2) safety checks;
 - (3) recognition at the incipient stage of a spin;
 - (4) recoveries from incipient spins entered from various attitudes with the aeroplane in the clean configuration, including instructor induced distractions.

EXERCISE 11b: SPIN RECOVERY AT THE DEVELOPED STAGE

- (a) Long briefing objectives:
 - (1) spin entry;
 - (2) recognition and identification of spin direction;
 - (3) spin recovery;
 - (4) use of controls;
 - (5) effects of power or flaps (flap restriction applicable to type);
 - (6) effect of the CG upon spinning characteristics;
 - (7) spinning from various flight attitudes;
 - (8) aeroplane limitation;
 - (9) safety checks.
- (b) Air exercise:
 - (1) aeroplane limitations;
 - (2) safety checks;
 - (3) spin entry;
 - (4) recognition and identification of the spin direction;
 - (5) spin recovery (reference to flight manual);
 - (6) use of controls;
 - (7) effects of power or flaps (restrictions applicable to aeroplane type);
 - (8) spinning and recovery from various flight attitudes.

EXERCISE 12: TAKE-OFF AND CLIMB TO DOWNWIND POSITION

- (a) Long briefing objectives:
 - (1) handling: factors affecting the length of take-off run and initial climb;
 - (2) correct lift off speed, use of elevators (safeguarding the nose wheel), rudder and power;
 - (3) effect of wind (including crosswind component);
 - (4) effect of flaps (including the decision to use and the amount permitted);
 - (5) effect of ground surface and gradient upon the take-off run;
 - (6) effect of mass, altitude and temperature on take-off and climb performance;
 - (7) pre take-off checks;
 - (8) ATC procedure before take-off;
 - (9) drills, during and after take-off;
 - (10) noise abatement procedures;
 - (11) tail wheel considerations (as applicable);
 - (12) short or soft field take-off considerations or procedures;
 - (13) emergencies:
 - (i) aborted take-off;
 - (ii) engine failure after take-off.
 - (14) ATC procedures.

(b) Air exercise:

- (1) take-off and climb to downwind position;
- (2) pre take-off checks;

- (3) into wind take-off;
- (4) safeguarding the nose wheel;
- (5) crosswind take-off;
- (6) drills during and after take-off;
- (7) short take-off and soft field procedure or techniques (including performance calculations);
- (8) noise abatement procedures.

EXERCISE 13: CIRCUIT, APPROACH AND LANDING

- (a) Long briefing objectives:
 - (1) downwind leg, base leg and approach: position and drills;
 - (2) factors affecting the final approach and the landing run;
 - (3) effect of mass;
 - (4) effects of altitude and temperature;
 - (5) effect of wind;
 - (6) effect of flap;
 - (7) landing;
 - (8) effect of ground surface and gradient upon the landing run;
 - (9) types of approach and landing:
 - (i) powered;
 - (ii) crosswind;
 - (iii) flapless (at an appropriate stage of the course);
 - (iv) glide;
 - (v) short field;
 - (vi) soft field.
 - (10) tail wheel aeroplane considerations (as applicable);
 - (11) missed approach;
 - (12) engine handling;
 - (13) wake turbulence awareness;
 - (14) windshear awareness;
 - (15) ATC procedures;
 - (16) mislanding and go-around;
 - (17) special emphasis on look-out.
- (b) Air exercise:
 - (1) circuit approach and landing;
 - (2) circuit procedures: downwind and base leg;
 - (3) powered approach and landing;
 - (4) safeguarding the nose wheel;
 - (5) effect of wind on approach and touchdown speeds and use of flaps;
 - (6) crosswind approach and landing;
 - (7) glide approach and landing;
 - (8) flapless approach and landing (short and soft field);
 - (9) short field and soft field procedures;
 - (10) wheel landing (tail wheel aircraft);
 - (11) missed approach and go-around;
 - (12) mislanding and go-around;
 - (13) noise abatement procedures.

EXERCISE 14: FIRST SOLO AND CONSOLIDATION

Note: a summary of points to be covered before sending the student on first solo.

(a) Long briefing objectives:

During the flights immediately following the solo circuit consolidation period the following should be covered:

- (1) procedures for leaving and rejoining the circuit;
- (2) local area (restrictions, controlled airspace, etc.);
- (3) compass turns;
- (4) QDM meaning and use.

(b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 15: ADVANCED TURNING

- (a) Long briefing objectives:
 - (1) the forces;
 - (2) use of power;
 - (3) effect of load factor:
 - (i) structural considerations;
 - (ii) increased stalling speed.
 - (4) physiological effects;
 - (5) rate and radius of turn;
 - (6) steep, level, descending and climbing turns;
 - (7) stalling in the turn and how to avoid it;
 - (8) spinning from the turn: recovery at the incipient stage;
 - (9) spiral dive;
 - (10) unusual attitudes and recoveries.

Note: considerations are to be given to manoeuvre limitations and reference to the flight manual or equivalent document (for example owner's manual or pilot's operating handbook) in relation to mass and balance, and any other restrictions for practice entries to the spin.

- (b) Air exercise:
 - (1) level, descending and climbing steep turns;
 - (2) stalling in the turn;
 - (3) spiral dive;
 - (4) spinning from the turn;
 - (5) recovery from unusual attitudes;
 - (6) maximum rate turns.

EXERCISE 16: FORCED LANDING WITHOUT POWER

- (a) Long briefing objectives:
 - (1) selection of forced landing areas;
 - (2) provision for change of plan;
 - (3) gliding distance: consideration;
 - (4) planning the descent;
 - (5) key positions;
 - (6) engine failure checks;
 - (7) use of radio: R/T 'distress' procedure;
 - (8) base leg;
 - (9) final approach;
 - (10) go-around;
 - (11) landing considerations;
 - (12) actions after landing: aeroplane security;
 - (13) causes of engine failure.
- (b) Air exercise:
 - (1) forced landing procedures;
 - (2) selection of landing area:
 - (i) provision for change of plan;
 - (ii) gliding distance considerations.
 - (3) planning the descent;
 - (4) key positions;
 - (5) engine failure checks;
 - (6) engine cooling precautions;
 - (7) use of radio;
 - (8) base leg;
 - (9) final approach;
 - (10) landing;
 - (11) actions after landing: when the exercise is conducted at an aerodrome;
 - (12) aeroplane security.

EXERCISE 17: PRECAUTIONARY LANDING

- (a) Long briefing objectives:
 - (1) occasions when necessary (in-flight conditions);
 - (2) landing area selection and communication (R/T procedure);
 - (3) overhead inspection;
 - (4) simulated approach;
 - (5) climb away;
 - (6) landing area selection:
 - (i) normal aerodrome;
 - (ii) disused aerodrome;
 - (iii) ordinary field;
 - (7) circuit and approach;
 - (8) actions after landing; aeroplane security.
- (b) Air exercise:
 - (1) occasions when necessary (in-flight conditions):
 - (2) landing area selection
 - (3) overhead inspection
 - (4) simulated approach
 - (5) climb away
 - (6) landing area selection:
 - (i) normal aerodrome;
 - (ii) disused aerodrome;
 - (iii) ordinary field;
 - (7) circuit and approach;
 - (8) actions after landing; aeroplane security;

EXERCISE 18a: NAVIGATION

- (a) Long briefing objectives:
 - (1) flight planning;
 - (i) weather forecast and actual(s);
 - (ii) map selection, orientation, preparation and use:
 - (A) choice of route;
 - (B) regulated or controlled airspace;
 - (C) danger, prohibited and restricted areas;
 - (D) safety altitude.
 - (iii) calculations:
 - (A) magnetic heading(s) and time(s) en-route;
 - (B) fuel consumption;
 - (C) mass and balance;
 - (D) mass and performance.
 - (iv) flight information:
 - (A) NOTAMs etc.;
 - (B) noting of required radio frequencies;
 - (C) selection of alternate aerodrome(s).
 - (v) aeroplane documentation.
 - (vi) notification of the flight:
 - (A) pre-flight administration procedures;
 - (B) flight plan form (where appropriate).
 - (2) departure;
 - (i) organisation of cockpit workload;
 - (ii) departure procedures:
 - (A) altimeter settings;
 - (B) setting heading procedures;
 - (C) noting of ETA(s).
 - (iii) en-route map reading: identification of ground features;
 - (iv) maintenance of altitudes and headings;
 - (v) revisions to ETA and heading, wind effect, drift angle and groundspeed checks;
 - (vi) log keeping;

(vii)use of radio (including VDF if applicable);

- (viii) minimum weather conditions for continuance of flight;
- (ix) 'in-flight' decisions;
- (x) diversion procedures;
- (xi) operations in regulated or controlled airspace;
- (xii) procedures for entry, transit and departure;
- (xiii) navigation at minimum level;
- (xiv) uncertainty of position procedure, including R/T procedure;
- (xv) lost procedure;
- (xvi) use of radio navaids.
- (3) arrival procedures and aerodrome circuit joining procedures:
 - (i) ATC liaison, R/T procedure, etc.;
 - (ii) altimeter setting,
 - (iii) entering the traffic pattern (controlled or uncontrolled aerodromes);
 - (iv) circuit procedures;
 - (v) parking procedures;
 - (vi) security of aircraft;
 - (vii)refuelling;
 - (viii) booking in.
- (b) Air exercise:
 - (1) flight planning:
 - (i) weather forecast and actual(s);
 - (ii) map selection and preparation:
 - (A) choice of route;
 - (B) regulated or controlled airspace;
 - (C) danger, prohibited and restricted areas;
 - (D) safety altitude.
 - (iii) calculations:
 - (A) magnetic heading(s) and time(s) en-route;
 - (B) fuel consumption;
 - (C) mass and balance;
 - (D) mass and performance.
 - (iv) flight information:
 - (A) NOTAMs etc.;
 - (B) noting of required radio frequencies;
 - (C) selection of alternate aerodromes.
 - (v) aircraft documentation;
 - (vi) notification of the flight:
 - (A) flight clearance procedures (as applicable);
 - (B) flight plans.
 - (2) aerodrome departure;
 - (i) organisation of cockpit workload;
 - (ii) departure procedures:
 - (A) altimeter settings;
 - (B) en-route:
 - (C) noting of ETA(s).
 - (iii) wind effect, drift angle and ground speed checks;
 - (iv) maintenance of altitudes and headings;
 - (v) revisions to ETA and heading;
 - (vi) log keeping;
 - (vii)use of radio (including VDF if applicable);
 - (viii) minimum weather conditions for continuance of flight;
 - (ix) 'in-flight' decisions;
 - (x) diversion procedure;
 - (xi) operations in regulated or controlled airspace;
 - (xii)procedures for entry, transit and departure;
 - (xiii) uncertainty of position procedure;
 - (xiv) lost procedure;
 - (xv) use of radio navaids.

- (3) arrival procedures and aerodrome joining procedures:
 - (i) ATC liaison, R/T procedure etc.;
 - (ii) altimeter setting,
 - (iii) entering the traffic pattern;
 - (iv) circuit procedures;
 - (v) parking procedures
 - (vi) security of aircraft;
 - (vii)refuelling;
 - (viii) booking in.

EXERCISE 18b: NAVIGATION AT LOWER LEVELS AND IN REDUCED VISIBILITY

- (a) Long briefing objectives:
 - (1) general considerations:
 - (i) planning requirements before flight in entry or exit lanes;
 - (ii) ATC rules, pilot qualifications and aircraft equipment;
 - (iii) entry or exit lanes and areas where specific local rules apply.
 - (2) low level familiarisation:
 - (i) actions before descending;
 - (ii) visual impressions and height keeping at low altitude;
 - (iii) effects of speed and inertia during turns;
 - (iv) effects of wind and turbulence;
 - (3) low level operation:
 - (i) weather considerations;
 - (ii) low cloud and good visibility;
 - (iii) low cloud and poor visibility;
 - (iv) avoidance of moderate to heavy rain showers;
 - (v) effects of precipitation;
 - (vi) joining a circuit;

(vii)bad weather circuit, approach and landing.

- (b) Air exercise:
 - (1) general considerations: entry or exit lanes and areas where specific local rules apply;
 - (2) low level familiarisation:
 - (i) actions before descending;
 - (ii) visual impressions and height keeping at low altitude;
 - (iii) effects of speed and inertia during turns;
 - (iv) effects of wind and turbulence;
 - (v) hazards of operating at low levels;
 - (3) low level operation:
 - (i) weather considerations;
 - (ii) low cloud and good visibility;
 - (iii) low cloud and poor visibility;
 - (iv) avoidance of moderate to heavy rain showers;
 - (v) effects of precipitation (forward visibility);
 - (vi) joining a circuit;
 - (vii)bad weather circuit, approach and landing.

EXERCISE 18c: USE OF RADIO NAVIGATION AIDS UNDER VFR

- (a) Long briefing objectives:
 - (1) use of VOR:
 - (i) availability, AIP and frequencies;
 - (ii) signal reception range;
 - (iii) selection and identification;
 - (iv) radials and method of numbering;
 - (v) use of OBS;
 - (vi) to or from indication and station passage;
 - (vii) selection, interception and maintaining a radial;
 - (viii) use of two stations to determine position.

- (2) use of ADF equipment:
 - (i) availability of NDB stations, AIP and frequencies;
 - (ii) signal reception range;
 - (iii) selection and identification;
 - (iv) orientation in relation to NDP;
 - (v) homing to an NDP.
- (3) use of VHF/DF:
 - (i) availability. AIP and frequencies;
 - (ii) R/T procedures;
 - (iii) obtaining QDMs and QTEs.
- (4) use of radar facilities:
 - (i) availability and provision of service and AIS;
 - (ii) types of service;
 - (iii) R/T procedures and use of transponder:
 - (A) mode selection;
 - (B) emergency codes.
- (5) use of distance DME:
 - (i) availability and AIP;
 - (ii) operating modes;
 - (iii) slant range.
- (6) use of GNSS (RNAV SATNAV):
 - (i) availability;
 - (ii) operating modes;
 - (iii) limitations.
- (b) Air exercise:
- (1) use of VOR:
 - (i) availability, AIP and frequencies;
 - (ii) selection and identification;
 - (iii) use of OBS;
 - (iv) to or from indications: orientation;
 - (v) use of CDI;
 - (vi) determination of radial;
 - (vii) intercepting and maintaining a radial;
 - (viii) VOR passage;
 - (ix) obtaining a fix from two VORs.
 - (2) use of ADF equipment;
 - (i) availability of NDB stations, AIP and frequencies;
 - (ii) selection and identification;
 - (iii) orientation relative to the beacon;
 - (iv) homing.
 - (3) use of VHF/DF:
 - (i) availability, AIP and frequencies;
 - (ii) R/T procedures and ATC liaison;
 - (iii) obtaining a QDM and homing.
 - (4) use of en-route or terminal radar:
 - (i) availability and AIP;
 - (ii) procedures and ATC liaison;
 - (iii) pilot's responsibilities;
 - (iv) secondary surveillance radar;
 - (v) transponders;
 - (vi) code selection;
 - (vii) interrogation and reply.
 - (5) use of DME:
 - (i) station selection and identification;
 - (ii) modes of operation.
 - (6) use of GNSS (RNAV SATNAV):
 - (i) setting up;
 - (ii) operation;
 - (iii) interpretation.

EXERCISE 19: BASIC INSTRUMENT FLIGHT

- (a) Long briefing objectives:
 - (1) flight instruments;
 - (i) physiological sensations;
 - (ii) instrument appreciation;
 - (iii) attitude instrument flight;
 - (iv) pitch indications;
 - (v) bank indications;
 - (vi) different dial presentations;
 - (vii) introduction to the use of the attitude indicator;
 - (viii) pitch attitude;
 - (ix) bank attitude;
 - (x) maintenance of heading and balanced flight;
 - (xi) instrument limitations (inclusive system failures).
 - (2) attitude, power and performance;
 - (i) attitude instrument flight:
 - (ii) control instruments;
 - (iii) performance instruments;
 - (iv) effect of changing power and configuration;
 - (v) cross-checking the instrument indications;
 - (vi) instrument interpretation;
 - (vii)direct and indirect indications (performance instruments);
 - (viii) instrument lag;
 - (ix) selective radial scan;
 - (3) basic flight manoeuvres (full panel);
 - (i) straight and level flight at various air speeds and aeroplane configurations;
 - (ii) climbing;
 - (iii) descending;
 - (iv) standard rate turns onto pre-selected headings:
 - (A) level;
 - (B) climbing;
 - (C) descending.
- (b) Air exercise:
 - (1) Introduction to instrument flying
 - (i) flight instruments;
 - (ii) physiological sensations;
 - (iii) instrument appreciation;
 - (iv) attitude instrument flight;
 - (v) pitch attitude;
 - (vi) bank attitude;
 - (vii)maintenance of heading and balanced flight;
 - (2) attitude, power and performance;
 - (i) attitude instrument flight;
 - (ii) effect of changing power and configuration;
 - (iii) cross-checking the instruments;
 - (iv) selective radial scan;
 - (3) basic flight manoeuvres (full panel);
 - (i) straight and level flight at various air speeds and aeroplane configurations;
 - (ii) climbing;
 - (iii) descending;
 - (iv) standard rate turns onto pre-selected headings:
 - (A) level;
 - (B) climbing;
 - (C) descending.

EXERCISE 20: NIGHT FLYING (if night instructional qualification required)

- (a) Long briefing objectives:
 - (1) start up procedures;
 - (2) local procedures: including ATC liaison;
 - (3) taxiing:
 - (i) parking area and taxiway lighting;
 - (ii) judgement of speed and distances;
 - (iii) use of taxiway lights;
 - (iv) avoidance of hazards: obstruction lighting;
 - (v) instrument checks;
 - (vi) holding point: lighting procedure;
 - (vii)initial familiarisation at night;
 - (viii) local area orientation;
 - (ix) significance of lights on other aircraft;
 - (x) ground obstruction lights;
 - (xi) division of piloting effort: external or instrument reference;
 - (xii)rejoining procedure;
 - (xiii) aerodrome lighting: approach and runway lighting (including VASI and PAPI):
 - (A) threshold lights;
 - (B) approach lighting;
 - (C) visual approach slope indicator systems.
 - (4) night circuits;
 - (i) take-off and climb:
 - (A) line up;
 - (B) visual references during the take-off run;
 - (C) transfer to instruments;
 - (D) establishing the initial climb;
 - (E) use of flight instruments;
 - (F) instrument climb and initial turn.
 - (ii) circuit:
 - (A) aeroplane positioning: reference to runway lighting;
 - (B) the traffic pattern and look-out;
 - (C) initial approach and runway lighting demonstration;
 - (D) aeroplane positioning;
 - (E) changing aspect of runway lights and VASI (or PAPI);
 - (F) intercepting the correct approach path;
 - (G) the climb away.
 - (iii) approach and landing:
 - (A) positioning, base leg and final approach;
 - (B) diurnal wind effect;
 - (C) use of landing lights;
 - (D) the flare and touchdown;
 - (E) the roll out;
 - (F) turning off the runway: control of speed.
 - (iv) missed approach:
 - (A) use of instruments;
 - (B) re-positioning in the circuit pattern;
 - (4) night navigation:
 - (i) particular emphasis on flight planning;
 - (ii) selection of ground features visible at night:
 - (A) air light beacons;
 - (B) effect of cockpit lighting on map colours;
 - (C) use of radio aids;
 - (D) effect of moonlight upon visibility at night;
 - (iii) emphasis on maintaining a 'minimum safe altitude';
 - (iv) alternate aerodromes: restricted availability;
 - (v) restricted recognition of weather deterioration;
 - (vi) lost procedures;

- (5) night emergencies;
 - (i) radio failure;
 - (ii) failure of runway lighting;
 - (iii) failure of aeroplane landing lights;
 - (iv) failure of aeroplane internal lighting;
 - (v) failure of aeroplane navigation lights;
 - (vi) total electrical failure;
 - (vii)abandoned take-off;
 - (viii) engine failure;(ix) obstructed runway procedure.
- (b) Air exercise: during the air exercise all long briefing objectives mentioned above should also be trained on site and the student instructor should demonstrate the following items:
 - (1) how to plan and to perform a flight at night;
 - (2) how to advise the student pilot to plan and prepare a flight at night;
 - (3) how to advise the student pilot to perform a flight at night;
 - (4) how to analyse and correct errors as necessary

B. Helicopters

GROUND INSTRUCTION

Note: During ground instruction the student instructor should pay specific attention to the teaching of enhanced ground instruction in weather interpretation, planning and route assessment, decision making on encountering DVE including reversing course or conduction a precautionary landing.

Part 2

AIR EXERCISES

- (a) The air exercises are similar to those used for the training of PPL (H) but with additional items designed to cover the needs of an FI.
- (b) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide: therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 - (1) the applicant's progress and ability;
 - (2) the weather conditions affecting the flight;
 - (3) the flight time available;
 - (4) instructional technique considerations;
 - (5) the local operating environment;
 - (6) applicability of the exercises to the helicopter type.
- (c) It follows that student instructors will eventually be faced with similar interrelated factors. They should be shown and taught how to construct flight lesson plans, taking these factors into account, so as to make the best use of each flight lesson, combining parts of the set exercises as necessary.

GENERAL

- (d) The briefing normally includes a statement of the objectives and a brief reference to principles of flight only if relevant. An explanation is to be given of exactly what air exercises are to be taught by the instructor and practised by the student during the flight. It should include how the flight will be conducted about who is to fly the helicopter and what airmanship, weather and flight safety aspects currently apply. The nature of the lesson will govern the order in which the constituent parts are to be taught.
- (e) The four basic components of the briefing will be:
 - (1) the aim;
 - (2) principles of flight (briefest reference only);
 - (3) the air exercise(s) (what, and how and by whom);
 - (4) airmanship (weather, flight safety etc.).

PLANNING OF FLIGHT LESSONS

(f) The preparation of lesson plans is an essential prerequisite of good instruction and the student instructor is to be given supervised practice in the planning and practical application of flight lesson plans.

GENERAL CONSIDERATIONS

- (g) The student instructor should complete flight training to practise the principles of basic instruction at the PPL(H) level.
- (h) During this training, except when acting as a student pilot for mutual flights, the student instructor occupies the seat normally occupied by the FI(H).
- (i) It is to be noted that airmanship and look-out is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at all times.
- (j) If the privileges of the FI(H) certificate are to include instruction for night flying, exercise 28 should be undertaken either as part of the course or subsequent to certificate issue.
- (k) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.
- (1) The student instructor should be trained to keep in mind that wherever possible, flight simulation should be used to demonstrate to student pilots the effects of flight into DVE and to enhance their understanding and need for avoidance of this potentially fatal flight regime.

SYLLABUS OF FLIGHT INSTRUCTION CONTENTS

LONG BRIEFINGS AND AIR EXERCISES

EXERCISE 1: FAMILIARISATION WITH THE HELICOPTER

- (a) Long briefing objectives:
 - (1) introduction to the helicopter;
 - (2) explanation of the cockpit layout;
 - (3) helicopter and engine systems;
 - (4) checklist(s) and procedures;
 - (3) familiarisation with the helicopter controls;
 - (4) differences when occupying the instructor's seat;
 - (5) emergency drills:
 - (i) action if fire in the air and on the ground: engine, cockpit or cabin and electrical fire;
 - (ii) system failure drills as applicable to type;
 - (iii) escape drills: location and use of emergency equipment and exits.
- (b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 2: PREPARATION FOR AND ACTION AFTER FLIGHT

- (a) Long briefing objectives:
 - (1) flight authorisation and helicopter acceptance, including technical log (if applicable) and certificate of maintenance:
 - (2) equipment required for flight (maps, etc.);
 - (3) external checks;
 - (4) internal checks;
 - (5) student comfort, harness, seat and rudder pedal adjustment;
 - (6) starting and after starting checks;
 - (7) system, power or serviceability checks (as applicable);
 - (8) closing down or shutting down the helicopter (including system checks).
 - (9) parking and leaving the helicopter (including safety or security as applicable);
 - (10) completion of authorisation sheet and helicopter serviceability documents.
- (b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 3: AIR EXPERIENCE

- (a) Long briefing objectives:
 - Note: there is no requirement for a long briefing for this exercise.
- (b) Air exercise:
 - (1) air experience;
 - (2) cockpit layout, ergonomics and controls;
 - (3) cockpit procedures: stability and control.

EXERCISE 4: EFFECTS OF CONTROLS

- (a) Long briefing objectives:
 - (1) function of the flying controls (primary and secondary effect);
 - (2) effect of air speed;
 - (3) effect of power changes (torque);
 - (4) effect of yaw (sideslip);
 - (5) effect of disc loading (bank and flare);
 - (6) effect on controls of selecting hydraulics on/off;
 - (7) effect of control friction;
 - (8) use of instruments;
 - (9) operation of carburettor heat or anti-icing control.
- (b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 5: POWER AND ATTITUDE CHANGES

- (a) Long briefing objectives:
 - (1) relationship between cyclic control position, disc attitude, fuselage attitude and air speed flap back;
 - (2) power required diagram in relation to air speed;
 - (3) power and air speed changes in level flight;
 - (4) use of the instruments for precision;
 - (5) engine and air speed limitations;
- (b) Air exercise:
 - (1) relationship between cyclic control position, disc attitude, fuselage attitude and air speed flap back;
 - (2) power and air speed changes in level flight;
 - (3) use of instruments for precision (including instrument scan and look-out).

EXERCISE 6: LEVEL FLIGHT, CLIMBING, DESCENDING AND TURNING

Note: for ease of training this exercise is divided into four separate parts in the PPL(H) syllabus but may be taught complete or in convenient parts.

- (a) Long briefing objectives:
 - (1) basic factors involved in level flight;
 - (2) normal power settings;
 - (3) use of control friction or trim;
 - (4) importance of maintaining direction and balance;
 - (5) power required or power available diagram;
 - (6) optimum climb and descent speeds, angles or rates;
 - (7) importance of balance, attitude and co-ordination in the turn;
 - (8) effects of turning on rate of climb or descent;
 - (9) use of the gyro direction or heading indicator and compass;
 - (10) use of instruments for precision.
- (b) Air exercises:
 - (1) maintaining straight and level flight at normal cruise power;
 - (2) control in pitch, including use of control friction or trim;
 - (3) use of the ball or yaw string to maintain direction and balance;
 - (4) setting and use of power for selected air speeds and speed changes;
 - (5) entry to climb;
 - (6) normal and maximum rate of climb;
 - (7) levelling off from climb at selected altitudes or heights;
 - (8) entry to descent;
 - (9) effect of power and air speed on rate of descent;
 - (10) levelling off from descent at selected altitudes or heights;
 - (11) entry to medium rate turns;
 - (12) importance of balance, attitude and co-ordination to maintain level turn;
 - (13) resuming straight and level flight;
 - (14) turns onto selected headings, use of direction indicator and compass;
 - (15) turns whilst climbing and descending;
 - (16) effect of turn on rate of climb or descent;
 - (17) use of instruments for precision (including instrument scan and look-out).

EXERCISE 7: AUTOROTATION

- (a) Long briefing objectives:
 - (1) characteristics of autorotation;
 - (2) safety checks (including look-out and verbal warning);
 - (3) entry and development of autorotation;
 - (4) effect of AUM, IAS, disc loading, G forces and density altitude on RRPM and rate of descent;
 - (5) rotor and engine limitations;
 - (6) control of air speed and RRPM;
 - (7) recovery to powered flight;
 - (8) throttle override and control of ERPM or RRPM during re-engagement (as applicable);
 - (9) danger of vortex condition during recovery.

- (b) Air exercise:
 - (1) safety checks (including verbal warning and look-out);
 - (2) entry to and establishing in autorotation;
 - (3) effect of IAS and disc loading on RRPM and rate of descent;
 - (4) control of air speed and RRPM;
 - (5) recovery to powered flight;
 - (6) medium turns in autorotation;
 - (7) simulated engine off landing (as appropriate).

EXERCISE 8: HOVERING AND HOVER TAXIING

- (a) Long briefing objectives:
 - (1) ground effect and power required;
 - (2) effect of wind, attitude and surface;
 - (3) stability in hover and effects of over controlling;
 - (4) effect of control in hover;
 - (5) control and co-ordination during spot turns;
 - (6) requirement for slow hover speed to maintain ground effect;
 - (7) effect of hydraulic failure in hover;
 - (8) specific hazards, for example snow, dust, etc.
- (b) Air exercise:
 - (1) ground effect and power or height relationship;
 - (2) effect of wind, attitude and surface;
 - (3) stability in hover and effects of over controlling;
 - (4) effect of control and hover technique;
 - (5) gentle forward running touchdown;
 - (6) control and co-ordination during spot (90 $^{\circ}$ clearing) turns;
 - (7) control and co-ordination during hover taxi;
 - (8) dangers of mishandling and over pitching;
 - (9) (where applicable) effect of hydraulics failure in hover;
 - (10) simulated engine failure in the hover and hover taxi.

EXERCISE 9: TAKE-OFF AND LANDING

- (a) Long briefing objectives:
 - (1) pre take-off checks or drills;
 - (2) importance of good look-out;
 - (3) technique for lifting to hover;
 - (4) after take-off checks;
 - (5) danger of horizontal movement near ground;
 - (6) dangers of mishandling and over pitching;
 - (7) technique for landing;
 - (8) after landing checks;
 - (9) take-off and landing crosswind and downwind.
- (b) Air exercise:
 - (1) pre take-off checks or drills:
 - (2) pre take-off look-out technique;
 - (3) lifting to hover;
 - (4) after take-off checks;
 - (5) landing;
 - (6) after landing checks or drills;
 - (7) take-off and landing crosswind and downwind.

EXERCISE 10: TRANSITIONS FROM HOVER TO CLIMB AND APPROACH TO HOVER

- (a) Long briefing objectives:
 - (1) revision of ground effect;
 - (2) translational lift and its effects;
 - (3) inflow roll and its effects;
 - (4) revision of flap back and its effects;

- (5) avoidance of curve diagram and associated dangers;
- (6) effect or dangers of wind speed and direction during transitions;
- (7) transition to climb technique;
- (8) constant angle approach;
- (9) transition to hover technique.
- (b) Air exercise:
 - (1) revision of take-off and landing;
 - (2) transition from hover to climb;
 - (3) effect of translational lift, inflow roll and flap back;
 - (4) constant angle approach;
 - (5) technique for transition from descent to hover;
 - (6) a variable flare simulated engine off landing.

EXERCISE 11: CIRCUIT, APPROACH AND LANDING

- (a) Long briefing objectives:
 - (1) circuit and associated procedures;
 - (2) take-off and climb (including checks or speeds);
 - (3) crosswind leg (including checks, speeds or angles of bank in turns);
 - (4) downwind leg (including pre-landing checks);
 - (5) base leg (including checks, speeds or angles of bank in turns);
 - (6) final approach (including checks or speeds);
 - (7) effect of wind on approach and hover IGE;
 - (8) crosswind approach and landing technique;
 - (9) missed approach and go-around technique (as applicable);
 - (10) steep approach technique (including danger of high sink rate);
 - (11) limited power approach technique (including danger of high speed at touchdown);
 - (12) use of the ground effect;
 - (13) abandoned take-off technique;
 - (14) hydraulic failure drills and hydraulics off landing technique (where applicable);
 - (15) drills or technique for tail rotor control or tail rotor drive failure;
 - (16) engine failure drills in the circuit to include;
 - (17) engine failure
 - (18) on take-off:
 - (i) crosswind;
 - (ii) downwind;
 - (iii) base leg;
 - (iv) on final approach.
 - (19) noise abatement procedures (as applicable).
- (b) Air exercise:
 - (1) revision of transitions and constant angle approach;
 - (2) basic training circuit, including checks;
 - (3) crosswind approach and landing technique;
 - (4) missed approach and go-around technique (as applicable);
 - (5) steep approach technique;
 - (6) basic limited power approach or run on technique;
 - (7) use of ground effect;
 - (8) hydraulic failure and approach to touchdown with hydraulics off and to recover at safe height (as applicable);
 - (9) simulated engine failure on take-off, crosswind, downwind, base leg and finals;
 - (10) variable flare simulated engine off landing.

EXERCISE 12: FIRST SOLO

- (a) Long briefing objectives:
 - (1) warning of change of attitude due to reduced and laterally displaced weight;
 - (2) low tail, low skid or wheel during hover or landing;
 - (3) dangers of loss of RRPM and over pitching;
 - (4) pre take-off checks;
 - (5) into wind take-off;

- (6) drills during and after take-off;
- (7) normal circuit, approach and landing;
- (8) action if an emergency.
- (b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 13: SIDEWAYS AND BACKWARDS HOVER MANOEUVRING

- (a) Long briefing objectives:
 - (1) revision of hovering;
 - (2) directional stability and weather cocking effect;
 - (3) danger of pitching nose down on recovery from backwards manoeuvring;
 - (4) helicopter limitations for sideways and backwards manoeuvring;
 - (5) effect of CG position.
- (b) Air exercise:
 - (1) revision of hovering and 90 $^{\circ}$ clearing turns;
 - (2) manoeuvring sideways heading into wind;
 - (3) manoeuvring backwards heading into wind;
 - (4) manoeuvring sideways and backwards heading out of wind;
 - (5) manoeuvring backwards too fast and recovery action.

EXERCISE 14: SPOT TURNS

- (a) Long briefing objectives:
 - (1) revision of ground effect and effect of wind;
 - (2) weather cocking and control actions;
 - (3) control of RRPM;
 - (4) torque effect;
 - (5) cyclic limiting stops due to CG position (where applicable);
 - (6) rate of turn limitations;
 - (7) spot turn about pilot position;
 - (8) spot turn about tail rotor position;
 - (9) spot turn about helicopter geometric centre;
 - (10) square (safe visibility) and clearing turn.
- (b) Air exercise:
 - (1) weather cocking, torque effect and control actions;
 - (2) rate of turn;
 - (3) spot turn about pilot position;
 - (4) spot turn about tail rotor position;
 - (5) spot turn about helicopter geometric centre;
 - (6) square and clearing turn.

EXERCISE 15: HOVER OUT OF GROUND EFFECT AND VORTEX RING

- (a) Long briefing objectives:
 - (1) revision of ground effect and power required diagram;
 - (2) drift, height and power control, look-out or scan;
 - (3) vortex ring, (including dangers, recognition and recovery actions);
 - (4) loss of tail rotor effectiveness.
- (b) Air exercise:
 - (1) to demonstrate hover OGE;
 - (2) drift, height, power control and look-out, and instrument scan technique;
 - (3) recognition of incipient stage of vortex ring and settling with power;
 - (4) recovery action from incipient stage of vortex ring;
 - (5) recognition of loss of tail rotor effectiveness and recovery actions.

EXERCISE 16: SIMULATED ENGINE OFF LANDINGS

- (a) Long briefing objectives:
 - (1) revision of basic autorotation;

- (2) effect of AUM, disc loading, density altitude and RRPM decay;
- (3) use of cyclic and collective to control speed or RRPM;
- (4) torque effect;
- (5) use of flare or turn to restore RRPM;
- (6) technique for variable flare simulated EOL;
- (7) technique for constant attitude simulated EOL;
- (8) revision of technique for hover or hover taxi simulated EOL;
- (9) emergency technique for engine failure during transition;
- (10) technique for low level simulated EOL.
- (b) Air exercise
 - (1) revision of entry to and control in autorotation;
 - (2) variable flare simulated EOL
 - (3) constant attitude simulated EOL;
 - (4) hover simulated EOL;
 - (5) hover taxi simulated EOL;
 - (6) low level simulated EOL.

EXERCISE 17: ADVANCED AUTOROTATIONS

- (a) Long briefing objectives:
 - (1) effect of air speed or AUM on angles or rates of descent
 - (2) effect of RRPM setting on angle or rate of descent;
 - (3) reason and technique for range autorotation;
 - (4) reason and technique for constant attitude autorotation;
 - (5) reason and technique for low speed and 'S' turns in autorotation;
 - (6) speed or bank limitations in turns in autorotation;
 - (7) revision of re-engagement or go-around procedures.
- (b) Air exercise:
 - (1) selection of ground marker and standard datum height to determine distance covered during various autorotation techniques;
 - (2) revision of basic autorotation;
 - (3) technique for range autorotation;
 - (4) technique for constant attitude autorotation;
 - (5) technique for low speed autorotation, including need for timely speed recovery;
 - (6) technique for 'S' turn in autorotation;
 - (7) 180 and 360 $^\circ$ turns in autorotation;
 - (8) revision of re-engagement and go-around technique.

EXERCISE 18: PRACTICE FORCED LANDINGS

- (a) Long briefing objectives:
 - (1) types of terrain or surface options for choice of best landing area;
 - (2) practice forced landing procedure;
 - (3) forced landing checks and crash actions;
 - (4) rules or height for recovery and go-around.
- (b) Air exercise:
 - (1) recognition of types of terrain from normal cruise height or altitude;
 - (2) practice forced landing technique;
 - (3) revision of recovery or go-around technique.

EXERCISE 19: STEEP TURNS

- (a) Long briefing objectives:
 - (1) air speed or angle of bank limitations;
 - (2) technique for co-ordination to hold bank or attitude;
 - (3) revision of speed or bank limitations in autorotation including RRPM control;
 - (4) significance of disc loading, vibration and control feedback;
 - (5) effect of wind in turns at low level.
- (b) Air exercise:
 - (1) technique for turning at 30 $^{\circ}$ of bank;

- (2) technique for turning at 45 $^{\circ}$ of bank (where possible);
- (3) steep autorotative turns;
- (4) explanation of faults in the turn: balance, attitude, bank and co-ordination;
- (5) effect of wind at low level.

EXERCISE 20: TRANSITIONS

- (a) Long briefing objectives:
 - (1) revision of effect of ground cushion, translational lift and flap back;
 - (2) training requirement for precision exercise;
 - (3) technique for transition to forward flight and back to hover as precision exercise;
 - (4) effect of wind.
- (b) Air exercise:
 - (1) transition from hover to minimum 50 knots IAS and back to hover; Note: select constant height (20 30 ft) and maintain.
 - (2) effect of wind.

EXERCISE 21: QUICK STOPS

- (a) Long briefing objectives:
 - (1) power control co-ordination;
 - (2) revision of effect of wind;
 - (3) technique for quick stop into wind;
 - (4) technique for quick stop from crosswind;
 - (5) revision of air speed and angles of bank limitations;
 - (6) technique for emergency turn from downwind;
 - (7) technique for quick stop from downwind from high speed: flare and turn;
 - (8) technique for quick stop from downwind from low speed: turn and flare; Note: use reasonable datum speed for example high speed, low speed.
 - (9) danger of holding flare when downwind, (vortex ring) (minimum speed 70 knots);
 - (10) to revise danger of high disc loading.
- (b) Air exercise:
 - (1) technique for quick stop into wind;
 - (2) technique for quick stop from crosswind;
 - (3) danger of vortex ring and disc loading;
 - (4) technique for quick stop from downwind with low speed;
 - (5) technique for quick stop from downwind with high speed;
 - (6) emergency turns from downwind.

EXERCISE 22: NAVIGATION

(a) Long briefing objectives:

Note: to be broken down into manageable parts at discretion of instructor.

- (1) flight planning:
 - (i) weather forecasts and actuals;
 - (ii) map selection, orientation, preparation and use:
 - (A) choice of route;
 - (B) regulated or controlled airspace;
 - (C) danger, prohibited and restricted areas;
 - (D) safety altitude.
 - (iii) calculations:
 - (A) magnetic heading(s), time(s) en route;
 - (B) fuel consumption;
 - (C) mass and balance.
 - (iv) flight information:
 - (A) NOTAMs etc;
 - (B) noting of required radio frequencies;
 - (C) selection of alternate landing sites.
 - (v) helicopter documentation;
 - (vi) notification of the flight:

- (A) pre-flight administration procedures;
- (B) flight plan form (where appropriate).
- (2) departure:
 - (i) organisation of cockpit workload;
 - (ii) departure procedures:
 - (A) altimeter settings;
 - (B) ATC liaison in controlled or regulated airspace;
 - (C) setting heading procedure;
 - (D) noting of ETA(s);
 - (E) maintenance of height or altitude and heading.
 - (iii) procedure for revisions of ETA and headings to include:
 - (A) 10 ° line, double track, track error and closing angle;
 - (B) 1 in 60 rule;
 - (iv) amending an ETA;
 - (v) log keeping;
 - (vi) use of radio;
 - (vii)use of navaids;
 - (viii) weather monitoring and minimum weather conditions for continuation of flight;
 - (ix) significance of in-flight decision making;
 - (x) technique for transiting controlled or regulated airspace;
 - (xi) uncertainty of position procedure;
 - (xii)lost procedure.
- (3) arrival:
 - (i) aerodrome joining procedure, in particular ATC liaison in controlled or regulated airspace:(A) altimeter setting;
 - (B) entering traffic pattern;
 - (C) circuit procedures.
 - (ii) parking procedures, in particular:
 - (A) security of helicopter;
 - (B) refuelling;
 - (C) closing of flight plan, (if appropriate);
 - (D) post flight administrative procedures.
- (4) navigation problems at low heights and reduced visibility:
 - (i) actions before descending;
 - (ii) significance of hazards, (for example obstacles and other traffic);
 - (iii) difficulties of map reading;
 - (iv) effects of wind and turbulence;
 - (v) significance of avoiding noise sensitive areas;
 - (vi) procedures for joining a circuit from low level;
 - (vii)procedures for a bad weather circuit and landing;
 - (viii) actions in the event of encountering DVE;
 - (ix) appropriate procedures and choice of landing area for precautionary landings;
 - (x) decision to divert or conduct precautionary landing;
 - (xi) precautionary landing.
- (5) radio navigation:
 - (i) use of VOR:
 - (A) availability, AIP and frequencies;
 - (B) selection and identification;
 - (C) use of OBS;
 - (D) to or from indications: orientation;
 - (E) use of CDI;
 - (F) determination of radial;
 - (G) intercepting and maintaining a radial;
 - (H) VOR passage;
 - (I) obtaining a fix from two VORs.
 - (ii) use of ADF equipment:
 - (A) availability of NDB stations, AIP and frequencies;
 - (B) selection and identification;
 - (C) orientation relative to beacon;
 - (D) homing.

- (iii) use of VHF/DF
 - (A) availability, AIP and frequencies;
 - (B) R/T procedures and ATC liaison;
 - (C) obtaining a QDM and homing.
- (iv) use of en-route or terminal radar:
 - (A) availability and AIP;
 - (B) procedures and ATC liaison;
 - (C) pilots responsibilities;
 - (D) secondary surveillance radar:
 - (a) transponders;
 - (b) code selection;
 - (E) interrogation and reply.
- (iv) use of DME:
 - (A) station selection and identification;
 - (B) modes of operation: distance, groundspeed and time to run.
- (v) use of GNSS:
 - (A) selection of waypoints;
 - (B) to or from indications and orientation;
 - (C) error messages;
 - (D) hazards of over-reliance in the continuation of flight in DVE.
- (b) Air exercise:
 - (1) navigation procedures as necessary;
 - (2) to advise student and correct errors as necessary;
 - (3) map reading techniques;
 - (4) the significance of calculations;
 - (5) revision of headings and ETA's;
 - (6) use of radio;
 - (7) use of navaids: ADF/NDB, VOR, VHF/DF, DME and transponder;
 - (8) cross-country flying by using visual reference, DR, GNNS and, where available, radio navigation aids; simulation of deteriorating weather conditions and actions to divert or conduct precautionary landing;
 - (8) log keeping;
 - (9) importance of decision making;
 - (10) procedure to deal with uncertainty of position;
 - (11) lost procedure;
 - (12) appropriate procedures and choice of landing area for precautionary landings;
 - (13) aerodrome joining procedure;
 - (14) parking and shut-down procedures;
 - (15) post-flight administration procedures.

EXERCISE 23: ADVANCED TAKE-OFF, LANDINGS AND TRANSITIONS

- (a) Long briefing objectives:
 - (1) revision of landing and take-off out of wind (performance reduction);
 - (2) revision of wind limitations;
 - (3) revision of directional stability variation when out of wind;
 - (4) revision of power required diagram;
 - (5) technique for downwind transitions;
 - (6) technique for vertical take-off over obstacles;
 - (7) reconnaissance technique for landing site;
 - (8) power checks;
 - (9) technique for running landing;
 - (10) technique for zero speed landing;
 - (11) technique for crosswind and downwind landings;
 - (12) steep approach, including dangers;
 - (13) revision of go-around procedures.
- (b) Air exercise
 - (1) technique for downwind transition;
 - (2) technique for vertical take-off over obstacles;
 - (3) reconnaissance technique for landing site;
 - (4) power check and assessment;

- (5) technique for running landing;
- (6) technique for zero speed landing;
- (7) technique for crosswind and downwind landings;
- (8) technique for steep approach;
- (9) go-around procedures.

EXERCISE 24: SLOPING GROUND

- (a) Long briefing objectives:
 - (1) limitations;
 - (2) wind and slope relationship, including blade and control stops;
 - (3) effect of CG when on slope;
 - (4) ground effect and power required when on slope;
 - (5) landing technique when on slope, left, right and nose-up;
 - (6) avoidance of dynamic rollover, dangers of soft ground and sideways movement;
 - (7) dangers of over controlling near ground on slope;
 - (8) danger of striking main or tail rotor on up slope.
- (b) Air exercise
 - (1) technique for assessing slope angle;
 - (2) technique for landing and take-off left skid up slope;
 - (3) technique for landing and take-off right skid up slope;
 - (4) technique for landing nose up slope;
 - (5) dangers of over controlling near ground.

EXERCISE 25: LIMITED POWER

- (a) Long briefing objectives:
 - (1) use of appropriate helicopter performance graphs;
 - (2) selection of technique according to available power;
 - (3) effect of wind on available power.
- (b) Air exercise: to revise and refine techniques demonstrated in exercise 23.

EXERCISE 26: CONFINED AREAS

- (a) Long briefing objectives:
 - (1) revision of use of helicopter performance graphs;
 - (2) procedure for locating landing site and selecting site marker;
 - (3) procedures for assessing wind speed and direction;
 - (4) landing site reconnaissance techniques;
 - (5) reason for selecting landing markers;
 - (6) procedure for selecting direction and type of approach;
 - (7) dangers of out of wind approach;
 - (8) circuit procedures;
 - (9) reason for approach to committal point and go-around, (practice approach);
 - (10) approach technique;
 - (11) revision of clearing turn and landing (sloping ground technique);
 - (12) hover power check or performance assessment IGE and OGE (if necessary);
 - (13) take-off procedures.
- (b) Air exercise
 - (1) procedures for locating landing site and selecting site marker;
 - (2) procedures for assessing wind speed and direction;
 - (3) landing site reconnaissance techniques;
 - (4) selecting landing markers, direction and type of approach;
 - (5) circuit procedure;
 - (6) practice approach, go-around and approach technique;
 - (7) revision of clearing turn and landing (sloping ground technique);
 - (8) hover power check or performance assessment IGE and OGE (if necessary);
 - (9) take-off procedures.

EXERCISE 27: BASIC INSTRUMENT FLIGHT

- (a) Long briefing objectives:
 - (1) physiological sensations;
 - (2) instrument appreciation;
 - (3) attitude instrument flight;
 - (4) instrument scan;
 - (5) instrument limitations;
 - (6) basic manoeuvres by sole reference to instruments:
 - (i) straight and level flight at various air speeds and configurations;
 - (ii) climbing and descending;
 - (iii) standard rate turns, climbing and descending, onto selected headings;
 - (iv) recoveries from climbing and descending turns (unusual attitudes).
- (b) Air exercise:
 - (1) attitude instrument flight and instrument scan;
 - (2) basic manoeuvres by sole reference to instruments:
 - (i) straight and level flight at various air speeds and configurations;
 - (ii) climbing and descending;
 - (iii) standard rate turns, climbing and descending, onto selected headings;
 - (iv) recoveries from climbing and descending turns (unusual attitudes).

EXERCISE 28: NIGHT FLYING (if night instructional qualification required)

- (a) Long briefing objectives:
 - (1) medical or physiological aspects of night vision;
 - (2) requirement for torch to be carried (pre-flight inspection, etc.);
 - (3) use of the landing light;
 - (4) take-off and hover taxi procedures at night;
 - (5) night take-off procedure;
 - (6) cockpit procedures at night;
 - (7) approach techniques;
 - (8) night landing techniques;
 - (9) night autorotation techniques (power recovery at safe height);
 - (10) technique for practice forced landing at night (using appropriate illumination);
 - (11) emergency procedures at night;
 - (12) navigation principles at night;
 - (13) map marking for night use (highlighting built up or lit areas with thicker lines, etc.).
- (b) Air exercise:
 - (1) use of torch for pre-flight inspection;
 - (2) use of landing light;
 - (3) night take-off to hover (no sideways or backwards movement);
 - (4) night hover taxi (higher and slower than by day);
 - (5) night transition procedure;
 - (6) night circuit;
 - (7) night approach and landing (including use of landing light);
 - (8) night autorotation (power recovery at safe height);
 - (9) practice forced landing at night (using appropriate illumination);
 - (10) night emergency procedures;
 - (11) night cross country techniques, as appropriate.

C. Airships

Part 2

AIR EXERCISES

- (a) The air exercises are similar to those used for the training of PPL(As) but with additional items designed to cover the needs of an FI.
- (b) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide: therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 - (1) the applicant's progress and ability;
 - (2) the weather conditions affecting the flight;
 - (3) the flight time available;
 - (4) instructional technique considerations;
 - (5) the local operating environment.
- (c) It follows that student instructors will eventually be faced with similar interrelated factors. They should be shown and taught how to construct flight lesson plans, taking these factors into account, so as to make the best use of each flight lesson, combining parts of the set exercises as necessary.

GENERAL

- (d) The briefing normally includes a statement of the aim and a brief allusion to principles of flight only if relevant. An explanation is to be given of exactly what air exercises are to be taught by the instructor and practised by the student during the flight. It should include how the flight will be conducted about who is to fly the airship and what airmanship, weather and flight safety aspects currently apply. The nature of the lesson will govern the order in which the constituent parts are to be taught.
- (e) The four basic components of the briefing will be:
 - (1) the aim;
 - (2) principles of flight (briefest reference only);
 - (3) the air exercise(s) (what, and how and by whom);
 - (4) airmanship (weather, flight safety etc.).

PLANNING OF FLIGHT LESSONS

(f) The preparation of lesson plans is an essential prerequisite of good instruction and the student instructor is to be given supervised practice in the planning and practical application of flight lesson plans.

GENERAL CONSIDERATIONS

- (g) The student instructor should complete flight training to practise the principles of basic instruction at the PPL(As) level.
- (h) During this training, except when acting as a student pilot for mutual flights, the student instructor occupies the seat normally occupied by the FI(As).
- (i) It is to be noted that airmanship and look-out is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at all times.
- (j) The exercises 15 and 16 of the flight instruction syllabus should be undertaken at night in addition to by day as part of the course.
- (k) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.

SYLLABUS OF FLIGHT INSTRUCTION CONTENTS

LONG BRIEFINGS AND AIR EXERCISES

Note: although exercise 16 is not required for the PPL (As) course it is a requirement for the FI(As) course.

EXERCISE 1: FAMILIARISATION WITH THE AIRSHIP

- (a) Long briefing objectives:
 - (1) introduction to the airship;
 - (2) characteristics of the airship;
 - (3) cockpit layout;
 - (4) airship and engine systems;
 - (5) use of the checklist(s) and procedures;
 - (6) to familiarise the student with the airship controls;
 - (7) differences when occupying the instructor's seat;
 - (8) emergency drills:
 - (i) action if fire in the air or on the ground: engine, cockpit or cabin and electrical fire;(ii) system failure drills as applicable to type;
 - (iii) escape drills: location and use of emergency equipment and exits.
- (b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 2: PREPARATION FOR AND ACTION AFTER FLIGHT

- (a) Long briefing objectives:
 - (1) flight authorisation and airship acceptance including tech log (if applicable) and certificate of maintenance;
 - (2) equipment required for flight (maps, etc.);
 - (3) external checks;
 - (4) internal checks;
 - (5) student comfort, harness, seat and rudder pedal adjustment;
 - (6) starting and after starting checks;
 - (7) system, power or serviceability checks (as applicable);
 - (8) closing down or shutting down the airship (including system checks);
 - (9) parking, masting and unmasting, leaving the airship (including safety or security as applicable);
 - (10) completion of the authorisation sheet and airship serviceability documents;
- (b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 3: AIR EXPERIENCE

- (a) Long briefing objectives:
 - Note: there is no requirement for a long briefing for this exercise.
- (b) Air exercise:
 - (1) air experience;
 - (2) cockpit layout, ergonomics and controls;
 - (3) cockpit procedures: stability and control.

EXERCISE 4: EFFECTS OF CONTROLS

- (a) Long briefing objectives:
 - (1) function of the flying controls (primary and secondary effect);
 - (2) effect of air speed;
 - (3) effect of power changes;
 - (4) effect of trimming and other controls;
 - (5) use of instruments;
 - (6) use of carburettor heat.
- (b) Air exercise:
 - (1) function of the flying controls;
 - (2) effect of air speed;
 - (3) effect of power changes;
 - (4) effect of trimming and other controls;
 - (5) use of instruments (including instrument scan);
 - (6) use of carburettor heat.

EXERCISE 5: GROUND MANOEUVERING

- (a) Long briefing objectives:
 - (1) pre-taxi checks;
 - (2) starting, control of speed and stopping;
 - (3) engine handling;
 - (4) masting procedures;
 - (5) control of direction and turning;
 - (6) effects of wind;
 - (7) effects of ground surface;
 - (8) marshalling signals;
 - (9) instrument checks;
 - (10) ATC procedures;
 - (11) emergencies.
- (b) Air exercise:
 - (1) starting, control of speed and stopping;
 - (2) engine handling;
 - (3) masting procedures;
 - (4) control of direction and turning;
 - (5) effect of wind.

EXERCISE 6: TAKE-OFF PROCEDURES

- (a) Long briefing objectives:
 - (1) pre take-off checks;
 - (2) take-off with different static heaviness;
 - (3) drills during and after take-off;
 - (4) noise abatement procedures.
- (b) Air exercise:
 - (1) take-off with different static heaviness;
 - (2) drills during and after take-off.

EXERCISE 6e: EMERGENCIES

- (a) Long briefing objectives:
 - (1) abandoned take-off;
 - (2) engine failures and actions after take-off;
 - (3) malfunctions of thrust vector control;
 - (4) aerodynamic control failures;
 - (5) electrical and system failures.
- (b) Air exercise:
 - (1) how to abandon a take-off;
 - (2) engine failure and suitable action;
 - (3) malfunctions of thrust vector control;
 - (4) aerodynamic control failures.

EXERCISE 7: CLIMBING

- (a) Long briefing objectives:
 - (1) entry and how to maintain the normal and max rate of climb;
 - (2) levelling off procedure;
 - (3) how to level off at selected altitudes;
 - (4) maximum angle of climb;
 - (5) maximum rate of climb.
- (b) Air exercise:
 - (1) how to level off at selected altitudes;
 - (2) maximum angle of climb.

EXERCISE 8: STRAIGHT AND LEVEL FLIGHT

- (a) Long briefing objectives:
 - (1) how to attain and maintain straight and level flight;
 - (2) flight at or close to pressure height;
 - (3) control in pitch, including use of trim;
 - (4) at selected air speeds (use of power);
 - (5) during speed changes;
 - (6) use of instruments for precision.
- (b) Air exercise:
 - (1) how to attain and maintain straight and level flight;
 - (2) flight at or close to pressure height;
 - (3) control in pitch, including use of trim;
 - (4) at selected air speeds (use of power);
 - (5) during speed changes.

EXERCISE 9: DESCENDING

- (a) Long briefing objectives:
 - (1) entry, maintaining and levelling off techniques;
 - (2) levelling off at selected altitudes;
 - (3) maximum rate of descent;
 - (4) maximum angle of descent;
 - (5) use of instruments for precision flight.
- (b) Air exercise:
 - (1) levelling off at selected altitudes;
 - (2) maximum rate of descent;
 - (3) maximum angle of descent.

EXERCISE 10: TURNING

- (a) Long briefing objectives:
 - (1) entry and maintaining level turns;
 - (2) resuming straight flight;
 - (3) faults in the turn;
 - (4) climbing turns;
 - (5) descending turns;
 - (6) turns to selected headings: use of gyro heading indicator and compass;
 - (7) use of instruments for precision.
- (b) Air exercise
 - (1) faults in the turn and correction techniques;
 - (2) climbing turns;
 - (3) descending turns.

EXERCISE 11: HOVERING

- (a) Long briefing objectives: hovering manoeuvres (as applicable).
- (b) Air exercise: hovering manoeuvres (as applicable).

EXERCISE 12: APPROACH AND LANDING

- (a) Long briefing objectives:
 - (1) effect of wind on approach and touchdown speeds;
 - (2) landing with different static heaviness;
 - (3) missed approach and go-around procedures;
 - (4) noise abatement procedures.
- (b) Air exercise
 - (1) a landing with different static heaviness;
 - (2) missed approach and go-around procedures.

EXERCISE 12e: EMERGENCIES

- (a) Long briefing objectives:
 - (1) aborted approach or go-around;
 - (2) malfunction of thrust vector control;
 - (3) envelope emergencies;
 - (4) fire emergencies;
 - (5) aerodynamic control failures;
 - (6) electrical and system failures.
- (b) Air exercise: emergency drills and actions.

EXERCISE 13: PRECAUTIONARY LANDING

- (a) Long briefing objectives:
 - (1) occasions necessitating a precautionary landing;
 - (2) in-flight conditions;
 - (3) landing area selection;
 - (4) circuit and approach.
- (b) Air exercise:
 - (1) how to perform the landing area selection;
 - (2) circuit and approach.

EXERCISE 14a: NAVIGATION

- (a) Long briefing objectives:
 - (1) how to do the flight planning;
 - (2) departure for a navigation flight;
 - (3) in-flight navigational techniques;
 - (4) arrival and aerodrome joining procedures;
- (b) Air exercise:
 - (1) complete flight planning of a navigation flight;
 - (2) departure for a navigation flight;
 - (3) in-flight navigational techniques;
 - (4) arrival and aerodrome joining procedures.

EXERCISE 14b: NAVIGATION AT LOWER LEVELS AND IN REDUCED VISIBILITY

- (a) Long briefing objectives:
 - (1) actions before descending;
 - (2) possible hazards (for example obstacles and terrain) and actions;
 - (3) student difficulties of map reading;
 - (4) effects of winds, turbulence and precipitation;
 - (5) vertical situational awareness;
 - (6) avoidance of noise sensitive areas;
 - (7) joining the circuit;
 - (8) bad weather circuit and landing.
- (b) Air exercise:
 - (1) actions before descending;
 - (2) map reading techniques;
 - (3) vertical situational awareness;
 - (4) avoidance of noise sensitive areas;
 - (5) joining the circuit;
 - (6) bad weather circuit and landing.

EXERCISE 14c: RADIO NAVIGATION

- (a) Long briefing objectives:
 - (1) use of VOR;
 - (2) use of ADF equipment;
 - (3) use of NDB stations;

- (4) use of VHF/DF;
- (5) use of en-route or terminal radar;
- (6) use of DME equipment.
- (b) Air exercise
 - use of navaids;
 procedure to deal with uncertainty of position.

EXERCISE 15: BASIC INSTRUMENT FLIGHT

- (a) Long briefing objectives:
 - (1) physiological sensations;
 - (2) instrument appreciation;
 - (3) attitude instrument flight;
 - (4) instrument scan;
 - (5) instrument limitations;
 - (6) basic manoeuvres by sole reference to the instruments:
 - (i) straight and level;
 - (ii) climbing and descending;
 - (iii) turns, climbing and descending, onto selected headings;
 - (iv) recoveries from climbing and descending turns.
- (b) Air exercise:
 - (1) attitude instrument flight and instrument scan;
 - (2) the basic manoeuvres:
 - (i) straight and level;
 - (ii) climbing and descending;
 - (iii) turns, climbing and descending, onto selected headings;
 - (iv) recoveries from climbing and descending turns.

EXERCISE 16: NIGHT FLYING (if night instructional qualification required)

- (a) Long briefing objectives:
 - (1) medical and physiological aspects of night vision;
 - (2) requirement for torch to be carried (pre-flight inspection, etc.);
 - (3) use of the landing light;
 - (4) ground manoeuvring procedures at night;
 - (5) night take-off procedure;
 - (6) cockpit procedures at night;
 - (7) approach techniques;
 - (8) night landing techniques
 - (9) emergency procedures at night;
 - (10) navigation principles at night.
- (b) Air exercise:
 - (1) use of landing light;
 - (2) night ground manoeuvring;
 - (3) night take-off, circuit or approach and landing (including use of landing light).

AMC2 FCL.930.FI FI — Training course

FI(S) AND FI(B) TRAINING COURSE

GENERAL

- (a) The aim of the FI(S) and FI(B) training course is to train SPL and BPL holders to the level of competence defined in FCL.920 as instructor competencies.
- (b) The training course should develop safety awareness throughout by teaching the knowledge, skills and attitudes relevant to the FI task including at least the following:
 - (1) refresh the technical knowledge of the student instructor;
 - (2) train the student instructor to teach the ground subjects and air exercises;
 - (3) ensure that the student instructor's flying is of a sufficiently high standard; and
 - (4) teach the student instructor the principles of basic instruction and to apply them at all training levels.

- (c) With the exception of the section on teaching and learning, all the subject detail contained in the ground and flight training syllabus is complementary to the SPL and BPL course syllabus.
- (d) The FI training course should give particular stress to the role of the individual in relation to the importance of human factors in the man-machine and theoretical knowledge environment interaction. Special attention should be paid to the applicant's maturity and judgement including an understanding of adults, their behavioural attitudes and variable levels of education.
- (e) During the training course, the applicants should be made aware of their own attitudes to the importance of flight safety. Improving safety awareness should be a fundamental objective throughout the training course. It will be of major importance for the training course to aim at giving applicants the knowledge, skills and attitudes relevant to a flight instructor's task.
- (f) On successful completion of the training course and final test the applicant may be issued with an FI certificate.

CONTENT

- (g) The training course consists of two parts:
 - (1) Part 1, theoretical knowledge including the teaching and learning instruction that should comply with AMC1 FCL.920;
 - (2) Part 2, flight instruction.

Part 1

The content of the teaching and learning part of the FI course, as established in AMC1 FCL.930.FI, should be used as guidance to develop the course syllabus.

The course should include at least 55 hours of theoretical knowledge including at least 25 hours teaching and learning instructions for the FI (S) and FI(B) certificate.

Part 2

FLIGHT INSTRUCTION SYLLABUS

An approved FI training course should comprise at least the minimum hours of flight instruction as defined in FCL.930.FI.

AIR EXERCISES

- (a) The air exercises are similar to those used for the training of SPL or BPL but with additional items designed to cover the needs of a flight instructor.
- (b) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide: therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 - (1) the applicant's progress and ability;
 - (2) the weather conditions affecting the flight;
 - (3) the flight time available;
 - (4) instructional technique considerations;
 - (5) the local operating environment;
 - (6) Applicability of the exercises to the aircraft type.
- (c) At the discretion of the instructors some of the exercises may be combined whereas some other exercises may be done in several flights.
- (d) It follows that student instructors will eventually be faced with similar inter-related factors. They should be shown and taught how to construct flight lesson plans, taking these factors into account, so as to make the best use of each flight lesson, combining parts of the set exercises as necessary.

GENERAL

- (e) The briefing normally includes a statement of the aim and a brief allusion to principles of flight only if relevant. An explanation is to be given of exactly what air exercises are to be taught by the instructor and practised by the student during the flight. It should include how the flight will be conducted with regard to who is to fly the aircraft and what airmanship, weather and flight safety aspects currently apply. The nature of the lesson will govern the order in which the constituent parts are to be taught.
- (f) The five basic components of the briefing will be:
 - (1) the aim;
 - (2) the air exercise(s) (what, and how and by whom);
 - (3) flight briefing;
 - (4) check of understanding;
 - (5) airmanship.

PLANNING OF FLIGHT LESSONS

(g) The preparation of lesson plans is an essential prerequisite of good instruction and the student instructor is to be given supervised practice in the planning and practical application of flight lesson plans.

GENERAL CONSIDERATIONS

- (h) The student instructor should complete flight training in order to practise the principles of basic instruction at the SPL or BPL level. During this training the student instructor occupies the seat normally occupied by the FI.
- (i) The instructor providing this instructor training is normally taking over the role of the student pilot. In the case of the course for the FI(B) an additional person holding a BPL or LAPL(B) licence or a student pilot for these licences may be on board in order to function as a student pilot under the supervision of the instructor.
- (j) It is to be noted that airmanship is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at the appropriate times during each flight.
- (k) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.

SYLLABUS OF FLIGHT INSTRUCTION CONTENTS

A. SAILPLANES

LONG BRIEFINGS AND AIR EXERCISES

Note: although the fully developed spin in exercise 10 is not required for the LAPL course, it is a requirement for the FI course.

EXERCISE 1: FAMILIARISATION WITH THE SAILPLANE

(a) Objective:

- To advise the student instructor on how to familiarise the student with the sailplane which will be used for the training and to test his/her position in the sailplane for comfort, visibility, and ability to use all controls and equipment.
- (b) Briefing and exercise:
 - The student Instructor has to:
 - (1) present the type of sailplane which will be used;
 - (2) explain the cockpit layout: instruments and equipment;
 - (3) explain the flight controls: stick, pedals, airbrakes, flaps, cable release, undercarriage;
 - (4) check the position of the student on the seat for comfort, visibility, ability to use all controls;
 - (5) explain the use of the harness;
 - (6) demonstrate how to adjust the rudder pedal;
 - (7) explain the differences when occupying the instructor's position;
 - (8) explain all checklists, drills, controls.

EXERCISE 2: PROCEDURE IN THE EVENT OF EMERGENCIES

(a) Objective:

To advise the student instructor on how to familiarise the student with the use of the parachute and how to explain the bail out procedure in case of emergency.

- (b) Briefing and exercise:
 - The student instructor has to:
 - (1) explain how to handle the parachute with care (transport, storage and drying after use);
 - (2) demonstrate the adjustment of the parachute harness;
 - (3) explain the bail out procedure (especially from a sailplane in unusual attitude);
 - (4) explain the procedure for landing with a parachute in normal conditions and with a strong wind.

EXERCISE 3: PREPARATION FOR FLIGHT

(a) Objective:

To advise the student instructor on how to explain all the operations to be completed prior to flight. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the need for a pre-flight briefing;
 - (2) the structure and the content of this briefing;
 - (3) which documents are required on board;
 - (4) which equipment are required for a flight;
 - (5) how to handle the sailplane on the ground, how to move it, how to tow it out and how to park it;
 - (6) how to do the pre-flight external and internal checks;
 - (7) the procedure for verifying in-limits mass and balance;
 - (8) the pre-launch checks (checklist).
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the need for a pre-flight briefing;
 - (2) that the required documents are on board;
 - (3) that the equipment required for the intended flight is on board;
 - (4) how to handle the sailplane on the ground, move it to the start position, tow it out and park it;
 - (5) how to perform a pre-flight external and internal check;
 - (6) how to verify in-limits mass and balance;
 - (7) how to adjust harness as well as seat or rudder pedals;
 - (8) the pre-launch checks;
 - (9) how to advise the student pilot in performing the pre-flight preparation;
 - (10) how to analyse and correct pre-flight preparation errors as necessary.

EXERCISE 4: INITIAL AIR EXPERIENCE

(a) Objective:

To advise the student instructor on how to familiarise the student with being in the air, with the area around the airfield, to note his/her reactions in this situation, and to draw his/her attention to safety and look-out procedures.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the area around the airfield;
 - (2) the need for looking out;
 - (3) the change of aircraft control.
- (c) Air exercise:
 - The student instructor has to:
 - (1) show the noteworthy references on the ground;
 - (2) analyse the reactions of the student;
 - (3) check that the student looks out (safety).

EXERCISE 5: PRIMARY EFECTS OF CONTROLS

(a) Objective:

To advise the student instructor on how to:

- (1) demonstrate the primary effects of each control with the help of visual references;
- (2) train the student pilot to recognise when the sailplane is no longer in a normal attitude along one of the axes and to return to the normal attitude;
- (3) train continuous and efficient look-out during these exercises;
- (4) analyse and correct errors and student pilot mistakes as necessary.
- (b) Briefing:
 - The student instructor has to explain:
 - (1) define the axes of a sailplane;
 - (2) the look-out procedures;
 - (3) the visual references along each axis;
 - (4) the primary effects of controls when laterally level;
 - (5) the relationship between attitude and speed;
 - (6) the use of flaps;
 - (7) the use of airbrakes.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the visual references in flight;
 - (2) the primary effect of the elevator;
 - (3) the relationship between attitude and speed (inertia);
 - (4) the primary effect of rudder on the rotation of the sailplane around the vertical axis;
 - (5) the primary effect of ailerons on banking;
 - (6) the effect of airbrakes (including changes in pitch when airbrakes are extended or retracted);
 - (7) the effects of flaps (provided the sailplane has flaps);
 - (8) the look-out procedures during all the exercises;
 - (9) how to advise the student pilot to recognise the primary effects of each control;
 - (10) how to analyse and correct errors as necessary.

EXERCISE 6: CO-ORDINATED ROLLING TO AND FROM MODERATE ANGLES OF BANK

(a) Objective:

To advise the student instructor on secondary effects of controls and on how to teach the student to coordinate ailerons and rudder in order to compensate for the adverse yaw effect. Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the secondary effects of controls;
 - (2) the adverse yaw effect;
 - (3) how to compensate for the adverse yaw;
 - (4) the further effect of the rudder (roll).
- (c) Air exercise:

The student instructor has to demonstrate:

- (1) the adverse yaw effect with a reference on ground;
- (2) the further effect of the rudder (roll);
- (3) the coordination of ruder and aileron controls to compensate for the adverse yaw effects;
- (4) rolling to and from moderate angles of bank (20 to 30 $^{\circ}$) and returning to the straight flight;
- (5) how to advise the student pilot to coordinate ailerons and rudder;
- (6) how to analyse and correct errors as necessary.

EXERCISE 7: STRAIGHT FLYING

(a) Objective:

To advise the student instructor on how to train the student to maintain straight flight with a constant heading without slipping and skidding. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:

The student instructor has to:

- (1) explain how to maintain straight flight;
- (2) explain different air speed limitations;
- (3) explain the pitch stability of the sailplane;
- (4) explain the effect of trimming.
- (c) Air exercise:
 - The instructor student has to demonstrate:
 - (1) maintaining straight flight;
 - (2) inherent pitch stability;
 - (3) the control of the sailplane in pitch, including use of trim with visual references and speed;
 - (4) how to perform the instrument monitoring;
 - (5) the control of level attitude with visual references;
 - (6) the control of the heading with a visual reference on the ground;
 - (7) the look-out procedures during all the exercises;
 - (8) how to advise the student pilot to maintain straight flight;
 - (9) how to analyse and correct errors as necessary.

EXERCISE 8: TURNING

(a) Objective:

To advise the student instructor on how to teach students to fly turns and circles with a moderate constant bank of about 30 $^{\circ}$ with constant attitude (speed) and coordinated flight. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the forces on the sailplane during a turn;
 - (2) the need to look out before turning;
 - (3) the sequences of a turn (entry, stabilizing and exiting);
 - (4) the common faults during a turn;
 - (5) how to turn on to selected headings, use of compass;
 - (6) the use of instruments (ball indicator or slip string) for precision.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the look-out procedure before turning;
 - (2) entering a turn (correction of adverse yaw);
 - (3) the stabilisation of a turn (keeping the attitude and compensating the induced roll);
 - (4) the exit from a turn;
 - (5) the most common faults in a turn;
 - (6) turns on to selected headings (use landmarks as reference);
 - (7) use of instruments (ball indicator or slip string) for precision:
 - (8) how to advise the student pilot to fly a turn or circle with a moderate bank;
 - (9) how to analyse and correct errors as necessary.

EXERCISE 9a: SLOW FLIGHT

(a) Objective:

To advise the student instructor on how to improve the student's ability to recognise inadvertent flight at critically low speeds (high angle of attack) and to provide practice in maintaining the sailplane in balance while returning to normal attitude (speed). Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the characteristics of slow flight;
 - (2) the risks of stalling.
- (c) Air Exercise:

The student instructor has to check that the airspace below the sailplane is free of other aircraft before starting the exercise.

- The student instructor has to demonstrate:
- (1) a controlled flight down to critically high angle of attack (slow air speed), and draw the attention of the student to the nose up attitude, reduction of noise, reduction of speed;
- (2) a return to the normal attitude (speed);

- (3) how to advise the student pilot to recognise inadvertent flight at critically low speeds;
- (4) how to provide practice in maintaining the sailplane in balance while returning to normal attitude;
- (5) how to analyse and correct errors as necessary.

EXERCISE 9b: STALLING

(a) Objective:

To advise the student Instructor on how to improve the student's ability to recognize a stall and to recover from it. This includes stall from a level flight and stalls when a wing drops. Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the mechanism of a stall;
 - (2) the effectiveness of the controls at the stall;
 - (3) pre-stall symptoms, recognition and recovery;
 - (4) factors affecting the stall (importance of the angle of attack and high speed stall);
 - (5) effect of flaps if any on the sailplane;
 - (6) the effects of unbalance at the stall safety checks;
 - (7) stall symptoms, recognition and recovery;
 - (8) recovery when a wing drops;
 - (9) approach to stall in the approach and in the landing configurations: recognition and recovery from accelerated stalls.

(c) Air Exercise:

The student instructor has to check that the airspace below the sailplane is free of other aircraft or traffic before starting the exercise.

The student instructor has to demonstrate:

- (1) stall from a level flight;
- (2) pre-stall symptoms, recognition and recovery;
- (3) stall symptoms, recognition and recovery;
- (4) recovery when a wing drops;
- (5) approach to stall in the approach and in the landing configurations;
- (6) recognition and recovery from accelerated stalls;
- (7) stalling and recovery at the incipient stage with 'instructor induced' distractions;
- (8) how to improve the student pilot's ability to recognise a stall and to recover from it;
- (9) how to analyse and correct errors as necessary.
- **Note**: consideration is to be given to manoeuvre limitations and references to the flight manual or equivalent document (for example owner's manual or pilot's operating handbook) in relation to mass and balance limitations. The safety checks should take into account the minimum safe altitude for initiating such exercises in order to ensure an adequate margin of safety for the recovery. If specific procedures for stalling or spinning exercises and for the recovery techniques are provided by the flight manual or equivalent document (for example owner's manual or pilot's operating handbook), they have to be taken into consideration. These factors are also covered in the next exercise.

EXERCISE 10a: SPIN RECOGNITION AND AVOIDANCE

(a) Objective:

To advise the student Instructor on how to improve the student's ability to recognize a spin at the incipient stage and to recover from it. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:

- The student instructor has to explain:
- (1) why a sailplane spins;
- (2) how to recognise the symptoms of a spin (not to be confused with spiral dive);
- (3) what are the parameters influencing the spin;
- (4) how to recover from a spin.
- (c) Air exercise:

The student instructor has to check that the airspace below the sailplane is free of other aircraft or traffic before starting the exercise.

The student instructor has to:

- (1) demonstrate stalling and recovery at the incipient spin stage (stall with excessive wing drop, $\geq 45^{\circ}$);
- (2) make sure that the student recognises the spin entry;
- (3) make sure that the student pilot is able to recover from the spin;
- (4) check if the student still reacts properly if the instructor induces distractions during the spin entry;
- (5) demonstrate how to analyse and correct errors as necessary.
- Note: consideration of manoeuvre limitations and the need to refer to the sailplane manual and mass and balance calculations.

EXERCISE 10b: DEVELOPED SPINS: ENTRY AND RECOVERY

(a) Objective:

To advise the student instructor on how to recognize a developed spin and to recover from it. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the spin entry;
 - (2) the symptoms of a real spin and the recognition and identification of spin direction;
 - (3) the spin recovery;
 - (4) use of controls;
 - (5) effects of flaps (flap restriction applicable to type);
 - (6) the effect of the CG upon spinning characteristics;
 - (7) the spinning from various flight attitudes;
 - (8) the sailplane limitations;
 - (9) safety checks;
 - (10) common errors during recovery.
- (c) Air exercise:

The student instructor has to check that the airspace below the sailplane is free of other aircraft or traffic before starting the exercise.

The student instructor has to demonstrate:

- (1) safety checks;
- (2) the spin entry;
- (3) the recognition and identification of the spin direction;
- (4) the spin recovery (reference to flight manual);
- (5) the use of controls;
- (6) the effects of flaps (restrictions applicable to sailplane type);
- (7) spinning and recovery from various flight attitudes;
- (8) how to improve the student pilot's ability to recognise a spin and how to recover from it;
- (9) how to analyse and correct errors as necessary.

EXERCISE 11: TAKE OFF OR LAUNCH METHODS

Note: the student instructor has to teach at least one of the following launch methods: winch launch, aero tow, self launch. At least three launch failure exercises should be completed. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

EXERCISE 11a: WINCH LAUNCH

(a) Objective:

To advise the student instructor on how to teach winch launches and on how to make sure that their student will manage an aborted launch. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the signals or communication before and during launch;
 - (2) the use of the launching equipment;
 - (3) the pre-take-off checks;
 - (4) the procedure for into wind take-off;
 - (5) the procedure for crosswind take-off;
 - (6) the optimum profile of winch launch and limitations;
 - (7) the launch failure procedures.

- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the use of the launching equipment;
 - (2) the pre-take-off checks;
 - (3) the into wind take-off;
 - (4) the crosswind take-off;
 - (5) the optimum profile of winch launch and limitations;
 - (6) the procedure in case of cable break or aborted launch, launch failure procedures;
 - (7) how to teach the student pilot to perform safe winch launches;
 - (8) how to teach the student pilot to manage an aborted launch (different altitudes);
 - (9) how to analyse and correct errors as necessary.

EXERCISE 11b: AERO TOW

(a) Objective:

To advise the student instructor on how to teach aero towing and on how to make sure that their student will manage an aborted launch. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the signals or communication before and during launch;
 - (2) the use of the launch equipment;
 - (3) the pre-take-off checks;
 - (4) the procedure for into wind take-off;
 - (5) the procedure for crosswind take-off;
 - (6) the procedure on tow: straight flight, turning and slip stream;
 - (7) the recovery from out-of-position on tow;
 - (8) the procedures in case of launch failure and abandonment;
 - (9) the descending procedure on tow (towing aircraft and sailplane);
 - (10) the reasons for launch failures and abandonment or procedures.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the signals before and during launch;
 - (2) the use of the launch equipment;
 - (3) the pre-take-off checks;
 - (4) the procedure for into wind take-off;
 - (5) the procedure for a crosswind take-off;
 - (6) the procedures on tow: straight flight, turning and slip stream;
 - (7) the recovery from out-of-position on tow;
 - (8) the procedure in case of launch failure and abandonment;
 - (9) the descending procedure on tow;
 - (10) how to teach the student pilot to perform safe aero tow launches;
 - (11) how to teach the student pilot to manage an aborted launch;
 - (12) how to analyse and correct errors as necessary.

EXERCISE 11c: SELF LAUNCH

(a) Objective:

To advise the student instructor on how to teach launching with a self launching sailplane and on how to make sure that his/her student will manage an aborted launch. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the engine extending and retraction procedures;
 - (2) the engine starting and safety precautions;
 - (3) the pre-take-off checks;
 - (4) the noise abatement procedures;
 - (5) the checks during and after take-off;
 - (6) the into wind take-off;
 - (7) the crosswind take-off;

- (8) the procedure in case of power failure;
- (9) the procedure in case of abandoned take-off;
- (10) the maximum performance (short field and obstacle clearance) take-off;
- (11) the short take-off and soft field procedure or techniques and performance calculations.

(c) Air exercise:

- The student instructor has to demonstrate:
- (1) the engine extending and retraction procedures;
- (2) the engine starting and safety precautions;
- (3) the pre-take-off checks;
- (4) the noise abatement procedures;
- (5) the checks during and after take off;
- (6) the into wind take-off;
- (7) the crosswind take-off;
- (8) the power failures and procedures;
- (9) the procedure in case of abandoned take-off;
- (10) the maximum performance (short field and obstacle clearance) take-off;
- (11) the short take-off and soft field procedure or techniques and performance calculations;
- (12) how to teach the student pilot to perform safe self launches;
- (13) how to teach the student pilot to manage an aborted launch (different altitudes);
- (14) how to analyse and correct errors as necessary.

EXERCISE 12: CIRCUIT APPROACH AND LANDING

(a) Objective:

To advise the student instructor on how to teach their students to fly a safe circuit approach and to land the sailplane. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the procedures for rejoining the circuit;
 - (2) the procedures for collision avoidance and the lookout techniques;
 - (3) the pre-landing check;
 - (4) the normal circuit procedures, downwind, base leg;
 - (5) the effect of wind on approach and touchdown speeds ;
 - (6) the visualisation of a reference point;
 - (7) the approach control and use of airbrakes;
 - (8) the use of flaps (if applicable);
 - (9) the procedures for normal and crosswind approach and landing.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the procedures for rejoining the circuit;
 - (2) the procedures for collision avoidance and the look-out techniques;
 - (3) the pre-landing check;
 - (4) the standard circuit and contingency planning (for example running out of height);
 - (5) the effect of wind on approach and touchdown speeds;
 - (6) the visualisation of an aiming point;
 - (7) the approach control and use of airbrakes;
 - (8) the use of flaps (if applicable);
 - (9) the procedures for normal and crosswind approaches and landings;
 - (10) how to teach the student pilot to fly a safe circuit approach;
 - (11) how to improve the student pilot's ability to perform a safe landing;
 - (12) how to analyse and correct errors as necessary.

EXERCISE 13: FIRST SOLO

(a) Objective:

To advise the student instructor on how to prepare their students for the first solo flight. (b) Briefing:

- The student instructor has to explain:
- (1) the limitations of the flight (awareness of local area and restrictions);

- (2) the use of required equipment.
- (c) Air exercise:
 - The student instructor has to;
 - (1) check with another or more senior instructor if the student can fly solo;
 - (2) monitor the flight;
 - (3) debrief the flight with the student.

EXERCISE 14: ADVANCED TURNING

(a) Objective:

To advise the student instructor on how to fly steep turns or circles (45 $^{\circ}$ banking) at constant attitude (speed) and with the yaw string centred. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain;
 - (1) the relationship between banking and speed;
 - (2) how to master steep turns or circles;
 - (3) the unusual attitudes which can occur (stalling or spinning and spiral dive);
 - (4) how to recover from these unusual attitudes.
- (c) Air exercise:
 - The student has to demonstrate:
 - (1) steep turns (45 °) at constant speed and with the yaw string centred;
 - (2) common errors (slipping and skidding);
 - (3) unusual attitudes and how to recover from them;
 - (4) how to teach the student pilot to fly steep turns or circles;
 - (5) how to analyse and correct errors as necessary.

EXERCISE 15: SOARING TECHNIQUES

Note: if the weather conditions during the instructor training do not allow the practical training of soaring techniques, all items of the air exercises have to be discussed and explained during a long briefing exercise only.

EXERCISE 15a: THERMALLING

(a) Objective:

To advise the student instructor on how to teach their students to recognise and detect thermals, on how to join a thermal and on how to look out, in order to avoid mid-air collisions. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain;
 - (1) the look-out procedures;
 - (2) the detection and recognition of thermals;
 - (3) the use of audio soaring instruments;
 - (4) the procedure for joining a thermal and giving way;
 - (5) how to fly in close proximity to other sailplanes;
 - (6) how to centre in thermals;
 - (7) how to leave thermals.

(c) Air exercise:

- The student instructor has to demonstrate;
- (1) the look-out procedures;
- (2) the detection and recognition of thermals;
- (3) the use of audio soaring instruments;
- (4) the procedure for joining a thermal and giving way;
- (5) the procedure for flying in close proximity to other sailplanes;
- (6) the centering in thermals;
- (7) the procedure for leaving thermals;
- (8) how to improve the student pilot's ability to recognise and detect thermals;
- (9) how to improve the student pilot's ability to join a thermal and how to look out;
- (10) how to analyse and correct errors as necessary.

EXERCISE 15b: RIDGE FLYING

(a) Objective:

To advise the student instructor on how to teach his/her students to fly safely on ridges, to control their speed, and to apply the rules in order to avoid mid-air collisions. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the look-out procedures;
 - (2) the ridge flying rules;
 - (3) the recognition of optimum flight path;
 - (4) speed control.
- (c) Air exercise: (if applicable during training and, if possible, at training site) The student instructor has to demonstrate:
 - (1) the look-out procedures;
 - (2) the practical application of ridge flying rules;
 - (3) the recognition of optimum flight path;
 - (4) speed control;
 - (5) how to teach the student pilot to fly safely on ridges;
 - (6) how to analyse and correct errors as necessary.

EXERCISE 15c: WAVE FLYING

(a) Objective:

To advise the student instructor on how to introduce students to wave flying and to teach them to fly safely at high altitude. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the look-out procedures;
 - (2) the techniques to be used to accede to a wave;
 - (3) the speed limitations with increasing height;
 - (4) the risks of hypoxia and the use of oxygen.
- (c) Air exercise: (if applicable during training and if possible at training site) The student instructor has to demonstrate:
 - (1) the look-out procedures;
 - (2) the wave access techniques;
 - (3) the speed limitations with increasing height;
 - (4) the use of oxygen (if available);
 - (5) how to improve the student pilot's ability to recognise and detect waves;
 - (6) how to teach the student pilot to fly safely in a wave;
 - (7) how to analyse and correct errors as necessary.

EXERCISE 16: OUT-LANDINGS

- **Note**: if the weather conditions during the instructor training do not allow the practical training of out-landing procedures (a touring motor glider may be used) all items of the air exercise have to be discussed and explained during a long briefing exercise only. Instructors may only teach the safe out-landing exercise after they have demonstrated the practical ability to do so.
- (a) Objective:

To advise the student instructor on how to teach students to select an out-landing field, to fly the circuit and how to master the unusual landing situation. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the gliding range at max L/D;
 - (2) the engine re-start procedures (only for self-launching and self-sustaining sailplanes);
 - (3) the selection of a landing area;
 - (4) the circuit judgement and key positions;

- (5) the circuit and approach procedures;
- (6) the actions to be done after landing.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) precision landings on the airfield;
 - (2) the gliding range;
 - (3) the procedures for joining, arrival and circuit at a remote aerodrome;
 - (4) the selection of an out-landing area;
 - (5) the procedures for circuit and approach on an out-landing field;
 - (6) the actions to be done after landing;
 - The student instructor also has to be trained:
 - (7) how to advise the student pilot to do perform a safe out-landing;
 - (8) how to master an unusual landing situation;
 - (9) how to analyse and correct errors as necessary.

EXERCISE 17: CROSS COUNTRY FLYING

Note: if the weather conditions during the instructor training do not allow a cross country training flight the items of the air exercise have to be discussed and explained during a long briefing exercise only.

EXERCISE 17a: FLIGHT PLANNING

(a) Objective:

To advise the student instructor on how plan and prepare a cross-country flight.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the weather forecast and current situation;
 - (2) the selection of the amount of water to be carried as a function of the weather forecast;
 - (3) the method for selecting a task, taking into account the average speed to be expected;
 - (4) the map selection and preparation;
 - (5) the NOTAMs and airspace considerations;
 - (6) the radio frequencies (if applicable);
 - (7) the pre-flight administrative procedures;
 - (8) the procedure for filing a flight plan where required;
 - (9) alternate aerodromes and landing areas.

EXERCISE 17b: IN-FLIGHT NAVIGATION

- (a) Objective:
 - To advise the student instructor on how to teach performing a cross-country flight.
- (b) Briefing:

The student instructor has to explain:

- (1) how to maintain track and re-route if necessary;
- (2) the altimeter settings;
- (3) the use of radio and phraseology;
- (4) the in-flight planning;
- (5) the procedures for transiting regulated airspace or ATC liaison where required;
- (6) the procedure in case of uncertainty of position;
- (7) the procedure in case of becoming lost;
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) maintaining track and re-routing if necessary;
 - (2) altimeter settings;
 - (3) the use of radio and phraseology;
 - (4) in-flight planning;
 - (5) procedures for transiting regulated airspace or ATC liaison where required;
 - (6) uncertainty of position procedure;
 - (7) lost procedure;
 - (8) use of additional equipment where required;
 - (9) joining, arrival and circuit procedures at remote aerodrome;

- (10) how to teach the student pilot to perform a cross-country flight;
- (11) how to analyse and correct errors as necessary.

EXERCISE 17c: CROSS-COUNTRY SOARING TECHNIQUES

- (a) Objective:
 - To advise the student instructor on the techniques for an efficient cross country flight.
- (b) Briefing:
 - The student instructor has to explain:
 - (1) the speed to fly at maximal L/D ratio;
 - (2) the speed to fly to maximise the cruise speed (Mc Cready theory);
 - (3) how to select the optimal track (efficient use of cloud streets etc.);
 - (4) how to calculate the final glide;
 - (5) how to perform a safe out-landing.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) a cross-country flight;
 - (2) the selection of the optimal track (efficient use of cloud streets, etc);
 - (3) the use of the Mc Cready ring;
 - (4) use of final glide computers;
 - (5) how to reduce risk and to react to potential dangers;
 - (6) how to plan and perform an out-landing;
 - (7) how to teach the student pilot techniques for an efficient cross-country flight;
 - (8) how to analyse and correct errors as necessary.

B. BALLOONS

LONG BRIEFINGS AND AIR EXERCISES

EXERCISE 1: FAMILIARISATION WITH THE BALLOON

(a) Objective:

To advise the student Instructor on how to familiarise the student with the balloon which will be used for the training and to test his position in the basket for comfort, visibility, and ability to use all controls and equipment. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing and exercise:
 - The student instructor has to:
 - (1) present the type of balloon which will be used;
 - (2) explain the characteristics of the balloon;
 - (3) explain the components, instruments and equipment;
 - (4) explain the re-fuelling procedures (in the case of hot air balloons);
 - (5) to familiarise the student with the balloon controls;
 - (6) explain the differences when occupying the instructor's position;
 - (7) explain all checklists, drills and controls.

EXERCISE 2: PREPARATION FOR FLIGHT

(a) Objective:

To advise the student instructor on how to explain all the operations and necessary preparation to be completed before the flight. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing
 - The student instructor has to explain:
 - (1) the need for a pre-flight briefing;
 - (2) the structure and the content of this briefing;
 - (3) which documents are required on board;
 - (4) which equipment are required for a flight;
 - (5) the use of weather forecasts or actuals;

- (6) the flight planning with particular regard to NOTAMs, airspace structure, sensitive areas, expected track and distance, pre-flight picture and possible landing fields;
- (7) the use of load calculation chart;
- (8) the selection of launch field with particular regard to permission, behaviour and adjacent fields.
- (c) Air exercise:
 - The student instructor has to prepare and give a pre-flight briefing. The student instructor has to demonstrate:
 - (1) that the required documents are on board;
 - (2) that the equipment required for the intended flight is on board;
 - (3) how to advice the student to do the pre-planning procedures for each flight;
 - (4) how to perform a pre-launch check;
 - (5) how to select a launch field with particular regard to permission, behaviour and adjacent fields;
 - (6) how to teach the student pilot to perform the preparation to be completed prior to flight;
 - (7) how to analyse and correct errors of the student pilot as necessary.

EXERCISE 3: CREW AND PASSENGER BRIEFING

(a) Objective:

To advise the student instructor on how to explain all the importance of correct clothing for pilot, passengers and crew and how to perform the briefing of ground- and retrieve crew and the briefing of passengers. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the correct clothing for passengers and crew;
 - (2) the briefings for ground- and retrieve crew and passengers.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) how to advise the passengers and crew about the correct clothing;
 - (2) the briefing of ground- and retrieve crew;
 - (3) the briefing of passengers;
 - (4) how to familiarise the student pilot with the different type of briefings;
 - (5) how to analyse and correct errors of the student pilot.

EXERCISE 4: ASSEMBLY AND LAYOUT

(a) Objective:

To advise the student instructor on how to familiarise the student pilot with the control of the crowd and how to perform the securing of launch site. Furthermore the student instructor has to demonstrate how to familiarise the student pilot with the correct rigging of envelope and basket, the burner test procedure (hot air balloons) and the pre-inflation checks. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the control of the crowd;
 - (2) the securing of the launch site;
 - (3) the correct rigging procedure;
 - (4) the use of the restraint line;
 - (5) the pre-inflation checks.
- (c) Air exercise:

The student instructor has to demonstrate:

- (1) how to control the crowd and securing of launch site;
- (2) the correct rigging of envelope and basket;
- (3) the correct use of the restraint line;
- (4) the burner test procedure (hot air balloons);
- (5) the pre-inflation checks;
- (6) how to teach the student pilot to perform the correct rigging;
- (7) how to analyse and correct assembly errors of the student pilot as necessary.

EXERCISE 5: INFLATION

(a) Objective:

To advise the student instructor on how to familiarise the student pilot with the different phases of the inflation procedure, the use of restraint line and inflation fan (hot air balloons) and the avoidance of electrostatic discharge (gas balloons). Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the different phases of the inflation procedure;
 - (2) the crowd control and securing procedures during inflation;
 - (3) the use of the inflation fan (hot air balloons);
 - (4) how to avoid electronic discharge (gas balloons).
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) how to control of crowd and securing of launch site during inflation procedure;
 - (2) the cold inflation procedure and use of restraint line and inflation fan (hot air balloons);
 - (3) the hot inflation procedure (hot air balloons);
 - (4) the avoidance of electrostatic discharge (gas balloons);
 - (5) the inflation procedure (gas balloons);
 - (6) how to teach the student pilot to perform the inflation procedures;
 - (7) how to analyse and correct errors of the student pilot during the inflation procedure as necessary.

EXERCISE 6: TAKE OFF IN DIFFERENT WIND CONDITIONS

(a) Objective:

To advise the student instructor how to explain the pre take-off checks and briefings, the preparation for controlled climb and the use of restraint equipment. Furthermore the student instructor should be able to demonstrate the assessment of wind and obstacles, the preparation for false lift and the take off techniques in different wind conditions. In addition to this the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the pre take-off checks and briefings;
 - (2) the preparation for controlled climb;
 - (3) the 'hands off and hands on' procedure for ground crew;
 - (4) the assessment of lift;
 - (5) the use of the restraint equipment ;
 - (6) the assessment of wind and obstacles;
 - (7) the preparation for false lift;
 - (8) the take off techniques from sheltered and non sheltered launch fields.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) how to perform the pre take-off checks and briefings;
 - (2) how to prepare for controlled climb;
 - (3) how to perform the 'hands off and hands on' procedure for ground crew;
 - (4) how to perform the assessment of lift without endangering the ground crew;
 - (5) how to use the restraint equipment;
 - (6) how to perform the assessment of wind and obstacles;
 - (7) how to prepare for false lift;
 - (8) how to teach the student pilot the correct take off techniques from sheltered and non sheltered launch fields;
 - (9) how to analyse and correct errors of the student pilot as necessary.

EXERCISE 7: CLIMB TO LEVEL FLIGHT

(a) Objective:

To advise the student instructor on how to explain and demonstrate the climb to flight level. Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:

- The student instructor has to explain:
- (1) the climbing with a predetermined rate of climb;
- (2) the effect on envelope temperature (hot air balloons);
- (3) the maximum rate of climb according to manufacturer's flight manual;
- (4) how to level off at selected altitude.
- (c) Air exercise:
- The student instructor has to demonstrate:
- (1) how to climb with a predetermined rate of climb;
- (2) how to perform look out techniques;
- (3) the effect on envelope temperature (hot air balloons);
- (4) the maximum rate of climb according to manufacturer's flight manual;
- (5) the levelling off techniques at selected altitude;
- (6) how to advise the student pilot to perform the climb to level flight;
- (7) how to analyse and correct faults or errors of the student pilot during the climb.

EXERCISE 8: LEVEL FLIGHT

(a) Objective:

To advise the student instructor on how to explain and demonstrate level flight. Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) how to maintain level flight by use of instruments;
 - (2) how to maintain level flight by use of visual references;
 - (3) how to maintain level flight by use of all available means;
 - (4) the use of parachute;
 - (5) the use of turning vents if installed (hot air balloons).
 - (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) how to maintain level flight by use of instruments;
 - (2) how to maintain level flight by use of visual references;
 - (3) how to maintain level flight by use of all available means;
 - (4) the use of parachute;
 - (5) the use of turning vents if installed (hot air balloons);
 - (6) how to advise the student pilot to perform the level flight;
 - (7) how to analyse and correct faults or errors of the student pilot during the level flight.

EXERCISE 9: DESCENT TO LEVEL FLIGHT

(a) Objective:

To advise the student instructor on how to explain and demonstrate the descent to a certain flight level. Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) how to descent with a predetermined rate of descent;
 - (2) a fast descent;
 - (3) the maximum rate of descent according to manufacturer's flight manual;
 - (4) the use of parachute;
 - (5) a parachute stall and cold descent (hot air balloons);
 - (6) the levelling off technique at selected altitude.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) a descent with a predetermined rate of descent;
 - (2) how to perform look out techniques;
 - (3) a fast descent;
 - (4) the maximum rate of descent according to manufacturer's flight manual;
 - (5) the use of parachute;
 - (6) how to level off at selected altitudes;

- (7) how to advise the student pilot to perform a descent to a certain flight level;
- (8) how to analyse and correct faults or errors of the student pilot during the descent.

EXERCISE 10: EMERGENCIES

(a) Objective:

To advise the student instructor on how to explain and demonstrate the different emergency situations and how to react. Furthermore the student instructor should learn how to identify student errors during the simulated emergency exercises and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the pilot light failure (hot air balloons);
 - (2) burner failures, valve leaks, flame out and re-light (hot air balloons);
 - (3) gas leaks;
 - (4) closed appendix during take-off and climb (gas balloons);
 - (5) the envelope over temperature (hot air balloons);
 - (6) envelope damage in flight;
 - (7) the parachute or rapid deflation system failure;
 - (8) fire on ground and in the air;
 - (9) how to avoid an obstacle contact including contact with electrical power lines;
 - (10) escape drills, location and use of emergency equipment.

(c) Air exercise:

- The student instructor has to demonstrate:
- (1) a pilot light failure (hot air balloons);
- (2) a burner failure, valve leaks, flame out and re-light (hot air balloons);
- (3) gas leaks;
- (4) a closed appendix during take-off and climb (gas balloons);
- (5) envelope over temperature (hot air balloons);
- (6) envelope damage in flight;
- (7) parachute or rapid deflation system failure;
- (8) a fire on ground and in the air;
- (9) the escape drills, location and use of emergency equipment;
- (10) how to advise the student pilot in performing the different emergency drills;
- (11) how to analyse and correct faults or errors of the student pilot.

EXERCISE 11: NAVIGATION

(a) Objective:

To advise the student instructor on how to explain and demonstrate the advanced navigational flight preparation. Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the maps selection;
 - (2) the plotting of the expected track;
 - (3) the marking of positions and time;
 - (4) the calculation of distance and speed;
 - (5) the calculation of fuel consumption (hot air balloons);
 - (6) the calculation of ballast consumption (gas balloons);
 - (7) the ceiling limitations (ATC or weather);
 - (8) how to plan ahead;
 - (9) the monitoring of weather development;
 - (10) the monitoring of fuel or ballast consumption;
 - (11) ATC liaison (if applicable);
 - (12) the communication with retrieve crew;
 - (13) the use of GNSS.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the use of selected maps;
 - (2) the plotting of the expected track;

- (3) the marking of positions and time;
- (4) how to monitor of distance and speed;
- (5) how to monitor the fuel or ballast consumption;
- (6) the observance of ceiling limitations (ATC or weather);
- (7) the planning ahead;
- (8) the monitoring of weather development;
- (9) the monitoring of envelope temperature (hot air balloons);
- (10) ATC liaison (if applicable);
- (11) communication with retrieve crew;
- (12) use of GNSS;
- (13) how to advise the student pilot in performing the navigational preparation;
- (14) how to advise the student pilot in performing the different navigational in-flight tasks;
- (15) how to analyse and correct faults or errors of the student pilot.

EXERCISE 12a: FUEL MANAGEMENT HOT AIR BALLOONS

(a) Objective:

To advise the student instructor on how to explain and demonstrate the fuel management techniques. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the cylinder arrangement and the burner systems;
 - (2) the function of the pilot light supply (vapour or liquid);
 - (3) the use of master cylinders (if applicable);
 - (4) the fuel requirement and expected fuel consumption;
 - (5) the fuel state and pressure;
 - (6) the minimum fuel reserves;
 - (7) cylinder contents gauge and change procedure;
 - (8) the use of cylinder manifolds.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the cylinder arrangement and burner systems;
 - (2) the pilot light supply (vapour or liquid);
 - (3) the use of master cylinders (if applicable);
 - (4) how to monitor of fuel requirement and expected fuel consumption;
 - (5) the monitoring of fuel state and pressure;
 - (6) the monitoring of fuel reserves;
 - (7) the use of cylinder contents gauge and change procedure;
 - (8) the use of cylinder manifolds;
 - (9) how to advise the student pilot to perform the fuel management;
 - (10) how to analyse and correct faults or errors of the student pilot.

EXERCISE 12b: BALLAST MANAGEMENT GAS BALLOONS

(a) Objective:

To advise the student instructor on how to explain and demonstrate the ballast management. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the minimum ballast;
 - (2) the arrangement and securing of ballast;
 - (3) the ballast requirement and expected ballast consumption;
 - (4) the ballast reserves.
- (c) Air exercise:
 - The student instructor also has to demonstrate:
 - (1) the arrangement of minimum ballast;
 - (2) the arrangement and securing of ballast;
 - (3) the ballast requirement calculation and expected ballast consumption;
 - (4) how to secure ballast reserves;

- (5) how to advise the student pilot to perform the ballast management;
- (6) how to analyse and correct faults or errors of the student pilot.

EXERCISE 13: APPROACH FROM LOW LEVEL

(a) Objective:

To advise the student instructor on how to explain and demonstrate the approach from level. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the pre landing checks;
 - (2) passenger pre-landing briefing;
 - (3) the selection of field;
 - (4) the use of burner and parachute (hot air balloons);
 - (5) the use of ballast or parachute and valve (gas balloons);
 - (6) the use of trail rope (if applicable) (gas balloons);
 - (7) the look-out;
 - (8) missed approach and fly on procedures.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the use of the pre landing checks;
 - (2) the selection of fields;
 - (3) the use of burner and parachute (hot air balloons);
 - (4) the use of ballast or parachute and valve (gas balloons);
 - (5) the use of trail rope (if applicable) (gas balloons);
 - (6) the look out procedures and how to avoid possible distractions;
 - (7) the missed approach and fly on techniques;
 - (8) how to advise the student pilot to perform an approach from low level;
 - (9) how to analyse and correct faults or errors of the student pilot.

EXERCISE 14: APPROACH FROM HIGH LEVEL

(a) Objective:

To advise the student instructor on how to explain and demonstrate the approach from high level. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the pre-landing checks;
 - (2) passenger pre-landing briefing;
 - (3) the selection of field;
 - (4) the rate of descent;
 - (5) the use of burner and parachute (hot air balloons);
 - (6) the use of ballast and parachute (gas balloons);
 - (7) the use of trail rope (if applicable) (gas balloons);
 - (8) the look-out;
 - (9) the missed approach and fly on procedures.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the pre-landing checks;
 - (2) the selection of field;
 - (3) the rate of descent;
 - (4) the use of burner and parachute (hot air balloons);
 - (5) the use of ballast and parachute (gas balloons);
 - (6) the use of trail rope (if applicable) (gas balloons);
 - (7) the look out procedures and how to avoid potential distraction;
 - (8) the missed approach and fly on techniques;
 - (9) how to advise the student pilot to perform an approach from a higher level;
 - (10) how to analyse and correct faults or errors of the student pilot.

EXERCISE 15: OPERATING AT LOW LEVEL

(a) Objective:

To advise the student instructor on how to explain and demonstrate the operation at a low height. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the use of burner and parachute (hot air balloons);
 - (2) the use of ballast and parachute (gas balloons);
 - (3) the look out;
 - (4) how to avoid a contact with low level obstacles;
 - (5) how to avoid sensitive areas (for example nature protection areas);
 - (6) landowner relations.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the use of burner and parachute (hot air balloons);
 - (2) the use of ballast and parachute (gas balloons);
 - (3) the look out procedures and how to avoid potential distraction;
 - (4) how to avoid low level obstacles;
 - (5) good landowner relations;
 - (6) how to advise the student pilot to operate the balloon at a low level;
 - (7) how to analyse and correct faults or errors of the student pilot.

EXERCISE 16: LANDING IN DIFFERENT WIND CONDITIONS

(a) Objective:

To advise the student instructor on how to explain and demonstrate landings in different wind conditions. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the correct actions for turbulences during the approach or landing;
 - (2) the passenger pre-landing briefing;
 - (3) the use of burner and pilot lights (hot air balloons);
 - (4) the use of ballast, parachute, valve and rip panel (gas balloons);
 - (5) the use of parachute and turning vents (if applicable);
 - (6) the look out;
 - (7) the landing, dragging and deflation;
 - (8) landowner relations.
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the pre-landing checks;
 - (2) the passenger briefing;
 - (3) the selection of field;
 - (4) the effect of turbulence;
 - (5) the use of burner and pilot lights (hot air balloons);
 - (6) the use of ballast, parachute, valve and rip panel (gas balloons);
 - (7) the use of parachute and turning vents (if applicable);
 - (8) the look out procedures and how to avoid potential distraction;
 - (9) the landing, dragging and deflation procedures;
 - (11) how to advise the student pilot to perform a safe landing in different wind conditions;
 - (12) how to analyse and correct faults or errors of the student pilot.

EXERCISE 17: FIRST SOLO

- (a) Objective:
 - To advise the student instructor on how to prepare their students for the first solo flight.
- (b) Briefing:

The student instructor has to explain:

- (1) the limitations of the flight;
- (2) the use of required equipment.
- (c) Air exercise:
 - The student instructor has to:
 - (1) check with another or more senior instructor if the student can fly solo;
 - (2) monitor the pre-flight preparation;
 - (3) brief the student (expected flight time or emergency actions);
 - (4) monitor the flight as far as possible;
 - (5) debrief the flight with the student.

EXERCISE 18: TETHERED FLIGHT HOT AIR BALLOONS (if tethered flight instructional qualification is required)

(a) Objective:

To advise the student instructor on how to explain and demonstrate the tethering techniques. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

- (b) Briefing:
 - The student instructor has to explain:
 - (1) the ground preparations;
 - (2) the weather suitability;
 - (3) the tethering techniques and equipment;
 - (4) the maximum all-up-weight limitation;
 - (5) the crowd control;
 - (6) the pre take-off checks and briefings;
 - (7) the heating for controlled lift off;
 - (8) the 'hands off and hands on' procedure for ground crew;
 - (9) the assessment of wind and obstacles;
 - (10) the controlled climb to a pre-defined altitude (at least 60 ft).
- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the ground preparations;
 - (2) the tethering techniques;
 - (3) the reason for maximum all-up-weight limitation;
 - (4) how to perform the crowd control;
 - (5) the pre take-off checks and briefings;
 - (6) the heating for controlled lift off;
 - (7) the 'hands off and hands on' procedure for ground crew;
 - (8) the assessment of wind and obstacles;
 - (9) the controlled climb;
 - (10) the landing techniques;
 - (11) how to advise the student pilot to perform a tethered flight;
 - (12) how to analyse and correct faults or errors of the student pilot.

EXERCISE 19: NIGHT FLYING (if night instructional qualification required)

(a) Objective:

To advise the student instructor on how to explain and demonstrate the night flying techniques. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:

The student instructor has to explain:

- (1) the medical or physiological aspects of night vision;
- (2) the use of lights for assembly, layout and inflation;
- (3) the requirement for torch to be carried, (pre-flight inspection, etc.);
- (4) the use of the external- and instrument lights;
- (5) the night take-off procedure;
- (6) the checklist procedures at night;
- (7) the emergency procedures at night;
- (8) the navigation principles at night;
- (9) map marking for night use (highlighting built up or lit areas with thicker lines, etc.).

- (c) Air exercise:
 - The student instructor has to demonstrate:
 - (1) the use of lights for assembly, layout and inflation;
 - (2) the use of torch for pre-flight inspection;
 - (3) the use of external- and instrument lights;
 - (4) the night take-off procedure;
 - (5) how to perform the checklist procedures at night;
 - (6) simulated night emergency procedures;
 - (7) night cross country techniques, as appropriate;
 - (8) how to advise the student pilot to perform a flight at night;
 - (9) how to analyse and correct faults or errors of the student pilot.

AMC1 FCL.940.FI (a)(2) FI — Revalidation and renewal

FI OR IRI REFRESHER SEMINAR

- (a) FI or IRI refresher seminars made available in States would have due regard to geographical location, numbers attending, and periodicity throughout the territory of the State concerned.
- (b) Such seminars should run for at least 2 days, and attendance from participants will be required for the whole duration of the seminar including breakout groups and workshops. Different aspects, such as inclusion of participants holding certificates in other categories of aircraft should be considered.
- (c) Some experienced FIs or IRIs currently involved with flying training and with a practical understanding of the revalidation requirements and current instructional techniques should be included as speakers at these seminars.
- (d) The attendance form will be completed and signed by the organiser of the seminar as approved by MCAA, following attendance and satisfactory participation by the FI or IRI.
- (e) The content of the FI or IRI refresher seminar should be selected from the following:
 - (1) new or current rules or regulations, with emphasis on knowledge of Part-FCL and operational requirements;
 - (2) teaching and learning;
 - (3) instructional techniques;
 - (4) the role of the instructor;
 - (5) national regulations (as applicable);
 - (6) human factors;
 - (7) flight safety, incident and accident prevention;
 - (8) airmanship;
 - (9) legal aspects and enforcement procedures;
 - (10) navigational skills including new or current radio navigation aids;
 - (11) teaching instrument flying;
 - (12) weather related topics including methods of distribution.
 - (13) any additional topic selected by MCAA.
- (f) Formal sessions should allow for a presentation time of 45 minutes, with 15 minutes for questions. The use of visual aids is recommended, with interactive video and other teaching aids (where available) for breakout groups and workshops.

GM1 FCL.940.FI (a)(2) FI — Revalidation and renewal FI CERTIFICATE: REVALIDATION AND RENEWAL FORM

A. AEROPLANES

Г

INSTRUCTIONAL FLYING EXPERIENCE						
		the FI certific	ate should	enter the instruction	al hours flown during	
the preceding 36 mor		-				
SINGLE-ENGINE			MULTI-E	ENGINE		
DAY	NIGHT	DAY		NIGHT	INSTRUMENT	
			-			
Total instructional ho	ours (preceding 36 m	onths):				
Total instructional ho	ours (preceding 12 m	onths):				
	F	I REFRESHI	ER SEMIN	AR		
1 This is to certify	that the undersigne	ed attended a	n FI semina	ır		
2 Attendee's perso	nal particulars:					
	F					
Name(s):			Address:			
Licence number:			Expiration date of FI(A) certificate			
3 Seminar particul	lars:		I			
Date(s) of seminar: Place:						
4 Declaration by t	he responsible organ	niser:				
I certify that the above	e data are correct and	d that the FI s	eminar was	carried out.		
Date of approval:			Name(s) of organiser: (capital letters)			
Date and place:			Signature:			
5 Declaration by the	attendee:		1			
I confirm the data under 1 through 3			Attendee's signature:			
]	PROFICIEN	CY CHEC	K		
(Name(s) of applicant flight. This was done t			ictional abi	lity during a profic	iency check	
Flying time: Aeroplane or FFS used:						
Main exercise:			1			
Name(s) of FIE:			Licence number:			
Date and place:			Signature:			

B. HELICOPTERS

INSTRUCTIONAL FLYING EXPERIENCE

Instructors applying for revalidation of the FI certificate should enter the instructional hours flown during the preceding 36 months.

Instrument:

Total instructional hours (preceding 36 months):

Total instructional hours (preceding 12 months):

FI REFRESHER SEMINAR

1 This is to certify that the undersigned attended an FI seminar

2 Attendees personal particulars:

Name(s):	Address:		
Licence number:	Expiration date of FI(H) certificate:		
3 Seminar particulars:			
Date(s) of seminar:	Place:		
4 Declaration by the responsible organiser:			
I certify that the above data are correct and that the FI s	seminar was carried out.		
Date of approval:	Name(s) of organiser:		
	(capital letters)		
Date and place:	Signature:		
5 Declaration by the attendee:			
I confirm the data under 1 through 3	Attendee's signature:		
PROFICIENCY CHECK			
(Name(s) of applicant) has given proof of flying instru was done to the required standard.	ctional ability during a proficiency check flight. This		
Flying time:	Helicopter or FFS used:		

 Main exercise:

 Name(s) of FIE:
 Licence number:

 Date and place:
 Signature:

C. AIRSHIPS

INSTRUCTIONAL FLYING EXPERIENCE					
Instructors applying for revalidation of the FI certificate should enter the instructional hours flown during the preceding 36 months.					
SINGLE-ENGINE		MULTI-ENGINE			
DAY	NIGHT	DAY		NIGHT	INSTRUMENT
Total instructional h	ours (preceding 36 mor	nths):			
Total instructional h	ours (preceding 12 mor	nths):			
	FI	REFRESHE	ER SEMIN	NAR	
3 This is to certify	that the undersigned	attended ar	n FI semin	ar	
4 Attendee's perso	onal particulars:				
Name(s):			Address:		
Licence number:			Expiration date of FI(As) certificate		
3 Seminar particu	lars:				
Date(s) of seminar:	Date(s) of seminar: Place:				
4 Declaration by t	he responsible organi	ser:			
I certify that the above	e data are correct and	that the FI s	eminar wa	s carried out.	
Date of approval:			Name(s) of organiser: (capital letters)		
Date and place:			Signature:		
5 Declaration by the attendee:					
I confirm the data under 1 through 3			Attendee's signature:		
PROFICIENCY CHECK					
(Name(s) of applicant) has given proof of flying instructional ability during a proficiency check flight. This was done to the required standard.					
Flying time:			Airship or FFS used:		
Main exercise:			<u> </u>		
Name(s) of FIE:			Licence number:		
Date and place:			Signature:		

D. SAILPLANES INSTRUCTIONAL FLYING EXPERIENCE

INSTRUCTIONAL FLYING EXPERIENCE						
Instructors applying for revalidation of the FI certificate should enter the instructional hours flown during the preceding 36 months.						
SAILPLANE (hours and take-offs) TMG (hours and take-offs)			and take-offs)			
DAY	NIGHT	DAY	NIGHT			
Total instructional hours (
Total instructional hours (
Total amount of take-offs (
Total amount of take-offs	(preceding 12 months):					
	FI REFRESH					
5 This is to certify that	the undersigned attended a	n FI seminar				
6 Attendee's personal p	particulars:					
Name(s):		Address:				
Licence number:		Expiration date of FI(S) ce	rtificate			
3 Seminar particulars:	3 Seminar particulars:					
Date(s) of seminar:		Place:				
4 Declaration by the responsible organiser:						
I certify that the above data	a are correct and that the FI s	eminar was carried out.				
Date of approval:		Name(s) of organiser: (capital letters)				
Date and place:		Signature:				
5 Declaration by the atten	dee:					
I confirm the data under 1 t	hrough 3	Attendee's signature:				
PROFICIENCY CHECK						
(Name(s) of applicant) has given proof of flying instructional ability during a proficiency check flight. This was done to the required standard.						
Flying time:	гединса виниана.	Sailplane or TMG used:				
Main exercise:		1				
Name(s) of FIE:		Licence number:				
Date and place:		Signature:				

E. BALLOONS

INSTRUCTIONAL FLYING EXPERIENCE						
Instructors appl the preceding 36	ying for revalidatio 5 months.	n of the FI certific	ate should enter th	ne instructional ho	urs flown during	
Balloons (gas) Balloons		(hot-air)	Hot-air airships			
DAY	NIGHT	DAY	NIGHT	DAY	NIGHT	
	al hours (preceding					
Total instruction	al hours (preceding	12 months):				
		FI REFRESH	ER SEMINAR			
7 This is to cer	rtify that the under	signed attended a	n FI seminar			
8 Attendee's p	ersonal particular	s:				
Name(s):			Address:			
Licence number:			Expiration date of FI(S) certificate			
3 Seminar par	ticulars:					
Date(s) of semina	Date(s) of seminar: Place:					
4 Declaration by the responsible organiser:						
I certify that the a	bove data are corre	ect and that the FI s	eminar was carried	l out.		
Date of approval:			Name(s) of organiser: (capital letters)			
Date and place:			Signature:			
5 Declaration by the attendee:						
I confirm the data	under 1 through 3		Attendee's signat	ure:		
PROFICIENCY CHECK						
(Name(s) of applicant) has given proof of flying instructional ability during a proficiency check flight. This was done to the required standard.						
Flying time:						
Main exercise:			1			
Name(s) of FIE:			Licence number:			
Date and place:			Signature:			

AMC1 FCL.930.TRI TRI — Training course TRI TRAINING COURSE: AEROPLANES

GENERAL

- (a) The aim of the TRI (A) training course is to train aeroplane licence holders to the level of competence defined in FCL.920 and adequate for a TRI.
- (b) The training course should develop safety awareness throughout by teaching the knowledge, skills and attitudes relevant to the TRI task, and should be designed to give adequate training to the applicant in theoretical knowledge instruction, flight instruction and FSTD instruction to instruct for an aeroplane type rating for which the applicant is qualified.
- (c) The TRI (A) training course should give particular emphasis to the role of the individual in relation to the importance of human factors in the man-machine environment and the role of CRM.
- (d) Special attention should be given to the applicant's maturity and judgment including an understanding of adults, their behavioural attitudes and variable levels of learning ability. During the training course the applicants should be made aware of their own attitudes to the importance of flight safety. It will be important during the training course to aim at giving the applicant the knowledge, skills and attitudes relevant to the role of the TRI.
- (e) For a TRI(A) the amount of flight training will vary depending on the complexity of the aeroplane type. A similar number of hours should be used for the instruction and practice of pre-flight and post flight briefing for each exercise. The flight instruction should aim to ensure that the applicant is able to teach the air exercises safely and efficiently and should be related to the type of aeroplane on which the applicant wishes to instruct. The content of the training programme should cover training exercises applicable to the aeroplane type as set out in the applicable type rating courses.
- (f) A TRI(A) may instruct in a TRI(A) course once he or she has conducted a minimum of four type rating instruction courses.
- (g) It is to be noted that airmanship is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at the appropriate times during each flight.
- (h) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.

CONTENT

- (i) The training course consists of three parts:
 - (1) Part 1: teaching and learning instruction that should comply with AMC1 FCL.920;
 - (2) Part 2: technical theoretical knowledge instruction (technical training);
 - (3) Part 3: flight instruction.

Part 1

The content of the teaching and learning part of the FI training course, as established in AMC1 FCL.930.FI, should be used as guidance to develop the course syllabus.

Part 2

TECHNICAL THEORETICAL KNOWLEDGE INSTRUCTION SYLLABUS

- (a) The technical theoretical knowledge instruction should comprise of not less than 10 hours training to include the revision of technical knowledge, the preparation of lesson plans and the development of classroom instructional skills to enable the TRI(A) to instruct the technical theoretical knowledge syllabus.
- (b) If a TRI(A) certificate for MP aeroplanes is sought, particular attention should be given to multi-crew cooperation. If a TRI(A) certificate for SP aeroplanes is sought, particular attention should be given to the duty in SP operations.
- (c) The type rating theoretical syllabus should be used to develop the TRI(A)'s teaching skills in relation to the type technical course syllabus. The course instructor should deliver example lectures from the applicable type technical syllabus and the candidate instructor should prepare and deliver lectures on topics selected by the course instructor from the type rating course.

Part 3

FLIGHT INSTRUCTION SYLLABUS

- (a) The course should be related to the type of aeroplane on which the applicant wishes to instruct.
- (b) TEM, CRM and the appropriate use of behavioural markers should be integrated throughout.
- (c) The content of the training programme should cover all the significant exercises applicable to the aeroplane type.
- (d) The applicant for a TRI(A) certificate should be taught and made familiar with the device, its limitations, capabilities and safety features, and the instructor station, including emergency evacuation.

FSTD TRAINING

- (e) The applicant for a TRI(A) certificate should be taught and made familiar with giving instruction from the instructor station. In addition, before being checked for base training instruction, the applicant for a TRI(A) should be taught ands made familiar with giving instruction from all operating positions, including demonstrations of appropriate handling exercises.
- (f) Training courses should be developed to give the applicant experience in training a variety of exercises, covering both normal and abnormal operations. The syllabus should be tailored appropriate to the aeroplane type, using exercises considered more demanding for the student. This should include engine-out handling and engine-out operations in addition to representative exercises from the type transition course.
- (g) The applicant should be required to plan, brief, train and debrief sessions using all relevant training techniques.

AEROPLANE TRAINING

- (h) The applicant for a TRI(A) certificate should receive instruction in an FFS to a satisfactory level in:
 - (1) right hand seat familiarisation, which should include at least the following as pilot flying:
 - (i) re-flight preparation and use of checklists;
 - (ii) taxiing;
 - (iii) take-off;
 - (iv) rejected take-off;
 - (v) engine failure during take-off, after v_1 ;
 - (vi) engine inoperative approach and go-around;
 - (vii) one engine (critical) simulated inoperative landing;
 - (viii) other emergency and abnormal operating procedures (as necessary).
 - (2) aeroplane training techniques:
 - (i) methods for giving appropriate commentary;
 - (ii) particularities of handling the aeroplane in touch and go manoeuvres;
 - (iii) intervention strategies developed from situations role-played by a TRI course instructor, taken from but not limited to:
 - (A) take-off configuration warning;
 - (B) over controlling;
 - (C) high flare: long float;
 - (D) long flare;
 - (E) baulked landing;
 - (F) immediate go-around from touch;
 - (G) too high on approach: no flare;
 - (H) incorrect configuration;
 - (I) TAWS warning;
 - (J) misuse of rudder;
 - (K) over control in roll axis during flare;
 - (L) incapacitation;
 - (M) actual abnormal or emergencies.
- (i) Additionally, if the applicant is required to train emergency or abnormal procedures in an aeroplane, synthetic device training as follows:
 - (1) appropriate methods and minimum altitudes for simulating failures;
 - (2) incorrect rudder inputs;
 - (3) failure of a critical engine;

- (4) approach and full-stop landing with simulated engine-out.
- (j) In this case, the abnormal manoeuvres refer to engine-out handling as
- necessary for completion of type rating training. If the applicant is required to train other abnormal items in the transition course, additional training will be required.
- (k) Upon successful completion of the training above, the applicant should receive training in an aeroplane in-flight under the supervision of a TRI (A). At the completion of training the applicant instructor should be required to conduct a training flight under the supervision and to the satisfaction of a TRI (A) nominated for this purpose by the training organisation.

TRAINING FOR ASYMMETRIC POWER FLIGHT ON SP MET AEROPLANES

- (l) During this part of the training, special emphasis is to be placed on the:
 - (1) circumstances in which actual feathering and un-feathering practice will be done, for example safe altitude; compliance with regulations about minimum altitude or height for feathering practice, weather conditions, distance from nearest available aerodrome.
 - (2) procedure to use for instructor and student co-operation, for example the correct use of touch drills and the prevention of misunderstandings, especially during feathering and unfeathering practice and when zero thrust is being used for asymmetric circuits. This procedure is to include positive agreement as to which engine is being shut down or re-started or set at zero thrust and identifying each control and naming the engine it is going to affect.
 - (3) consideration to be given to avoid over-working the operating engine, and the degraded performance when operating the aeroplane during asymmetric flight.
 - (4) need to use the specific checklist for the aeroplane type.

LONG BRIEFINGS:

- (m) Flight on asymmetric power
 - (1) introduction to asymmetric flight;
 - (2) feathering the propeller: method of operation;
 - (3) effects on aeroplane handling at cruising speed;
 - (4) introduction to effects upon aeroplane performance;
 - (5) note foot load to maintain a constant heading (no rudder trim);
 - (6) un-feathering the propeller: regain normal flight;
 - (7) finding the zero thrust setting: comparison of foot load when feathered and with zero thrust set.
 - (8) effects and recognition of engine failure in level flight;
 - (9) the forces and the effects of yaw;
 - (10) types of failure:
 - (i) sudden or gradual;
 - (ii) complete or partial.
 - (11) yaw, direction and further effects of yaw;
 - (12) flight instrument indications;
 - (13) identification of failed engine;
 - (14) the couples and residual out of balance forces: resultant flight attitude;
 - (15) use of rudder to counteract yaw;
 - (16) use of aileron: dangers of misuse;
 - (17) use of elevator to maintain level flight;
 - (18) use of power to maintain a safe air speed and altitude;
 - (19) supplementary recovery to straight and level flight: simultaneous increase of speed and reduction in power;
 - (20) identification of failed engine: = idle engine;
 - (21) use of engine instruments for identification:
 - (i) fuel pressure or flow;
 - (ii) RPM gauge response effect of CSU action at lower and higher air speed;
 - (iii) engine temperature gauges.
 - (22) confirmation of identification: close the throttle of identified failed engine;
 - (23) effects and recognition of engine failure in turns;
 - (24) identification and control;
 - (25) side forces and effects of yaw.
- (n) During turning flight:
 - (1) effect of 'inside' engine failure: effect sudden and pronounced;

- (2) effect of 'outside' engine failure: effect less sudden and pronounced;
- (3) the possibility of confusion in identification (particularly at low power):
 - (i) correct use of rudder;
 - (ii) possible need to return to lateral level flight to confirm correct identification;
- (4) visual and flight instrument indications;
- (5) effect of varying speed and power;
- (6) speed and thrust relationship;
- (7) at normal cruising speed and cruising power: engine failure clearly recognised;
- (8) at low safe speed and climb power: engine failure most positively recognised;
- (9) high speed descent and low power: possible failure to notice asymmetry (engine failure);
- (o) Minimum control speeds:
 - (1) ASI colour coding: red radial line

Note: this exercise is concerned with the ultimate boundaries of controllability in various conditions that a student can reach in a steady asymmetric power state, approached by a gradual speed reduction. Sudden and complete failure should not be given at the

flight manual v_{mca} . The purpose of the exercise is to continue the gradual introduction of a student to control an aeroplane in asymmetric power flight during extreme or critical situations. It is not a demonstration of v_{mca} .

- (2) techniques for assessing critical speeds with wings level and recovery dangers involved when minimum control speed and the stalling speed are very close: use of v_{sse};
- (3) establish a minimum control speed for each asymmetrically disposed engine: to establish critical engine (if applicable);
- (4) effects on minimum control speeds of:
 - (i) bank;
 - (ii) zero thrust setting;
 - (iii) take-off configuration:
 - (A) landing gear down and take-off flap set;
 - (B) landing gear up and take-off flap set.

Note: it is important to appreciate that the use of 5 ° of bank towards the operating engine produces a lower v_{mca} and also a better performance than that obtained with the wings held level. It is now normal for manufacturers to use 5 ° of bank in this manner when determining the v_{mca} for the specific type. Thus the v_{mca} quoted in the aeroplane manual will have been obtained using the technique.

- (p) Feathering and un-feathering:
 - (1) minimum heights for practising feathering or un-feathering drills;
 - (2) engine handling: precautions (overheating, icing conditions, priming, warm up and method of simulating engine failure: reference to aircraft engine manual and service instructions and bulletins).
- (q) Engine failure procedure:
 - (1) once the maintenance of control has been achieved, the order in which the procedures are carried out will be determined by the phase of operation and the aircraft type;
 - (2) flight phase:
 - (i) in cruising flight;
 - (ii) critical phase such as immediately after take-off or during the approach to landing or during a go-around.
- (r) Aircraft type

Variations will inevitably occur in the order of certain drills and checks due to differences between aeroplane types and perhaps between models of the same type. The flight manual or equivalent document (for example owner's manual or pilot's operating handbook) is to be consulted to establish the exact order of these procedures.

For example, one flight manual or equivalent document (for example owner's manual or pilot's operating handbook) may call for the raising of flaps and landing gear before feathering, whilst another may recommend feathering as a first step. The reason for this latter procedure could be due to the fact that some engines cannot be feathered if the rpm drops below a certain figure.

Again, in some aeroplanes, the raising of the landing gear may create more drag during retraction due to the transient position of the landing gear doors and as a result of this retraction would best be left until feathering has been accomplished and propeller drag reduced.

Therefore, the order in which the drills and checks are shown in this syllabus under immediate and subsequent actions are to be used as a general guide only and the exact order of precedence is determined by reference to the flight manual or equivalent document (for example owner's manual or pilot's operating handbook) for the specific aeroplane type being used on the course.

- (s) In-flight engine failure in cruise or other flight phase not including take-off or landing:
 - (1) immediate actions:
 - (i) recognition of asymmetric condition;
 - (ii) identification and confirmation of failed engine:
 - (A) idle leg = idle engine;
 - (B) closing of throttle for confirmation.
 - (iii) cause and fire check:
 - (A) typical reasons for failure;
 - (B) methods of rectification.
 - (iv) feathering decision and procedure:
 - (A) reduction of other drag;
 - (B) need for speed but not haste;
 - (C) use of rudder trim.
 - (2) subsequent actions: (i) live engine:
 - live engine:
 - (A) temperature, pressures and power;
 - (B) remaining services;
 - (C) electrical load: assess and reduce as necessary;
 - (D) effect on power source for air driven instruments;
 - (E) landing gear;
 - (F) flaps and other services.
 - (ii) re-plan flight:
 - (A) ATC and weather;
 - (B) terrain clearance, SE cruise speed;
 - (C) decision to divert or continue.
 - (iii) fuel management: best use of remaining fuel;
 - (iv) dangers of re-starting damaged engine;
 - (v) action if unable to maintain altitude: effect of altitude on power available;
 - (vi) effects on performance;
 - (vii) effects on power available and power required;
 - (viii)effects on various airframe configuration and propeller settings;
 - (ix) use of flight or owner's manual:
 - (A) cruising;
 - (B) climbing: ASI colour coding (blue line);
 - (C) descending;
 - (D) turning.
 - (x) 'live' engine limitations and handling;
 - (xi) take-off and approach: control and performance;
- (t) Significant factors:
 - (1) significance of take-off safety speed:
 - (i) effect of landing gear, flap, feathering, take-off, trim setting and systems for operating landing gear and flaps;
 - (ii) effect on mass, altitude and temperature (performance).
 - (2) significance of best SE climb speed (v_{yse}) :
 - (i) acceleration to best engine climb speed and establishing a positive climb;
 - (ii) relationship of SE climb speed to normal climb speed;
 - (iii) action if unable to climb.
 - (3) significance of asymmetric committal height and speed: action if baulked below asymmetric committal height;
- (u) Engine failure during take-off:
 - (1) below v_{mca} or unstick speed:
 - (i) accelerate or stop distance considerations;
 - (ii) prior use of flight manual data if available.
 - (2) above v_{mca} or unstick speed and below safety speed;
 - (3) immediate re-landing or use of remaining power to achieve forced landing;
 - (4) considerations:
 - (i) degree of engine failure;
 - (ii) speed at the time;
 - (iii) mass, altitude, temperature (performance);
 - (iv) configuration;

- (v) length of runway remaining;
- (vi) position of any obstacles ahead;
- (v) Engine failure after take-off:
 - (1) simulated at a safe height and at or above take-off safety speed;
 - (2) considerations:
 - (i) need to maintain control;
 - (ii) use of bank towards operating engine;
 - (iii) use of available power achieving best SE climb speed;
 - (iv) mass, altitude, temperature (performance);
 - (v) effect of prevailing conditions and circumstances.
 - (3) Immediate actions:
 - (i) maintenance of control, including air speed and use of power;
 - (ii) recognition of asymmetric condition;
 - (iii) identification and confirmation of failed engine;
 - (iv) feathering and removal of drag (procedure for type);
 - (v) establishing best SE climb speed.
 - (4) Subsequent actions: whilst carrying out an asymmetric power climb to the downwind position at SE best rate of climb speed:
 - (i) cause and fire check;
 - (ii) live engine, handling considerations;
 - (iii) remaining services;
 - (iv) ATC liaison;
 - (v) fuel management.

Note: these procedures are applicable to aeroplane type and flight situation.

- (w) Asymmetric committal height:
 - (1) Asymmetric committal height is the minimum height needed to establish a positive climb whilst maintaining adequate speed for control and removal of drag during an approach to a landing.

Because of the significantly reduced performance of many CS-23 aeroplanes when operating on one engine, consideration is to be given to a minimum height from which it would be safely possible to attempt a go-around procedure, during an approach when the flight path will have to be changed from a descent to a climb with the aeroplane in a high drag configuration.

Due to the height loss which will occur during the time that the operating engine is brought up to full power, landing gear and flap retracted, and the aeroplane established in a climb at v_{yse} a minimum height (often referred to as 'asymmetric committal height') is to be selected, below which the pilot should not attempt to take the aeroplane round again for another circuit. This height will be compatible with the aeroplane type, all up weight, altitude of the aerodrome being used, air temperature, wind, the height of obstructions along the climb out path, and pilot competence.

- (2) Circuit approach and landing on asymmetric power:
 - (i) definition and use of asymmetric committal height;
 - (ii) use of standard pattern and normal procedures;
 - (iii) action if unable to maintain circuit height;
 - (iv) speed and power settings required;
 - (v) decision to land or go-around at asymmetric committal height: factors to be considered;
- (3) Undershooting: importance of maintaining correct air speed, (not below v_{yse}).
- (x) Speed and heading control:
 - (1) height, speed and power relationship: need for minimum possible drag;
 - (2) establishing positive climb at best SE rate of climb speed:
 - (i) effect of availability of systems, power for flap and landing gear;
 - (ii) operation and rapid clean up.

Note 1: The air speed at which the decision is made to commit the aeroplane to a landing or to go-around should normally be the best SE rate of climb speed and in any case not less than the safety speed.

Note 2: On no account should instrument approach 'decision height' and its associated procedures be confused with the selection of minimum height for initiating a go-around in asymmetric power flight.

- (y) Engine failure during an all engines approach or missed approach:
 - (1) use of asymmetric committal height and speed considerations;
 - (2) speed and heading control: decision to attempt a landing, go-around or force land as circumstances dictate.

Note: at least one demonstration and practice of engine failure in this situation should be performed during the course.

- (z) Instrument flying on asymmetric power:
 - (1) considerations relating to aircraft performance during:
 - (i) straight and level flight;
 - (ii) climbing and descending;
 - (iii) standard rate turns;
 - (iv) level, climbing and descending turns including turns onto pre-selected headings.
 - (2) vacuum operated instruments: availability;
 - (3) electrical power source.

ADDITIONAL TRAINING FOR PRIVILEGES TO CONDUCT LINE FLYING UNDER SUPERVISION

(aa) In order to be able to conduct line flying under supervision, as provided in FCL.910.TRI (a), the TRI should have received the additional training described in paragraph (k) of this AMC.

TRAINING WHERE NO FSTD EXISTS

(ab) Where no FSTD exists for the type for which the certificate is sought, a similar course of training should be conducted in the applicable aeroplane type. This includes all elements listed under this sub paragraph, the synthetic device elements being replaced with appropriate exercises in an aeroplane of the applicable type.

AMC2 FCL.930.TRI TRI — training course HELICOPTERS

GENERAL

- (a) The aim of the TRI (H) course is to train helicopter licence holders to the level of competence defined in FCL.920 and adequate for a TRI.
- (b) The training course should develop safety awareness throughout by teaching the knowledge, skills and attitudes relevant to the TRI (H) task, and should be designed to give adequate training to the applicant in theoretical knowledge instruction, flight instruction and FSTD instruction to instruct for a helicopter type rating for which the applicant is qualified.
- (c) The TRI (H) training course should give particular emphasis to the role of the individual in relation to the importance of human factors in the man-machine environment and the role of CRM.
- (d) Special attention should be given to the applicant's maturity and judgment including an understanding of adults, their behavioural attitudes and variable levels of learning ability. During the training course the applicants should be made aware of their own attitudes to the importance of flight safety. It will be important during the course of training to aim at giving the applicant the knowledge, skills and attitudes relevant to the role of the TRI.
- (e) For a TRI (H) certificate the amount of flight training will vary depending on the complexity of the helicopter type.
- (f) A similar number of hours should be used for the instruction and practice of pre-flight and post flight briefing for each exercise. The flight instruction should aim to ensure that the applicant is able to teach the air exercises safely and efficiently and should be related to the type of helicopter on which the applicant wishes to instruct. The content of the training program should cover training exercises applicable to the helicopter type as set out in the applicable type rating course syllabus.
- (g) A TRI (H) may instruct in a TRI (H) course once he or she has conducted a minimum of four type rating instruction courses.

CONTENT

- (h) The training course consists of three parts:
 - (1) Part 1: teaching and learning, that should comply with AMC1 FCL.920;
 - (2) Part 2: technical theoretical knowledge instruction (technical training);
 - (3) Part 3: flight instruction.

Part 1

The content of the teaching and learning part of the FI training course, as established in AMC1 FCL.930.FI, should be used as guidance to develop the course syllabus.

Part 2

TECHNICAL THEORETICAL KNOWLEDGE INSTRUCTION SYLLABUS

- (a) The technical theoretical knowledge instruction should comprise of not less than 10 hours training to include the revision of technical knowledge, the preparation of lesson plans and the development of classroom instructional skills to enable the TRI(H) to instruct the technical theoretical knowledge syllabus.
- (b) If a TRI(H) certificate for MP helicopters is sought, particular attention should be given to multi-crew cooperation.
- (c) The type rating theoretical syllabus should be used to develop the TRI(H)'s teaching skills in relation to the type technical course syllabus. The course instructor should deliver example lectures from the applicable type technical syllabus and the candidate instructor should prepare and deliver lectures on topics selected by the course instructor from the subject list below:
 - (1) helicopter structure, transmissions, rotor and equipment, normal and abnormal operation of systems:
 - (i) dimensions;
 - (ii) engine including aux. power unit, rotors and transmissions;
 - (iii) fuel system;
 - (iv) air-conditioning;
 - (v) ice protection, windshield wipers and rain repellent;
 - (vi) hydraulic system;
 - (vii) landing gear;
 - (viii) flight controls, stability augmentation and autopilot systems;
 - (ix) electrical power supply;
 - (x) flight instruments, communication, radar and navigation equipment;
 - (xi) cockpit, cabin and cargo compartment;
 - (xii) emergency equipment.
 - (2) limitations:
 - (i) general limitations, according to the helicopter flight manual;
 - (ii) minimum equipment list.
 - (3) performance, flight planning and monitoring:
 - (i) performance;
 - (ii) light planning.
 - (4) load and balance and servicing:
 - (i) load and balance;
 - (ii) servicing on ground;
 - (5) emergency procedures;
 - (6) special requirements for helicopters with EFIS;
 - (7) optional equipment.

Part 3

FLIGHT INSTRUCTION SYLLABUS

- (a) The amount of flight training will vary depending on the complexity of the helicopter type. At least 5 hours flight instruction for a SP helicopter and at least 10 hours for a MP ME helicopter should be counted. A similar number of hours should be used for the instruction and practice of pre-flight and post flight briefing for each exercise. The flight instruction should aim to ensure that the applicant is able to teach the air exercises safely and efficiently and related to the type of helicopter on which the applicant wishes to instruct. The content of the training programme should only cover training exercises applicable to the helicopter type as set out in Appendix 9 to Part-FCL.
- (b) If a TRI(H) certificate for MP helicopters is sought, particular attention should be given to MCC.
- (c) If a TRI(H) certificate for revalidation of instrument ratings is sought, then the applicant should hold a valid instrument rating.

FLIGHT OR FSTD TRAINING

- (d) The training course should be related to the type of helicopter on which the applicant wishes to instruct.
- (e) For MP helicopter type ratings MCC, CRM and the appropriate use of behavioural markers should be integrated throughout.
- (f) The content of the training programme should cover identified and significant exercises applicable to the helicopter type.

FSTD TRAINING

- (g) The applicant for a TRI (H) certificate should be taught and made familiar with the device, its limitations, capabilities and safety features, and the instructor station.
- (h) The applicant for a TRI (H) certificate should be taught and made familiar with giving instruction from the instructor station seat as well as the pilot's seats, including demonstrations of appropriate handling exercises.
- (i) Training courses should be developed to give the applicant experience in training a variety of exercises, covering both normal and abnormal operations. The syllabus should be tailored appropriate to the helicopter type, using exercises considered more demanding for the student. This should include engine-out handling and engine-out operations in addition to representative exercises from the type transition course.
- (j) The applicant should be required to plan, brief, train and debrief sessions using all relevant training techniques.

HELICOPTER TRAINING

- (k) The applicant for a TRI(H) certificate should receive instruction in an FSTD to a satisfactory level in:
 - (1) left hand seat familiarisation, and in addition right hand seat familiarisation where instruction is to be given to co-pilots operating in the left hand seat, which should include at least the following as pilot flying:
 - (i) pre-flight preparation and use of checklists;
 - (ii) taxiing: ground and air;
 - (iii) take-off and landings;
 - (iv) engine failure during take-off, before DPATO;
 - (v) engine failure during take-off, after DPATO;
 - (vi) engine inoperative approach and go-around;
 - (vii) one engine simulated inoperative landing;
 - (viii) autorotation to landing or power recovery;
 - (ix) other emergency and abnormal operating procedures (as necessary);
 - (x) instrument departure, approach and go-around with one engine simulated inoperative should be covered where TRI(H) privileges include giving instrument instruction for the extension of an IR(H) to additional types.
 - (2) helicopter training techniques:
 - (i) methods for giving appropriate commentary;
 - (ii) instructor demonstrations of critical manoeuvres with commentary;
 - (iii) particularities and safety considerations associated with handling the helicopter in critical manoeuvres such as one-engine-inoperative and autorotation exercises;
 - (iv) where relevant, the conduct of instrument training with particular emphasis on weather restrictions, dangers of icing and limitations on the conduct of critical manoeuvres in instrument meteorological conditions;
 - (v) intervention strategies developed from situations role-played by a TRI(H) course instructor, taken from but not limited to:
 - (A) incorrect helicopter configuration;
 - (B) over controlling;
 - (C) incorrect control inputs;
 - (D) excessive flare close to the ground;
 - (E) one-engine-inoperative take-off and landings;
 - (F) incorrect handling of autorotation;
 - (G) static or dynamic rollover on take-off or landing;
 - (H) too high on approach with associated danger of vortex ring or settling with power;
 - (I) incapacitation;
 - (L) abnormal and emergency procedures and appropriate methods and minimum altitudes for simulating failures in the helicopter;
 - (M) failure of the driving engine during OEI manoeuvres.
- (1) Upon successful completion of the training above, the applicant should receive sufficient training in a helicopter in-flight under the supervision of a TRI (H) to a level where the applicant is able to conduct the critical items of the type rating course to a safe standard. Of the minimum course requirements of 5 hours flight training for a SP helicopter or 10 hours for a MP helicopter, up to 3 hours of this may be conducted in an FSTD.

TRAINING WHERE NO FSTD EXISTS

(m) Where no FSTD exists for the type for which the TRI(H) certificate is sought, a similar course of training should be conducted in the applicable helicopter type. This includes all elements listed under sub paragraphs (k)(1) and (2) of this AMC, the FSTD elements being replaced with appropriate exercises in a helicopter of the applicable type, subject to any restrictions placed on the conduct of critical exercises associated with helicopter flight manual limitations and safety considerations.

AMC1 FCL.930.CRI CRI — Training course

GENERAL

- (a) The aim of the CRI training course is to train aircraft licence holders to the level of competence defined in FCL.920 and adequate to a CRI.
- (b) The training course should be designed to give adequate training to the applicant in theoretical knowledge instruction, flight instruction and FSTD instruction to instruct for any class or type rating for non-complex non-high performance SP aeroplanes for which the applicant is qualified.
- (c) The flight training should be aimed at ensuring that the applicant is able to teach the air exercises safely and efficiently to students undergoing a course of training for the issue of a class or type rating for non-complex non-high performance SP aeroplanes. The flight training may take place on the aeroplane or an FFS.
- (d) It is to be noted that airmanship is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at the appropriate times during each flight.
- (e) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.

CONTENT

- (f) The training course consists of three parts:
 - (1) Part 1: teaching and learning that should follow the content of AMC1 FCL.920;
 - (2) Part 2: technical theoretical knowledge instruction (technical training);
 - (3) Part 3: flight instruction.

Part 1

The content of the teaching and learning part of the FI training course, as established in AMC1 FCL.930.FI, should be used as guidance to develop the course syllabus.

Part 2

This syllabus is concerned only with the training on ME aeroplanes. Therefore, other knowledge areas, common to both SE and ME aeroplanes, should be revised as necessary to cover the handling and operating of the aeroplane with all engines operative, using the applicable sections of the ground subjects syllabus for the FI course. Additionally, the ground training should include 25 hours of classroom work to develop the applicant's ability to teach a student the knowledge and understanding required for the air exercise section of the ME training course. This part will include the long briefings for the air exercises.

THEORETICAL KNOWLEDGE INSTRUCTION SYLLABUS

Suggested breakdown of course classroom hours:

Tuition hours	Practice in class	Торіс	Internal progress test	
1.00		Aviation legislation	1.00	
2.00		Performance, all engines operating, including mass and balance		
2.00		Asymmetric flight; Principles of flight		
2.00	2.00	Control in asymmetric flight; Minimum control and safety speeds; Feathering and un-feathering		
2.00		Performance in asymmetric flight	1.00	
2.00		Specific type of aeroplane – operation of systems. Airframe and engine limitations	1.00	
4.00	5.00	Briefings for air exercises progress		
15:00	7:00		3:00	
Course total 25.00 (including progress test)				

GENERAL SUBJECTS

- Air legislation: (a)
 - aeroplane performance group definitions; (1)
 - methods of factoring gross performance. (2)
- Asymmetric power flight; (b)
- Principles of flight; (c)
- The problems: (d)
 - (1)asymmetry;
 - (2) control;
 - performance; (3)
- The forces and couples: (e)
 - offset thrust line; (1)
 - asymmetric blade effect; (2)
 - offset drag line; (3)
 - (4) failed engine propeller drag;
 - (5) total drag increase;
 - asymmetry of lift; (6)
 - uneven propeller slipstream effect; (7)
 - effect of yaw in level and turning flight; (8)
 - (9) thrust and rudder side force couples;
 - effect on moment arms. (10)
- Control in asymmetric power flight: (f) (1)
 - use, misuse and limits of:
 - rudder; (i)
 - aileron; (ii)
 - (iii) elevators.
 - (2)effect of bank or sideslip and balance;
 - (3) decrease of aileron and rudder effectiveness;
 - (4) fin stall possibility;
 - (5) effect of IAS and thrust relationship;
 - (6) effect of residual unbalanced forces;
 - (7) foot loads and trimming.

- (g) Minimum control and safety speeds:
 - (1) minimum control speed (v_{mc}) ;
 - (2) definition;
 - (3) origin;
 - (4) factors affecting (v_{mc}) :
 - (i) thrust;
 - (ii) mass and centre of gravity position;
 - (iii) altitude;
 - (iv) landing gear;
 - (v) flaps;
 - (vi) cowl flaps or cooling gills;
 - (vii) turbulence or gusts;
 - (viii) pilot reaction or competence;
 - (ix) banking towards the operating engine;
 - (x) drag;
 - (xi) feathering;
 - (xii) critical engine.
 - (5) take-off safety speed;
 - (6) definition or origin of v_{2} ;
 - (7) other relevant v codes;
 - Aeroplane performance: one engine inoperative:
 - (1) effect on excess power available;
 - (2) SE ceiling;
 - (3) cruising, range and endurance;
 - (4) acceleration and deceleration;
 - (5) zero thrust, definition and purpose;
- (i) Propellers:

(h)

- (1) variable pitch: general principles;
- (2) feathering and un-feathering mechanism and limitations (for example minimum RPM);
- (j) Specific aeroplane type;
- (k) Aeroplane and engine systems:
 - (1) operation normal;
 - (2) operation abnormal;
 - (3) emergency procedures.
- (l) Limitations: airframe:
 - (1) load factors;
 - $(2) \qquad \text{landing gear and flap limiting speeds (} v_{\text{lo}} \text{ and } v_{\text{fe}}\text{)};$
 - (3) rough air speed (v_{ra});
 - (4) maximum speeds (v_{no} and v_{ne}).
- (m) Limitations: engine:
 - (1) RPM and manifold pressure;
 - (2) oil temperature and pressure;
 - (3) emergency procedures.
- (n) Mass and balance:

(to be covered in conjunction with the flight manual or equivalent document (for example owner's manual or pilot's operating handbook))

- (1) mass and balance documentation for aeroplane type;
- (2) revision of basic principles;
- (3) calculations for specific aeroplane type.
- (o) Mass and performance:

(to be covered in conjunction with the flight manual or equivalent document (for example owner's manual or pilot's operating handbook))

- (1) calculations for specific aeroplane type (all engines operating);
- (2) take-off run;
- (3) take-off distance;
- (4) accelerate and stop distance;
- (5) landing distance;
- (6) landing run;
- (7) take-off or climb out flight path;
- (8) calculations for specific aeroplane type (one engine operating);

- (9) climb out flight path;
- (10) landing distance;
- (11) landing run.

Part 3

FLIGHT INSTRUCTION SYLLABUS: NORMAL FLIGHT

- (a) This part is similar to the air exercise sections of the SE FI course, including 'Introduction to instrument flying' except that the objectives, airmanship considerations and common errors are related to the operation of an ME aeroplane.
- (b) The purpose of this part is to acquaint the applicant with the teaching aspects of the operational procedures and handling of an ME aeroplane with all engines functioning.
- (c) The following items should be covered:
 - (1) aeroplane familiarisation;
 - (2) pre-flight preparation and aeroplane inspection;
 - (3) engine starting procedures;
 - (4) taxiing;
 - (5) pre take-off procedures;
 - (6) the take-off and initial climb:
 - (i) into wind;
 - (ii) crosswind;
 - (iii) short field.
 - (7) climbing;
 - (8) straight and level flight;
 - (9) descending (including emergency descent procedures);
 - (10) turning;
 - (11) slow flight;
 - (12) stalling and recoveries;
 - (13) instrument flight: basic;
 - (14) emergency drills (not including engine failure);
 - (15) circuit, approach and landing:
 - (i) into wind;
 - (ii) croswind;
 - (iii) short field;
 - (16) mislanding and going round again;
 - (17) actions after flight.

AIR EXERCISES

(d) The following air exercises are developments of the basic SE syllabus which are to be related to the handling of ME types to ensure that the student learns the significance and use of controls and techniques which may be strange to the student in all normal, abnormal and emergency situations, except that engine failure and flight on asymmetric power are dealt with separately in the air exercises in Part 2.

EXERCISE 1: FAMILIARISATION WITH THE AEROPLANE

- (a) Long briefing objectives:
 - (1) introduction to the aeroplane;
 - (2) explanation of the cockpit layout;
 - (3) systems and controls;
 - (4) aeroplane power plant;
 - (5) checklists and drills;
 - (6) differences when occupying the instructor's seat;
 - (7) emergency drills:
 - (i) action in event of fire in the air and on the ground;
 - (ii) escape drills: location of exits and use of emergency equipment (for example fire extinguishers, etc.).

- (8) pre-flight preparation and aeroplane inspection:
 - (i) aeroplane documentation;
 - (ii) external checks;
 - (iii) internal checks;
 - (iv) harness, seat or rudder pedal adjustment;
- (9) engine starting procedures:
 - (i) use of checklists;
 - (ii) checks before starting;
 - (iii) checks after starting.
- (b) Air exercise:
 - (1) external features;
 - (2) cockpit layout;
 - (3) aeroplane systems;
 - (4) checklists and drills;
 - (5) action if fire in the air and on the ground;
 - (i) engine;
 - (ii) cabin;
 - (iii) electrical.
 - (6) systems failure (as applicable to type);
 - (7) escape drills (location and use of emergency equipment and exits);
 - (8) preparation for and action after flight:
 - (i) flight authorisation and aeroplane acceptance;
 - (ii) technical log or certificate of maintenance release;
 - (iii) mass and balance and performance considerations;
 - (iv) external checks;
 - (v) internal checks, adjustment of harness or rudder pedals;
 - (vi) starting and warming up engines;
 - (vii) checks after starting;
 - (viii) radio navigation and communication checks;
 - (ix) altimeter checks and setting procedures;
 - (x) power checks;
 - (xi) running down and switching off engines;
 - (xii) completion of authorisation sheet and aeroplane serviceability documents.

EXERCISE 2: TAXIING

- (a) Long briefing objectives:
 - (1) pre-taxiing area precautions (greater mass: greater inertia);
 - (2) effect of differential power;
 - (3) precautions on narrow taxiways;
 - (4) pre take-off procedures:
 - (i) use of checklist;
 - (ii) engine power checks;
 - (iii) pre take-off checks;
 - (iv) instructor's briefing to cover the procedure to be followed should an emergency occur during take-off, for example engine failure.
 - (5) the take-off and initial climb:
 - (i) ATC considerations;
 - (ii) factors affecting the length of the take-off run or distance;
 - (iii) correct lift-off speed;
 - (iv) importance of safety speed;
 - (v) crosswind take-off, considerations and procedures;
 - (vi) short field take-off, considerations and procedures;
 - (vii) engine handling after take-off: throttle, pitch and engine synchronisation.
 - (6) climbing:
 - (i) pre-climbing checks;
 - (ii) engine considerations (use of throttle or pitch controls);
 - (iii) maximum rate of climb speed;
 - (iv) maximum angle of climb speed;
 - (v) synchronising the engines.

- (b) Air exercise
 - pre-taxing checks; (1)
 - starting, control of speed and stopping; (2)
 - (3) control of direction and turning;
 - turning in confined spaces; (4)
 - leaving the parking area; (5)
 - (6) freedom of rudder movement (importance of pilot ability to use full rudder travel);
 - instrument checks; (7)
 - emergencies (brake or steering failure); (8) (9)
 - pre take-off procedures:
 - use of checklist: (i)
 - engine power and system checks; (ii)
 - (iii) pre take-off checks;
 - instructor's briefing if emergencies during take-off. (iv)
 - (10) the take-off and initial climb:
 - ATC considerations; (i)
 - (ii) directional control and use of power;
 - (iii) lift-off speed;
 - crosswind effects and procedure; (iv)
 - short field take-off and procedure. (v)
 - procedures after take-off (at an appropriate stage of the course): (vi)
 - landing gear retraction; (A)
 - (B) flap retraction (as applicable);
 - (C) selection of manifold pressure and RPM;
 - (D) engine synchronisation;
 - (E) other procedures (as applicable).
 - (11) climbing:
 - (i) pre-climbing checks;
 - power selection for normal and maximum rate climb; (ii)
 - engine and RPM limitations; (iii)
 - effect of altitude on manifold pressure, full throttle; (iv)
 - (v) levelling off: power selection;
 - (vi) climbing with flaps down;
 - (vii) recovery to normal climb;
 - (viii) en-route climb (cruise climb);
 - (ix) maximum angle of climb;
 - altimeter setting procedures; (x)
 - prolonged climb and use of cowl flaps or cooling gills; (xi)
 - (xii) instrument appreciation.

EXERCISE 3: STRAIGHT AND LEVEL FLIGHT

- (a) Long briefing objectives:
 - selection of power: throttle or pitch controls; (1)
 - engine synchronisation; (2)
 - fuel consumption aspects; (3)
 - use of trimming controls: elevator and rudder (aileron as applicable); (4)
 - (5) operation of flaps:
 - effect on pitch attitude; (i)
 - effect on air speed. (ii)
 - (6) operation of landing gear:
 - effect on pitch attitude; (i)
 - effect on air speed. (ii)
 - (7)use of mixture controls;
 - (8) use of alternate air or carburettor heat controls;
 - operation of cowl flaps or cooling gills; (9)
 - use of cabin ventilation and heating systems; (10)
 - operation and use of the other systems (as applicable to type); (11)
 - descending: (12)

- (i) pre-descent checks;
- (ii) normal descent;
- (iii) selection of throttle or pitch controls;
- (iv) engine cooling considerations;
- (v) emergency descent procedure.
- (13) turning:
 - (i) medium turns;
 - (ii) climbing and descending turns;
 - (iii) steep turns (45 $^{\circ}$ of bank or more).
- (b) Air exercise:
 - (1) at normal cruising power:
 - (i) selection of cruise power;
 - (ii) manifold pressure or RPM;
 - (iii) engine synchronisation;
 - (iv) use of trimming controls;
 - (v) performance considerations: range or endurance.
 - (2) instrument appreciation;
 - (3) operation of flaps (in stages):
 - (i) air speed below v_{fe} ;
 - (ii) effect on pitch attitude;
 - (iii) effect on air speed.
 - (4) operation of landing gear:
 - (i) air speed below v_{lo} / v_{le} ;
 - (ii) effect on pitch attitude;
 - (iii) effect on air speed.
 - (5) use of mixture controls;
 - (6) use of alternate air or carburettor control;
 - (7) operation of cowl flaps or cooling gills;
 - (8) operation of cabin ventilation or heating systems;
 - (9) operation and use of other systems (as applicable to type);
 - (10) descending;
 - (i) pre-descent checks;
 - (ii) power selection: manifold pressure or RPM;
 - (iii) powered descent (cruise descent);
 - (iv) engine cooling considerations: use of cowl flaps or cooling gills;
 - (v) levelling off;
 - (vi) descending with flaps down;
 - (vii) descending with landing gear down;
 - (viii) altimeter setting procedure;
 - (ix) instrument appreciation;
 - (x) emergency descent:
 - (A) as applicable to type;
 - (B) limitations in turbulence v_{no} .
 - (11) turning:
 - (i) medium turns;
 - (ii) climbing and descending turns;
 - (iii) steep turns: $45 \circ of ban$;
 - (iv) instrument appreciation.

EXERCISE 4: SLOW FLIGHT

- (a) Long briefing objectives:
 - (1) aeroplane handling characteristics during slow flight: flight at v_{s1} and v_{s0} +5 knots;
 - (2) simulated go-around from slow flight:
 - (i) at V_{sse} with flaps down;
 - (ii) note pitch trim change.
- (3) stalling:
 - (i) power selection;
 - (ii) symptoms approaching the stall;
 - (iii) full stall characteristics;

- (iv) recovery from the full stall;
- (v) recovery at the incipient stall;
- (vi) stalling and recovery in the landing configuration;
- (vii) recovery at the incipient stage in the landing configuration.
- (4) instrument flight (basic):
 - (i) straight and level;
 - (ii) climbing;
 - (iii) turning;
 - (iv) descending.
- (5) emergency drills (not including engine failure), as applicable to type;
- (6) circuit approach and landing:
 - (i) downwind leg:
 - (A) air speed below v_{fe} ;
 - (B) use of flaps (as applicable);
 - (C) pre-landing checks;
 - (D) position to turn onto base leg.
 - (ii) base leg:
 - (A) selection of power (throttle or pitch), flaps and trimming controls;
 - (B) maintenance of correct air speed.
 - (iii) final approach:
 - (A) power adjustments (early reaction to undershooting);
 - (B) use of additional flaps (as required);
 - (C) confirmation of landing gear down;
 - (D) selection 'touch down' point;
 - (E) air speed reduction to V_{at} ;
 - (F) maintenance of approach path.
 - (iv) landing:
 - (A) greater sink rate;
 - (B) longer landing distance and run;
 - (C) crosswind approach and landing;
 - (D) crosswind considerations;
 - (E) short field approach and landing;
 - (F) short field procedure: considerations.
- (b) Air exercise
 - (1) safety checks;
 - (2) setting up and maintaining (flaps up);
 - (i) $v_{s1} + 5$ knots;
 - (ii) note aeroplane handling characteristics.
 - (3) setting up and maintaining (flaps down):
 - $(i) \qquad v_{so}+5 \; knots;$
 - (ii) note aeroplane handling characteristics.
 - (4) simulated go-around from a slow flight with flaps:
 - (i) down and air speed not below V_{sse} , for example air speed at V_{sse} or v_{mca} + 10 knots;
 - (ii) increase to full power and enter a climb;
 - (iii) note pitch change.
 - resume normal flight.
 - (6) stalling;

(5)

(7)

- (i) selection of RPM;
- (ii) stall symptoms;
- (iii) full stall characteristics;
- (iv) recovery from the full stall: care in application of power;
- (v) recovery at the incipient stage;
- (vi) stalling and recovery in landing configuration;
- (vii) stall recovery at the incipient stage in the landing configuration.
- instrument flight (basic):
- (i) straight and level;
- (ii) climbing;
- (iii) turning;
- (iv) descending.
- (8) emergency drills (not including engine failure), as applicable to type;

- (9) circuit, approach and landing:
 - (i) downwind leg:
 - $(A) \quad \ \text{control of speed (below v_{fe});} \\$
 - (B) flaps as applicable;
 - (C) pre-landing checks;
 - (D) control of speed and height;
 - (E) base leg turn.
 - (ii) base leg:
 - (A) power selection;
 - (B) use of flap and trimming controls;
 - (C) maintenance of correct air speed.
 - (iii) final approach:
 - (A) use of additional flap (as required);
 - (B) confirmation of landing gear down;
 - (C) selection of touchdown point;
 - (D) air speed reduction to V_{at} ;
 - (E) maintaining correct approach path: use of power.
 - (iv) landing:
 - (A) control of sink rate during flare;
 - (B) crosswind considerations;
 - (C) longer landing roll;
 - (D) short or soft field approach and landing;
 - (E) considerations and precautions.
- (10) Asymmetric power flight.

During this part, special emphasis is to be placed on the:

- (i) circumstances in which actual feathering and un-feathering practice will be done, for example safe altitude; compliance with regulations about minimum altitude or height for feathering practice, weather conditions, distance from nearest available aerodrome;
- (ii) procedure to use for instructor and student co-operation, for example the correct use of touch drills and the prevention of misunderstandings, especially during feathering and unfeathering practice and when zero thrust is being used for asymmetric circuits. This procedure is to include positive agreement as to which engine is being shut down or restarted or set at zero thrust and identifying each control and naming the engine it is going to affect;
- (iii) consideration to be given to avoid over-working the operating engine, and the degraded performance when operating the aeroplane during asymmetric flight;
- (iv) need to use the specific checklist for the aeroplane type.

EXERCISE 5: FLIGHT ON ASYMMETRIC POWER

- (a) Long briefing objectives:
 - (1) introduction to asymmetric flight:
 - (2) feathering the propeller: method of operation;
 - (3) effects on aeroplane handling at cruising speed;
 - (4) introduction to effects upon aeroplane performance;
 - (5) note foot load to maintain a constant heading (no rudder trim);
 - (6) un-feathering the propeller;
 - (7) return to normal flight finding the zero thrust setting;
 - (8) comparison of foot load when feathered and with zero thrust set.
 - (9) effects and recognition of engine failure in level flight;
 - (10) forces and the effects of yaw;
 - (11) types of failure:
 - (i) sudden or gradual;
 - (ii) complete or partial.
 - (12) yaw, direction and further effects of yaw;
 - (13) flight instrument indications;
 - (14) identification of failed engine;
 - (15) the couples and residual out of balance forces: resultant flight attitude;
 - (16) use of rudder to counteract yaw;
 - (17) use of aileron: dangers of misuse;

- (18) use of elevator to maintain level flight;
- (19) use of power to maintain a safe air speed and altitude;
- (20) supplementary recovery to straight and level flight: simultaneous increase of speed and reduction in power;
- (21) identification of failed engine: idle leg = idle engine;
- (22) use of engine instruments for identification:
 - (i) fuel pressure or flow;
 - (ii) RPM gauge response effect of CSU action at lower and higher air speed;
 - (iii) engine temperature gauges.
- (23) confirmation of identification: close the throttle of identified failed engine;
- (24) effects and recognition of engine failure in turns;
- (25) identification and control;
- (26) side forces and effects of yaw.
- (27) During turning flight:
 - (i) effect of 'inside' engine failure: effect sudden and pronounced;
 - (ii) effect of 'outside' engine failure: effect less sudden and pronounced;
 - (iii) the possibility of confusion in identification (particularly at low power):
 - (A) correct use of rudder;
 - (B) possible need to return to lateral level flight to confirm correct identification.
 - (iv) visual and flight instrument indications;
 - (v) effect of varying speed and power;
 - (vi) speed and thrust relationship;
 - (vii) at normal cruising speed and cruising power: engine failure clearly recognised;
 - (viii) at low safe speed and climb power: engine failure most positively recognised;
 - (ix) high speed descent and low power: possible failure to notice asymmetry (engine failure).
- (28) Minimum control speeds:
 - (i) ASI colour coding: red radial line.

Note: this exercise is concerned with the ultimate boundaries of controllability in various conditions that a student can reach in a steady asymmetric power state, approached by a gradual speed reduction. Sudden and complete failure should not be given at the Flight Manual v_{mca} . The purpose of the exercise is to continue the gradual introduction of a student to control an aeroplane in asymmetric power flight during extreme or critical situations. It is not a demonstration of v_{mca} .

- (ii) Techniques for assessing critical speeds with wings level and recovery: dangers involved when minimum control speed and the stalling speed are very close: use of V_{sse};
- (iii) Establish a minimum control speed for each asymmetrically disposed engine to establish critical engine (if applicable);
- (iv) Effects on minimum control speeds of:
- (A) bank;
- (B) zero thrust setting;
- (C) take-off configuration:
 - (a) landing gear down and take-off flap set;
 - (b) landing gear up and take-off flap set.
- **Note**: it is important to appreciate that the use of 5 ° of bank towards the operating engine produces a lower v_{mca} and also a better performance than that obtained with the wings held level. It is now normal for manufacturers to use 5 ° of bank in this manner when determining the v_{mca} for the specific type. Thus, the v_{mca} quoted in the aeroplane manual will have been obtained using the technique.
- (29) Feathering and un-feathering:
 - (i) minimum heights for practising feathering or un-feathering drills;
 - (ii) engine handling: precautions (overheating, icing conditions, priming, warm-up, method of simulating engine failure: reference to aircraft engine manual and service instructions and bulletins).
- (30) Engine failure procedure:
 - (i) once the maintenance of control has been achieved, the order in which the procedures are carried out will be determined by the phase of operation and the aircraft type.
 - (ii) flight phase:
 - (A) in cruising flight;
 - (B) critical phase such as immediately after take-off or during the approach to landing or during a go-around.

(31) Aircraft type:

Variations will inevitably occur in the order of certain drills and checks due to differences between aeroplane types and perhaps between models of the same type, and the flight manual or equivalent document (for example owner's manual or pilot's operating handbook) is to be consulted to establish the exact order of these procedures.

For example, one flight manual or equivalent document (for example owner's manual or pilot's operating handbook) may call for the raising of flaps and landing gear before feathering, whilst another may recommend feathering as a first step. The reason for this latter procedure could be due to the fact that some engines cannot be feathered if the RPM drops below a certain figure.

Again, in some aeroplanes, the raising of the landing gear may create more drag during retraction due to the transient position of the landing gear doors and as a result of this retraction would best be left until feathering has been accomplished and propeller drag reduced.

Therefore, the order in which the drills and checks are shown in this syllabus under 'immediate actions' and 'subsequent actions' are to be used as a general guide only and the exact order of precedence is determined by reference to the flight manual or equivalent document (for example owner's manual or pilot's operating handbook) for the specific aeroplane type being used on the course.

- (32) In-flight engine failure in cruise or other flight phase not including take-off or landing:
 - (i) immediate actions:
 - (A) recognition of asymmetric condition and control of the aircraft;
 - (B) identification and confirmation of failed engine:
 - (a) idle leg = idle engine;
 - (b) closing of throttle for confirmation.
 - (C) cause and fire check:
 - (a) typical reasons for failure;
 - (b) methods of rectification.
 - (D) feathering decision and procedure:
 - (a) reduction of other drag;
 - (b) need for speed but not haste;
 - (c) use of rudder trim.
 - (ii) subsequent actions;
 - (A) live engine:
 - (a) temperature, pressures and power;
 - (b) remaining services;
 - (c) electrical load: assess and reduce as necessary;
 - (d) effect on power source for air driven instruments;
 - (e) landing gear;
 - (f) flaps and other services.
 - (B) re-plan flight:
 - (a) ATC and weather;
 - (b) terrain clearance, SE cruise speed;
 - (c) decision to divert or continue.
 - (C) fuel management: best use of remaining fuel;
 - (D) dangers of re-starting damaged engine;
 - (E) action if unable to maintain altitude: effect of altitude on power available;
 - (F) effects on performance;
 - (G) effects on power available and power required;
 - (H) effects on various airframe configuration and propeller settings;
 - (I) use of flight manual or equivalent document (for example owner's manual or pilot's operating handbook):
 - (a) cruising;
 - (b) climbing: ASI colour coding (blue line);
 - (c) descending;
 - (d) turning.
 - (J) 'live' engine limitations and handling;
 - (K) take-off and approach: control and performance.
- (33) Significant factors:

(i)

- significance of take-off safety speed:
 - (A) effect of landing gear, flap, feathering, take-off, trim setting, systems for operating landing gear and flaps;

(i)

(ii)

- (B) effect on mass, altitude and temperature (performance).
- (ii) significance of best SE climb speed (V_{yse}) :
 - (A) acceleration to best engine climb speed and establishing a positive climb;
 - (B) relationship of SE climb speed to normal climb speed;
 - (C) action if unable to climb.
- (iii) significance of asymmetric committal height and speed: action if baulked below asymmetric committal height.
- (34) Engine failure during take-off:
 - below v_{mca} or unstick speed:
 - (A) accelerate or stop distance considerations;
 - (B) prior use of flight manual data if available.
 - above v_{mca} or unstick speed and below safety speed;
 - (iii) immediate re-landing or use of remaining power to achieve forced landing;
 - (iv) considerations:
 - (A) degree of engine failure;
 - (B) speed at the time;
 - (C) mass, altitude and temperature (performance);
 - (D) configuration;
 - (E) length of runway remaining;
 - (F) position of any obstacles ahead.
- (35) Engine failure after take-off:
 - (i) simulated at a safe height and at or above take-off safety speed;
 - (ii) considerations:
 - (A) need to maintain control;
 - (B) use of bank towards operating engine;
 - (C) use of available power achieving best SE climb speed;
 - (D) mass, altitude, temperature (performance);
 - (E) effect of prevailing conditions and circumstances.
- (36) Immediate actions: maintenance of control, including air speed and use of power:
 - (i) recognition of asymmetric condition;
 - (ii) identification and confirmation of failed engine;
 - (iii) feathering and removal of drag (procedure for type);
 - (iv) establishing best SE climb speed.
- (37) Subsequent actions: whilst carrying out an asymmetric power climb to the downwind position at SE best rate of climb speed:
 - (i) cause and fire check;
 - (ii) live engine, handling considerations;
 - (iii) remaining services;
 - (iv) ATC liaison;
 - (v) fuel management.

Note: these procedures are applicable to aeroplane type and flight situation.

- (38) Significance of asymmetric committal height:
 - (i) Asymmetric committal height is the minimum height needed to establish a positive climb whilst maintaining adequate speed for control and removal of drag during an approach to a landing.

Because of the significantly reduced performance of many CS/JAR/FAR 23 aeroplanes when operating on one engine, consideration is to be given to a minimum height from which it would be safely possible to attempt a go-around procedure,

during an approach when the flight path will have to be changed from a descent to a climb with the aeroplane in a high drag configuration.

Due to the height loss which will occur during the time that the operating engine is brought up to full power, landing gear and flap retracted, and the aeroplane established in a climb at v_{yse} a minimum height (often referred to as 'Asymmetric committal height') is to be selected, below which the pilot should not attempt to take the aeroplane round again for another circuit. This height will be compatible with the aeroplane type, all up weight, altitude of the aerodrome being used, air temperature, wind, the height of obstructions along the climb out path, and pilot competence.

- (ii) circuit approach and landing on asymmetric power:
 - (A) definition and use of asymmetric committal height;
 - (B) use of standard pattern and normal procedures;

- (C) action if unable to maintain circuit height;
- (D) speed and power settings required;
- (E) decision to land or go-around at asymmetric committal height: factors to be considered.
- (iii) undershooting importance of maintaining correct air speed (not below v_{yse}).
- (39) Speed and heading control:
 - (i) height, speed and power relationship: need for minimum possible drag;
 - (ii) establishing positive climb at best SE rate of climb speed:
 - (A) effect of availability of systems, power for flap and landing gear;
 - (B) operation and rapid clean up.

Note 1: The air speed at which the decision is made to commit the aeroplane to a landing or to go-around should normally be the best SE rate of climb speed and in any case not less than the safety speed.

Note 2: On no account should instrument approach 'decision height' and its associated procedures be confused with the selection of minimum height for initiating a go-around in asymmetric power flight.

- (40) Engine failure during an all engines approach or missed approach:
 - (i) use of asymmetric committal height and speed considerations;
 - (ii) speed and heading control;
 - (iii) decision to attempt a landing, go-around or force land as circumstances dictate.
- **Note**: at least one demonstration and practice of engine failure in this situation should be performed during the course.
- (41) Instrument flying on asymmetric power:
 - (i) considerations relating to aircraft performance during:
 - (A) straight and level flight;
 - (B) climbing and descending;
 - (C) standard rate turns;
 - (D) level, climbing and descending turns including turns onto pre-selected headings.
 - (ii) availability of vacuum operated instruments;
 - (iii) availability of electrical power source.

(b) Air exercise

This section covers the operation of a SP ME aeroplane when one engine has failed and it is applicable to all such light piston aeroplanes. Checklists should be used as applicable.

- (1) introduction to asymmetric flight:
- (2) close the throttle of one engine;
- (3) feather its propeller;
- (4) effects on aeroplane handling at cruising speed;
- (5) effects on aeroplane performance for example cruising speed and rate of climb;
- (6) note foot load to maintain a constant heading;
- (7) un-feather the propeller;
- (8) return to normal flight finding the zero thrust throttle setting;
- (9) comparison of foot load when feathered and with zero thrust set.
- (10) effects and recognition of engine failure in level flight with the aeroplane straight and level at cruise speed:
 - (i) slowly close the throttle of one engine;
 - (ii) note yaw, roll and spiral descent.
- (11) return to normal flight:
 - (i) close throttle of other engine;
 - (ii) note same effects in opposite direction.
- (12) methods of control and identification of failed engine close one throttle and maintain heading and level flight by use of:
 - (i) rudder to control yaw;
 - (ii) aileron to hold wings level;
 - (iii) elevators to maintain level flight;
 - (iv) power (as required) to maintain air speed and altitude.
- (13) alternative or supplementary method of control:
 - (i) simultaneously;
 - (ii) lower aeroplane nose to increase air speed;
 - (iii) reduce power;

- (iv) loss of altitude: inevitable.
- (14) identification of failed engine: idle foot = idle engine;
- (15) use of instruments for identification:
 - (i) fuel pressure or fuel flow;
 - (ii) RPM gauge or CSU action may mask identification;
 - (iii) engine temperature gauges.
- (16) confirmation of identification: close the throttle of the identified failed engine;
- (17) effects and recognition of engine failure in turns and effects of 'inside' engine failure:
 - (i) more pronounced yaw;
 - (ii) more pronounced roll;
 - (iii) more pronounced pitch down.
- (18) effects of 'outside' engine failure:
 - (i) less pronounced yaw;
 - (ii) less pronounced roll;
 - (iii) less pronounced pitch down.
- (19) possibility of confusion in identification:
 - (i) use of correct rudder application;
 - (ii) return to lateral level flight if necessary.
 - (20) flight instrument indications;
 - (21) effect of varying speed and power;
 - (22) failure of one engine at cruise speed and power: engine failure clearly recognised;
 - (23) failure of one engine at low speed and high power (not below v_{sse}): engine failure most positively recognised;
 - (24) failure of one engine at higher speeds and low power: possible failure to recognise engine failure;
 - (25) minimum control speeds;
 - (26) establish the v_{yse} :
 - (i) select maximum permitted manifold pressure and RPM;
 - (ii) close the throttle on one engine;
 - (iii) raise the aeroplane nose and reduce the air speed;
 - (iv) note the air speed when maximum rudder deflection is being applied and when directional control can no longer be maintained;
 - (v) lower the aeroplane nose and reduce power until full directional control is regained;
 - (vi) the lowest air speed achieved before the loss of directional control will be the V_{mc} for the flight condition;
 - (vii) repeat the procedure closing the throttle of the other engine;
 - (viii) the higher of these two air speeds will identify the most critical engine to fail.
- **Note**: warning in the above situations the recovery is to be initiated immediately before directional control is lost with full rudder applied, or when a safe margin above the stall remains, for example when the stall warning device operates, for the particular aeroplane configuration and flight conditions. On no account should the aeroplane be allowed to decelerate to a lower air speed.
- (27) establish the effect of using 5 $^\circ$ of bank at v_{mc} :
 - (i) close the throttle of one engine;
 - (ii) increase to full power on the operating engine;
 - (iii) using 5 ° of bank towards the operating engine reduce speed to the $V_{mc;}$
 - (iv) note lower V_{mc} when 5 ° of bank is used.
- (28) 'in-flight' engine failure procedure;
- (29) in cruise and other flight circumstances not including take-off and landing.
- (30) Immediate actions: maintenance of control including air speed and use of power:
 - (i) identification and confirmation of failed engine;
 - (ii) failure cause and fire check;
 - (iii) feathering decision and implementation;
 - (iv) reduction of any other drag, for example flaps, cowl flaps etc.;
 - (v) retrim and maintain altitude.
- (31) Subsequent actions:
 - (i) live engine:
 - (A) oil temperature, pressure, fuel flow and power;
 - (B) remaining services;
 - (C) electrical load: assess and reduce as necessary;
 - (D) effect on power source for air driven instruments;

- (E) landing gear;
- (F) flaps and other services.
- (ii) re-plan flight:
 - (A) ATC and weather;
 - (B) terrain clearance;
 - (C) SE cruise speed;
 - (D) decision to divert or continue;
- (iii) fuel management: best use of fuel;
- (iv) dangers of re-starting damaged engine;
- (v) action if unable to maintain altitude:
 - (A) adopt V_{yse};
 - (B) effect of altitude on power available.
- (vi) effects on performance;
- (vii) effects on power available and power required;
- (viii) effects on various airframe configurations and propeller settings;
- (ix) use of flight manual or equivalent document (for example owner's manual or pilot's operating handbook):
 - (A) cruising;
 - (B) climbing: ASI colour coding (blue line);
 - (C) descending;
 - (D) turning.
- (x) 'live' engine limitations and handling;
- (xi) take-off and approach: control and handling;
 - Note: to be done at a safe height away from the circuit;
- (xii) take-off case with landing gear down and take-off flap set (if applicable);
- (xiii) significance of take-off at or above safety speed (at safety speed. The ability to maintain control and to accelerate to SE climb speed with aeroplane clean and zero thrust set. Thereafter to achieve a positive climb);
- (xiv) significance of flight below safety speed (below safety speed and above v_{mca} . A greater difficulty to maintain control, a possible loss of height whilst maintaining speed, cleaning up, accelerating to SE climb speed and establishing a positive climb);
- (xv) significance of best SE climb speed (the ability to achieve the best rate of climb on one engine with minimum delay).
- (32) Significance of asymmetric committal height:
 - (i) the ability to maintain or accelerate to the best SE rate of climb speed and to maintain heading whilst cleaning up with perhaps a slight height loss before climbing away;
 - (ii) below this height, the aeroplane is committed to continue the approach to a landing.
- (33) Engine failure during take-off run and below safety speed briefing only;
- (34) Engine failure after take-off;
- **Note**: to be initiated at a safe height and at not less than take-off safety speed with due regard to the problems of a prolonged SE climb in the prevailing conditions.
 - (i) immediate actions:
 - (A) control of direction and use of bank;
 - (B) control of air speed and use of power;
 - (C) recognition of asymmetric condition;
 - (D) identification and confirmation of failed engine feathering and reduction of drag (procedure for type);
 - (E) re-trim;
 - (ii) subsequent actions: whilst carrying out an asymmetric power climb to the downwind position at SE best rate of climb speed:
 - (A) cause and fire check;
 - (B) live engine, handling considerations;
 - (C) drills and procedures applicable to aeroplane type and flight situation;
 - (D) ATC liaison;
 - (E) fuel management.
- (35) Asymmetric circuit, approach and landing;
 - (i) downwind and base legs:
 - (A) use of standard pattern;
 - (B) normal procedures;
 - (C) landing gear and flap lowering considerations;

- (D) position for base leg;
- (E) live engine handling;
- (F) air speed and power settings;
- (G) maintenance of height.
- (ii) final approach:
 - (A) asymmetric committal height drill;
 - (B) control of air speed and descent rate;
 - (C) flap considerations.
- (iii) going round again on asymmetric power (missed approach):
 - (A) not below asymmetric committal height;
 - (B) speed and heading control;
 - (C) reduction of drag, landing gear retraction;
 - (D) maintaining Vyse;
 - (E) establish positive rate of climb.
- (36) Engine failure during all engines approach or missed approach:
 - **Note**: to be started at not less than asymmetric committal height and speed and not more than part flap set:
 - (i) speed and heading control;
 - (ii) reduction of drag flap;
 - (iii) decision to attempt landing or go-around;
 - (iv) control of descent rate if approach is continued;
 - (v) if go-around is initiated, maintain v_{yse}, flaps and landing gear retracted and establish positive rate of climb.
 - **Note**: at least one demonstration and practice of engine failure in this situation should be performed during the course.
- (37) Instrument flying on asymmetric power;
- (38) Flight instrument checks and services available:
 - (i) straight and level flight;
 - (ii) climbing and descending;
 - (iii) standard rate turns;
 - (iv) level, climbing and descending turns including turns onto pre-selected headings.

AMC1 FCL.940.CRI CRI — Revalidation and renewal

REFRESHER TRAINING

- (a) Paragraph (c)(1) of FCL.940.CRI determine that an applicant for renewal of a CRI certificate shall complete refresher training as a CRI at an ATO. Paragraph (a)(2) also establishes that an applicant for revalidation of the CRI certificate that has not completed a minimum amount of instruction hours (established in paragraph (a)(1)) during the validity period of the certificate shall undertake refresher training at an ATO for the revalidation of the certificate. The amount of refresher training needed should be determined on a case by case basis by the ATO, taking into account the following factors:
 - (1) the experience of the applicant;
 - (2) whether the training is for revalidation or renewal;
 - (3) the amount of time lapsed since the last time the applicant has conducted training, in the case of revalidation, or since the certificate has lapsed, in the case of renewal. The amount of training needed to reach the desired level of competence should increase with the time lapsed.
- (b) Once the ATO has determined the needs of the applicant, it should develop an individual training programme that should be based on the CRI training course and focus on the aspects where the applicant has shown the greatest needs.

AMC1 FCL.930.IRI IRI— Training course

GENERAL

- (a) The aim of the IRI training course is to train aircraft licence holders to the level of competence defined in FCL.920, and adequate for an IRI.
- (b) The IRI training course should give particular stress to the role of the individual in relation to the importance of human factors in the man-machine environment.

- (c) Special attention should be paid to the applicant's levels of maturity and judgement including an understanding of adults, their behavioural attitudes and variable levels of education.
- (d) With the exception of the section on 'teaching and learning', all the subject detail contained in the theoretical and flight training syllabus is complementary to the instrument rating pilot course syllabus which should already be known by the applicant. Therefore, the objective of the course is to:
 - (1) refresh and bring up to date the technical knowledge of the student instructor;
 - (2) train pilots in accordance with the requirements of the modular instrument flying training course;
 - (3) enable the applicant to develop the necessary instructional techniques required for teaching of instrument flying, radio navigation and instrument procedures to the level required for the issue of an instrument rating;
 - (4) ensure that the student instrument rating instructor's flying is of a sufficiently high standard.
- (e) In part 3 some of the air exercises of the flight instruction syllabus of this AMC may be combined in the same flight.
- (f) During the training course the applicants should be made aware of their own attitudes to the important aspects of flight safety. Improving safety awareness should be a fundamental objective throughout the training course. It will be of major importance for the training course to aim at giving applicants the knowledge, skills and attitudes relevant to an instructor's task. To achieve this, the course curriculum, in terms of objectives, should comprise at least the following areas.
- (g) It is to be noted that airmanship is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at the appropriate times during each flight.
- (h) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.

CONTENT

- (i) The training course consists of three parts:
 - (1) Part 1: teaching and learning that should follow the content of AMC1 FCL.920.
 - (2) Part 2: instrument technical theoretical knowledge instruction (technical training).
 - (3) Part 3: flight instruction.

Part 1

The content of the teaching and learning part of the FI training course, as established in AMC1 FCL.930.FI, should be used as guidance to develop the course syllabus.

Part 2

THEORETICAL KNOWLEDGE INSTRUCTION SYLLABUS

- (a) The instrument theoretical knowledge instruction should comprise not less than 10 hours training to include the revision of instrument theoretical knowledge, the preparation of lesson plans and the development of classroom instructional skills to enable the IRI to instruct the instrument theoretical knowledge syllabus.
- (b) All the subject detail contained in the instrument theoretical knowledge instruction syllabus and flight instruction syllabus is complementary to the instrument rating pilot course syllabus which should already be known by the applicant. Therefore, the objective of the course is to:
 - (1) refresh and bring up to date the technical knowledge of the student instructor;
 - (2) train pilots in accordance with the requirements of the modular instrument flying training course;
 - (3) enable the applicant to develop the necessary instructional techniques required for teaching of instrument flying, radio navigation and instrument procedures to the level required for the issue of an instrument rating; and
 - (4) ensure that the student instrument rating instructor's flying is of a sufficiently high standard.

(c) The theoretical subjects covered below should be used to develop the instructor's teaching skills. The items selected should relate to the student's background and should be applied to training for an IR.

GENERAL SUBJECTS

- (d) Physiological and psychological factors:
 - (1) the senses;
 - (2) spatial disorientation;
 - (3) sensory illusions;
 - (4) stress.
- (e) Flight instruments:
 - (1) air speed indicator;
 - (2) altimeter;
 - (3) vertical speed indicator;
 - (4) attitude indicator;
 - (5) heading indicator;
 - (6) turn and slip indicator;
 - (7) magnetic compass;
 - (8) in relation to the above instruments the following items should be covered:
 - (i) principles of operation;
 - (ii) errors and in-flight serviceability checks;
 - (iii) system failures.
- (f) Radio navigation aids:
 - (1) basic radio principles;
 - (2) use of VHF RTF channels;
 - (3) the Morse code;
 - (4) basic principles of radio aids;
 - (5) use of VOR;
 - (6) ground and aeroplane equipment;
 - (7) use of NDB/ADF;
 - (8) ground and aeroplane equipment;
 - (9) use of VHF/DF;
 - (10) radio detection and ranging (radar);
 - (11) ground equipment;
 - (12) primary radar;
 - (13) secondary surveillance radar;
 - (14) aeroplane equipment;
 - (15) transponders;
 - (16) precision approach system;
 - (17) other navigational systems (as applicable) in current operational use;
 - (18) ground and aeroplane equipment;
 - (19) use of DME;
 - (20) ground and aeroplane equipment;
 - (21) marker beacons;
 - (22) ground and aeroplane equipment;
 - (23) pre-flight serviceability checks;
 - (24) range, accuracy and limitations of equipment.
- (g) Flight planning considerations;
- (h) Aeronautical information publications:
 - (1) the training course should cover the items listed below, but the applicant's aptitude and previous aviation experience should be taken into account when determining the amount of instructional time allotted. Although a number of items contained under this heading are complementary to those contained in the PPL/CPL/IR syllabi, the instructor should ensure that they have been covered during the applicant's training and due allowance should be made for the time needed to revise these items as necessary.
 - (2) AIP
 - (3) NOTAM class 1 and 2;
 - (4) AIC;
 - (5) information of an operational nature;
 - (6) the rules of the air and ATS;
 - (7) visual flight rules and instrument flight rules;

- (8) flight plans and ATS messages;
- (9) use of radar in ATS;
- (10) radio failure;
- (11) classification of airspace;
- (12) airspace restrictions and hazards;
- (13) holding and approach to land procedures;
- (14) precision approaches and non precision approaches;
- (15) radar approach procedures;
- (16) missed approach procedures;
- (17) visual manoeuvring after an instrument approach;
- (18) conflict hazards in uncontrolled airspace;
- (19) communications;
- (20) types of services;
- (21) extraction of AIP data relating to radio aids;
- (22) charts available;
- (23) en-route;
- (24) departure and arrival;
- (25) instrument approach and landing;
- (26) amendments, corrections and revision service.
- (i) flight planning general:
 - (1) the objectives of flight planning;
 - (2) factors affecting aeroplane and engine performance;
 - (3) selection of alternate(s);
 - (4) obtaining meteorological information;
 - (5) services available;
 - (6) meteorology briefing;
 - (7) telephone or electronic data processing;
 - (8) actual weather reports (TAFs, METARs and SIGMET messages);
 - (9) the route forecast;
 - (10) the operational significance of the meteorological information obtained (including icing, turbulence and visibility);
 - (11) altimeter considerations;
 - (12) definitions of:
 - (i) transition altitude;
 - (ii) transition level;
 - (iii) flight level;
 - (iv) QNH;
 - (v) regional QNH;
 - (vi) standard pressure setting;
 - (vii) QFE.
 - (13) altimeter setting procedures;
 - (14) pre-flight altimeter checks;
 - (15) take-off and climb;
 - (16) en-route;
 - (17) approach and landing;
 - (18) missed approach;
 - (19) terrain clearance;
 - (20) selection of a minimum safe en-route altitude;
 - (21) IFR;
 - (22) preparation of charts;
 - (23) choice of routes and flight levels;
 - (24) compilation of flight plan or log sheet;
 - (25) log sheet entries;
 - (26) navigation ground aids to be used;
 - (27) frequencies and identification;
 - (28) radials and bearings;
 - (29) tracks and fixes;
 - (30) safety altitude(s);
 - (31) fuel calculations;
 - (32) ATC frequencies (VHF);

- (33) tower, approach, en-route, radar, FIS, ATIS, and weather reports;
- (34) minimum sector altitudes at destination and alternate aerodromes;
- (35) determination of minimum safe descent heights or altitudes (decision heights) at destination and alternate aerodromes.
- (j) The privileges of the instrument rating:
 - (1) outside controlled airspace;
 - (2) within controlled airspace;
 - (3) period of validity and renewal procedures.

Part 3

FLIGHT INSTRUCTION SYLLABUS

- (a) An approved IRI course should comprise of at least 10 hours of flight instruction, of which a maximum of 8 hours may be conducted in an FSTD. A similar number of hours should be used for the instruction and practice of pre-flight and post-flight briefing for each exercise.
- (b) The flight instruction should aim to ensure that the applicant is able to teach the air exercises safely and efficiently.

A. AEROPLANES

LONG BRIEFINGS AND AIR EXERCISES

EXERCISE 1: INTRUMENT FLYING (Basic) (for revision, as deemed necessary by the instructor)

- (a) Long briefing objectives:
 - (1) flight instruments;
 - (2) physiological considerations;
 - (3) instrument appreciation:
 - (i) attitude instrument flight;
 - (ii) pitch indications;
 - (iii) bank indications;
 - (iv) different instrument presentations;
 - (v) introduction to the use of the attitude indicator;
 - (vi) pitch attitude;
 - (vii) bank attitude;
 - (viii) maintenance of heading and balanced flight;
 - (ix) instrument limitations (inclusive system failures).
 - (4) attitude, power and performance:
 - (i) attitude instrument flight;
 - (ii) control instruments;
 - (iii) performance instruments;
 - (iv) effect of changing power and configuration;
 - (v) cross-checking the instrument indications;
 - (vi) instrument interpretation;
 - (vii) direct and indirect indications (performance instruments);
 - (viii) instrument lag;
 - (ix) selective radial scan.
 - (5) the basic flight manoeuvres (full panel):
 - (i) straight and level flight at various air speeds and aeroplane configurations;
 - (ii) climbing;
 - (iii) descending;
 - (iv) standard rate turns;
 - (v) level, climbing and descending on to pre-selected headings.
- (b) Air exercise:

(1)

- instrument flying (basic);
- (i) physiological sensations;
- (ii) instrument appreciation;
- (iii) attitude instrument flight;
- (iv) pitch attitude;

- (v) bank attitude;
- (vi) maintenance of heading and balanced flight;
- (vii) attitude instrument flight;
- (viii) effect of changing power and configuration;
- (ix) cross-checking the instruments;
- (x) selective radial scan;
- (2) the basic flight manoeuvres (full panel):
 - (i) straight and level flight at various air speeds and aeroplane configurations;
 - (ii) climbing;
 - (iii) descending;
 - (iv) standard rate turns;
 - (v) level, climbing and descending on to pre-selected headings.

EXERCISE 2: INTRUMENT FLYING (Advanced)

- (a) Long briefing objectives:
 - (1) full panel;
 - (2) 30° level turns;
 - (3) unusual attitudes: recoveries;
 - (4) transference to instruments after take-off;
 - (5) limited panel;
 - (6) basic flight manoeuvres;
 - (7) unusual attitudes: recoveries.
- (b) Air exercise:
 - (1) full panel;
 - (2) 30° level turns;
 - (3) unusual attitudes: recoveries;
 - (4) limited panel;
 - (5) repeat of the above exercises.

EXERCISE 3: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF VOR

- (a) Long briefing objectives:
 - (1) availability of VOR stations en-route;
 - (2) station frequencies and identification;
 - (3) signal reception range;
 - (4) effect of altitude;
 - (5) VOR radials;
 - (6) use of OBS;
 - (7) to or from indicator;
 - (8) orientation;
 - (9) selecting radials;
 - (10) intercepting a pre-selected radial;
 - (11) assessment of distance to interception;
 - (12) effects of wind;
 - (13) maintaining a radial;
 - (14) tracking to and from a VOR station;
 - (15) procedure turns;
 - (16) station passage;
 - (17) use of two stations for obtaining a fix;
 - (18) pre-selecting fixes along a track;
 - (19) assessment of ground speed and timing;
 - (20) holding procedures;
 - (21) various entries;
 - (22) communication (R/T procedures and ATC liaison).
- (b) Air exercise:
 - (1) station selection and identification;
 - (2) orientation;
 - (3) intercepting a pre-selected radial;
 - (4) R/T procedures and ATC liaison;

- (5) maintaining a radial inbound;
- (6) recognition of station passage;
- (7) maintaining a radial outbound;
- (8) procedure turn;
- (9) use of two stations to obtain a fix along the track;
- (10) assessment of ground speed and timing;
- (11) holding procedures and entries;
- (12) holding at a pre-selected fix;
- (13) holding at a VOR station.

EXERCISE 4: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF NDB

- (a) Long briefing objectives:
 - (1) availability of an NDB facilities en-route;
 - (2) location, frequencies, tuning (as applicable) and identification codes;
 - (3) signal reception range;
 - (4) static interference;
 - (5) night effect;
 - (6) station interference;
 - (7) mountain effect;
 - (8) coastal refraction;
 - (9) orientation in relation to an NDB;
 - (10) homing;
 - (11) intercepting a pre-selected magnetic bearing and tracking inbound;
 - (12) station passage;
 - (13) tracking outbound;
 - (14) time and distance checks;
 - (15) use of two NDBs to obtain a fix or alternatively use of one NDB and one other navaid;
 - (16) holding procedures and various approved entries;
 - (17) communication (R/T procedures and ATC liaison).
- (b) Air exercise:
 - (1) selecting, tuning and identifying an NDB;
 - (2) ADF orientation;
 - (3) communication (R/T procedures and ATC liaison);
 - (4) homing;
 - (5) tracking inbound;
 - (6) station passage;
 - (7) tracking outbound;
 - (8) time and distance checks;
 - (9) intercepting a pre-selected magnetic bearing;
 - (10) determining the aeroplane's position from two NDBs or alternatively from one NDB and one other navaid;
 - (11) ADF holding procedures and various approved entries.

EXERCISE 5: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF VHF/DF

- (a) Long briefing objectives:
 - (1) availability of VHF/DF facilities en-route;
 - (2) location, frequencies, station call signs and hours of operation;
 - (3) signal and reception range;
 - (4) effect of altitude;
 - (5) communication (R/T procedures and ATC liaison);
 - (6) obtaining and using types of bearings, for example QTE, QDM and QDR;
 - (7) homing to a station;
 - (8) effect of wind;
 - use of two VHF/DF stations to obtain a fix (or alternatively one VHF/DF station and one other navaid);
 - (10) assessment of groundspeed and timing.
- (b) Air exercise:
 - (1) establishing contact with a VHF/DF station;

- (2) R/T Procedures and ATC liaison;
- (3) obtaining and using a QDR and QTE;
- (4) homing to a station;
- (5) effect of wind;
- (6) use of two VHF/DF stations to obtain a fix (or alternatively one VHF/DF station and one other navaid);
- (7) assessment of groundspeed and timing.

EXERCISE 6: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF DME

- (a) Long briefing objectives:
 - (1) availability of DME facilities;
 - (2) location, frequencies and identification codes;
 - (3) signal reception range;
 - (4) slant range;
 - (5) use of DME to obtain distance, groundspeed and timing;
 - (6) use of DME to obtain a fix.
- (b) Air exercise:
 - (1) station selection and identification;
 - (2) use of equipment functions;
 - (3) distance;
 - (4) groundspeed;
 - (5) timing;
 - (6) DME arc approach;
 - (7) DME holding.

EXERCISE 7: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF TRANSPONDERS (SSR)

- (a) Long briefing objectives:
 - (1) operation of transponders;
 - (2) code selection procedure;
 - (3) emergency codes;
 - (4) precautions when using airborne equipment.
- (b) Air exercise:
 - (1) operation of transponders;
 - (2) types of transponders;
 - (3) code selection procedure;
 - (4) emergency codes;
 - (5) precautions when selecting the required code.

EXERCISE 8: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF EN-ROUTE RADAR

- (a) Long briefing objectives:
 - (1) availability of radar services;
 - (2) location, station frequencies, call signs and hours of operation;
 - (3) AIP and NOTAMs;
 - (4) provision of service;
 - (5) communication (R/T, procedures and ATC liaison);
 - (6) airspace radar advisory service;
 - (7) emergency service;
 - (8) aircraft separation standards.
- (b) Air exercise:
 - (1) communication (R/T procedures and ATC liaison);
 - (2) establishing the service required and position reporting;
 - (3) method of reporting conflicting traffic;
 - (4) terrain clearance.

EXERCISE 9: PRE-FLIGHT AND AERODROME DEPARTURE AND ARRIVAL PROCEDURES

- (a) Long briefing objectives:
 - (1) determining the serviceability of the aeroplane radio;
 - (2) navigation equipment;
 - (3) obtaining the departure clearance;
 - (4) setting up radio navaids before take-off for example VOR frequencies, required radials, etc.;
 - (5) aerodrome departure procedures, frequency changes;
 - (6) altitude and position reporting as required;
 - (7) SID procedures;
 - (8) obstacle clearance considerations.
- (b) Air exercise:
 - (1) radio equipment serviceability checks;
 - (2) departure clearance;
 - (3) navaid selection;
 - (4) frequencies, radials, etc.;
 - (5) aerodrome departure checks, frequency changes, altitude and position reports;
 - (6) SID procedures.

EXERCISE 10: INSTRUMENT APPORACH: ILS APPROACHES TO SPECIFIED MINIMA AND MISSED APPROACH PROCEDURE

- (a) Long briefing objectives:
 - (1) precision approach charts;
 - (2) approach to the initial approach fix and minimum sector altitude;
 - (3) navaid requirements, for example radar, ADF, etc.;
 - (4) communication (ATC liaison and R/T phraseology);
 - (5) holding procedure;
 - (6) the final approach track;
 - (7) forming a mental picture of the approach;
 - (8) completion of aerodrome approach checks;
 - (9) initial approach procedure;
 - (10) selection of the ILS frequency and identification;
 - (11) obstacle clearance altitude or height;
 - (12) operating minima;
 - (13) achieving the horizontal and vertical patterns;
 - (14) assessment of distance, groundspeed time, and rate of descent from the final approach fix to the aerodrome;
 - (15) use of DME (as applicable);
 - (16) go-around and missed approach procedure;
 - (17) review of the published instructions;
 - (18) transition from instrument to visual flight (sensory illusions);
 - (19) visual manoeuvring after an instrument approach:
 - (i) circling approach;
 - (ii) visual approach to landing.
- (b) Air exercise:
 - (1) initial approach to the ILS;
 - (2) completion of approach planning;
 - (3) holding procedure;
 - (4) frequency selection and identification of ILS;
 - (5) review of the published procedure and minimum sector altitude;
 - (6) communication (ATC liaison and R/T phraseology);
 - (7) determination of operating minima and altimeter setting;
 - (8) weather consideration, for example cloud base and visibility;
 - (9) availability of runway lighting;
 - (10) ILS entry methods;
 - (11) radar vectors;
 - (12) procedural method;
 - (13) assessment of approach time from the final approach fix to the aerodrome;
 - (14) determination of:

- (i) the descent rate on final approach;
- (ii) the wind velocity at the surface and the length of the landing runway;
- (iii) the obstruction heights to be borne in mind during visual manoeuvring after an instrument approach;
- (15) circling approach;
- (16) the approach:
 - (i) at the final approach fix;
 - (ii) use of DME (as applicable);
 - (iii) ATC liaison;
 - (iv) note time and establish air speed and descent rate;
 - (v) maintaining the localiser and glide path;
 - (vi) anticipation in change of wind velocity and its effect on drift;
 - (vii) decision height;
- (17) runway direction;
- (18) overshoot and missed approach procedure;
- (19) transition from instrument to visual flight;
- (20) circling approach;
- (21) visual approach to landing.

EXERCISE 11: INSTRUMENTS APPROACH: NDB APPROACHES TO SPECIFIED MINIMA AND MISSED APPROACH PROCEDURES

- (a) Long briefing objectives:
 - (1) non-precision approach charts;
 - (2) initial approach to the initial approach fix and minimum sector altitude;
 - (3) ATC liaison;
 - (4) communication (ATC procedures and R/T phraseology);
 - (5) approach planning;
 - (6) holding procedure;
 - (7) the approach track;
 - (8) forming a mental picture of the approach;
 - (9) initial approach procedure;
 - (10) operating minima;
 - (11) completion of approach planning;
 - (12) achieving the horizontal and vertical patterns;
 - (13) assessment of distance, groundspeed time, and rate of descent from the final approach fix to the aerodrome;
 - (14) use of DME (as applicable);
 - (15) go-around and missed approach procedure;
 - (16) review of the published instructions;
 - (17) transition from instrument to visual flight (sensory illusions);
 - (18) visual manoeuvring after an instrument approach;
 - (19) circling approach;
 - (20) visual approach to landing.
- (b) Air exercise:
 - (1) completion of approach planning including determination of:
 - (i) descent rate from the final approach fix;
 - (ii) the wind velocity at the surface and length of the landing runway;
 - (iii) the obstruction heights to be borne in mind during visual manoeuvring after an instrument approach;
 - (2) circling approach;
 - (3) go-around and missed approach procedure;
 - (4) initial approach;
 - (5) frequency selection and identification;
 - (6) review of the published procedure and minimum safe sector altitude;
 - (7) ATC liaison and R/T phraseology;
 - (8) determination of decision height and altimeter setting;
 - (9) weather considerations, for example cloud base and visibility;
 - (10) availability of runway lighting;
 - (11) determination of inbound track;

- (12) assessment of time from final approach fix to the missed approach point;
- (13) ATC liaison;
- (14) the outbound procedure (inclusive completion of pre-landing checks);
- (15) the inbound procedure;
- (16) re-check of identification code;
- (17) altimeter setting re-checked;
- (18) the final approach;
- (19) note time and establish air speed and descent rate;
- (20) maintaining the final approach track;
- (21) anticipation of change in wind velocity and its effect on the drift;
- (22) minimum descent altitude or height;
- (23) runway direction;
- (24) go-around and missed approach procedure;
- (25) transition from instrument to visual flight (sensory illusions);
- (26) visual approach.

EXERCISE 12: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF GNSS (to be developed)

- (a) Long briefing objectives: use of GNSS.
- (b) Air exercise: use of GNSS.

B. HELICOPTERS

LONG BRIEFINGS AND AIR EXERCISES

EXERCISE 1: INSTRUMENT FLYING (Basic)

(for revision as deemed necessary by the instructor)

- (a) Long briefing objectives:
 - (1) flight instruments;
 - (2) physiological considerations;
 - (3) instrument appreciation:
 - (i) attitude instrument flight;
 - (ii) pitch indications;
 - (iii) bank indications;
 - (iv) different instrument presentations;
 - (v) introduction to the use of the attitude indicator;
 - (vi) pitch attitude;
 - (vii) bank attitude;
 - (viii) maintenance of heading and balanced flight;
 - (ix) instrument limitations (inc. system failures);
 - (4) attitude, power and performance:
 - (i) attitude instrument flight;
 - (ii) control instruments;
 - (iii) performance instruments;
 - (iv) effect of changing power;
 - (v) cross-checking the instrument indications;
 - (vi) instrument interpretation;
 - (vii) direct and indirect indications (performance instruments);
 - (viii) instrument lag;
 - (ix) selective radial scan;
 - (5) the basic flight manoeuvres (full panel):
 - (i) straight and level flight at various air speeds;
 - (ii) climbing;
 - (iii) descending;
 - (iv) standard rate turns;
 - (v) level, climbing and descending on to pre-selected headings.
- (b) Air exercise:
 - (1) physiological sensations;

- (2) instrument appreciation;
- (3) attitude instrument flight;
- (4) pitch attitude;
- (5) bank attitude;
- (6) maintenance of heading and balanced flight;
- (7) attitude instrument flight;
- (8) effect of changing power;
- (9) cross-checking the instruments;
- (10) selective radial scan;
- (11) the basic flight manoeuvres (full panel):
 - (i) straight and level flight at various air speeds and helicopter configurations;
 - (ii) climbing;
 - (iii) descending;
 - (iv) standard rate turns;
 - (v) level, climbing and descending on to pre-selected headings;
 - (vi) manoeuvring at minimum and maximum IMC speed.

EXERCISE 2: INSTRUMENT FLYING (Advanced)

- (a) Long briefing objectives:
 - (1) full panel;
 - (2) 30° level turns;
 - (3) unusual attitudes: recoveries;
 - (4) transition to instruments after take-off;
 - (5) limited panel;
 - (6) basic flight manoeuvres;
 - (7) unusual attitudes: recoveries.
- (b) Air exercise:
 - (1) full panel;
 - (2) 30° level turns;
 - (3) unusual attitudes: recoveries;
 - (4) identification and recovery from low pitch steep bank and high pitch steep bank attitudes (at low and high power settings);
 - (5) limited panel;
 - (6) repeat of the above exercises.

EXERCISE 3: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF VOR

- (a) Long briefing objectives:
 - (1) availability of VOR stations en-route;
 - (2) station frequencies and identification;
 - (3) signal reception range;
 - (4) effect of altitude;
 - (5) VOR radials;
 - (6) use of OBS;
 - (7) to and from indicator;
 - (8) orientation;
 - (9) selecting radials;
 - (10) intercepting a pre-selected radial;
 - (11) assessment of distance to interception;
 - (12) effects of wind;
 - (13) maintaining a radial;
 - (14) tracking to and from a VOR station;
 - (15) procedure turns;
 - (16) station passage;
 - (17) use of two stations for obtaining a fix;
 - (18) pre-selecting fixes along a track;
 - (19) assessment of ground speed and timing;
 - (20) holding procedures;
 - (21) various entries;

- (22) communication (R/T procedures and ATC liaison).
- (b) Air exercise:
 - (1) station selection and identification;
 - (2) orientation;
 - (3) intercepting a pre-selected radial;
 - (4) R/T procedures and ATC liaison;
 - (5) maintaining a radial inbound;
 - (6) recognition of station passage;
 - (7) maintaining a radial outbound;
 - (8) procedure turns;
 - (9) use of two stations to obtain a fix along the track;
 - (10) assessment of ground speed and timing;
 - (11) holding procedures and entries;
 - (12) holding at a pre-selected fix;
 - (13) holding at a VOR station.

EXERCISE 4: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF NDB

- (a) Long briefing objectives:
 - (1) availability of NDB facilities en-route;
 - (2) location, frequencies, tuning (as applicable) and identification codes;
 - (3) signal reception range;
 - (4) static interference;
 - (5) night effect;
 - (6) station interference;
 - (7) mountain effect;
 - (8) coastal refraction;
 - (9) orientation in relation to an NDB;
 - (10) homing;
 - (11) intercepting a pre-selected magnetic bearing and tracking inbound;
 - (12) station passage;
 - (13) tracking outbound;
 - (14) time and distance checks;
 - (15) use of two NDBs to obtain a fix or alternatively use of one NDB and one other navaid;
 - (16) holding procedures;
 - (17) communication (R/T procedures and ATC liaison).
- (b) Air exercise:
 - (1) selecting, tuning and identifying an NDB;
 - (2) ADF orientation;
 - (3) communication (R/T procedures and ATC liaison);
 - (4) homing;
 - (5) tracking inbound;
 - (6) station passage;
 - (7) tracking outbound;
 - (8) time and distance checks;
 - (9) intercepting a pre-selected magnetic bearing;
 - (10) determining the helicopter's position from two NDBs or alternatively from one NDB and one other navaid;
 - (11) ADF holding procedures.

EXERCISE 5: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF VHF/DF

- (a) Long briefing objectives:
 - (1) availability of VHF/DF facilities en-route;
 - (2) location, frequencies, station call signs and hours of operation;
 - (3) signal and reception range;
 - (4) effect of altitude;
 - (5) communication (R/T procedures and ATC liaison);
 - (6) obtaining and using types of bearings, for example QTE, QDM, QDR;
 - (7) homing to a station;

- (8) effect of wind;
- (9) use of two VHF/DF stations to obtain a fix (or alternatively one VHF/DF station and one other navaid);
- (10) assessment of groundspeed and timing.
- (b) Air exercise:
 - (1) establishing contact with a VHF/DF station;
 - (2) R/T procedures and ATC liaison;
 - (3) obtaining and using a QDR and QTE;
 - (4) homing to a station;
 - (5) effect of wind;
 - (6) use of two VHF/DF stations to obtain a fix (or alternatively one VHF/DF station and one other navaid);
 - (7) assessment of groundspeed and timing.

EXERCISE 6: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF DME

- (a) Long briefing objectives:
 - (1) availability of DME facilities;
 - (2) location, frequencies and identification codes;
 - (3) signal reception range;
 - (4) slant range;
 - (5) use of DME to obtain distance, groundspeed and timing;
 - (6) use of DME to obtain a fix;
- (b) Air exercise:
 - (4) station selection and identification;
 - (2) use of equipment functions;
 - (3) distance;
 - (4) groundspeed;
 - (5) timing;
 - (6) DME arc approach;
 - (7) DME holding.

EXERCISE 7: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF TRANSPONDERS

- (a) Long briefing objectives:
 - (1) operation of transponders;
 - (2) code selection procedure;
 - (3) emergency codes;
 - (4) precautions when using airborne equipment.
- (b) Air exercise:
 - (1) operation of transponders;
 - (2) types of transponders;
 - (3) code selection procedure;
 - (4) emergency codes;
 - (5) precautions when selecting the required code.

EXERCISE 8: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF EN-ROUTE RADAR SERVICES

- (a) Long briefing objectives:
 - (1) availability of radar services;
 - (2) location, station frequencies, call signs and hours of operation;
 - (3) AIP and NOTAMS;
 - (4) provision of service;
 - (5) communication (R/T procedures and ATC liaison);
 - (6) airspace radar advisory service;
 - (7) emergency service;
 - (8) aircraft separation standards.
- (b) Air exercise:
 - (1) communication (R/T procedures and ATC liaison);

- (2) establishing the service required and position reporting;
- (3) method of reporting conflicting traffic;
- (4) terrain clearance.

EXERCISE 9: PRE-FLIGHT AND AERODROME DEPARTURE AND ARRIVAL POOCEDURES

- (a) Long briefing objectives:
 - (1) determining the serviceability of the radio equipment;
 - (2) navigation equipment;
 - (3) obtaining the departure clearance;
 - (4) setting up radio navaids before take-off for example VOR frequencies, required radials, etc.;
 - (5) aerodrome departure procedures, frequency changes;
 - (6) altitude and position reporting as required;
 - (7) SID procedures;
 - (8) obstacle clearance considerations.
- (b) Air exercise:
 - (1) radio equipment serviceability checks;
 - (2) departure clearance;
 - (3) navaid selection;
 - (4) frequencies, radials, etc.;
 - (5) aerodrome departure checks, frequency changes, altitude and position reports;
 - (6) SID procedures.

EXERCISE 10: INSTRUMENT APPROACH: PRECISION APPROACH AID TO SPECIFIED MINIMA AND MISSED APPROACH PROCEDURES

- (a) Long briefing objectives:
 - (1) precision approach charts;
 - (2) approach to the initial approach fix and minimum sector altitude;
 - (3) navaid requirements, for example radar, ADF, etc.;
 - (4) communication (ATC liaison and R/T phraseology);
 - (5) holding procedure;
 - (6) the final approach track;
 - (7) forming a mental picture of the approach;
 - (8) completion of aerodrome approach checks;
 - (9) initial approach procedure;
 - (10) selection of the ILS frequency and identification;
 - (11) obstacle clearance altitude or height;
 - (12) operating minima;
 - (13) achieving the horizontal and vertical patterns;
 - (14) assessment of distance, groundspeed time, and rate of descent from the final approach fix to the aerodrome;
 - (15) use of DME (as applicable);
 - (16) go-around and missed approach procedure;
 - (17) review of the published instructions;
 - (18) transition from instrument to visual flight (sensory illusions);
 - (19) visual manoeuvring after an instrument approach;
 - (i) circling approach;
 - (ii) visual approach to landing.
- (b) Air exercise:
 - (1) initial approach to the ILS;
 - (2) completion of approach planning;
 - (3) holding procedure;
 - (4) frequency selection and identification of ILS;
 - (5) review of the published procedure and minimum sector altitude;
 - (6) communication (ATC liaison and R/T phraseology);
 - (7) determination of operating minima and altimeter setting;
 - (8) weather consideration, for example cloud base and visibility;
 - (9) availability of landing site lighting;
 - (10) ILS entry methods;

- (11) radar vectors;
- (12) procedural method;
- (13) assessment of approach time from the final approach fix to the aerodrome;
- (14) determination of:
 - (i) the descent rate on final approach;
 - (ii) the wind velocity at the surface and the length of the landing site;
 - (iii) the obstruction heights to be borne in mind during visual manoeuvring after an instrument approach;
- (15) circling approach;
- (16) the approach:
 - (i) at the final approach fix;
 - (ii) use of DME (as applicable);
 - (iii) ATC liaison;
 - (iv) note time and establish air speed and descent rate;
 - (v) maintaining the localizer and glide path;
 - (vi) anticipation in change of wind velocity and its effect on drift;
 - (vii) decision height.
- (17) landing direction;
- (18) go-around and missed approach procedure;
- (19) transition from instrument to visual flight;
- (20) circling approach;
- (21) visual approach to landing.

EXERCISE 11: INSTRUMENT APPROACH: NON-PRECISION APPROACH TO SPECIFIED MINIMA AND MISSED APPROACH PROCEDURES

- (a) Long briefing objectives:
 - (1) non-precision approach charts;
 - (2) initial approach to the initial approach fix and minimum sector altitude;
 - (3) ATC liaison;
 - (4) communication (ATC procedures and R/T phraseology);
 - (5) approach planning;
 - (6) holding procedure;
 - (7) the approach track;
 - (8) forming a mental picture of the approach;
 - (9) initial approach procedure;
 - (10) operating minima;
 - (11) completion of approach planning;
 - (12) achieving the horizontal and vertical patterns;
 - (13) assessment of distance, groundspeed time, and rate of descent from the final approach fix to the aerodrome;
 - (14) use of DME (as applicable);
 - (15) go-around and missed approach procedure;
 - (16) review of the published instructions;
 - (17) transition from instrument to visual flight (sensory illusions);
 - (18) visual manoeuvring after an instrument approach;
 - (19) circling approach;
 - (20) visual approach to landing.
- (b) Air exercise:
 - (1) completion of approach planning, including determination of:
 - (i) descent rate from the final approach fix;
 - (ii) the wind velocity at the surface and length of the landing site;
 - (iii) the obstruction heights to be borne in mind during visual manoeuvring after an instrument approach.
 - (2) circling approach;
 - (3) go-around and missed approach procedure;
 - (4) initial approach;
 - (5) frequency selection and identification;
 - (6) review of the published procedure and minimum safe sector altitude;

- (7) ATC liaison and R/T phraseology;
- (8) determination of decision height and altimeter setting;
- (9) weather considerations, for example cloud base and visibility;
- (10) availability of landing site lighting;
- (11) determination of inbound track;
- (12) assessment of time from final approach fix to the missed approach point;
- (13) ATC liaison;
- (14) the outbound procedure (incl. completion of pre-landing checks);
- (15) the inbound procedure;
- (16) re-check of identification code;
- (17) altimeter setting re-checked;
- (18) the final approach;
- (19) note time and establish air speed and descent rate;
- (20) maintaining the final approach track;
- (21) anticipation of change in wind velocity and its effect on the drift;
- (22) minimum descent altitude or height;
- (23) landing site direction;
- (24) go-around and missed approach procedure;
- (25) transition from instrument to visual flight (sensory illusions);
- (26) visual approach.

EXERCISE 12: USE OF GNSS (to be developed)

- (a) Long briefing objectives: use of GNSS.
- (b) Air exercise: use of GNSS.

C. AIRSHIPS

LONG BRIEFINGS AND AIR EXERCISES

EXERCISE 1: INSTRUMENT FLYING (Basic)

(for revision as deemed necessary by the instructor)

- (a) Long briefing objectives:
 - (1) flight instruments;
 - (2) physiological considerations;
 - (3) instrument appreciation:
 - (i) attitude instrument flight;
 - (ii) pitch indications;
 - (iii) different instrument presentations;
 - (iv) introduction to the use of the attitude indicator;
 - (v) pitch attitude;
 - (vi) maintenance of heading and balanced flight;
 - (vii) instrument limitations (inclusive system failures).
 - (4) attitude, power and performance:
 - (i) attitude instrument flight;
 - (ii) control instruments;
 - (iii) performance instruments;
 - (iv) effect of changing power, trim and configuration;
 - (v) cross-checking the instrument indications;
 - (vi) instrument interpretation;
 - (vii) direct and indirect indications (performance instruments);
 - (viii) instrument lag;
 - (ix) selective radial scan.
 - (5) the basic flight manoeuvres (full panel):
 - (i) straight and level flight at various air speeds and airship configurations;
 - (ii) climbing;
 - (iii) descending;

- (iv) standard rate turns;
- (v) level, climbing and descending on to pre-selected headings.
- (b) Air exercise:
 - (1) physiological sensations;
 - (2) instrument appreciation;
 - (3) attitude instrument flight;
 - (4) pitch attitude;
 - (5) bank attitude;
 - (6) maintenance of heading and balanced flight;
 - (7) attitude instrument flight;
 - (8) effect of changing power and configuration;
 - (9) cross-checking the instruments;
 - (10) selective radial scan;
 - (11) the basic flight manoeuvres (full panel):
 - (i) straight and level flight at various air speeds and airship configurations;
 - (ii) climbing;
 - (iii) descending;
 - (iv) standard rate turns;
 - (v) level, climbing and descending on to pre-selected headings.

EXERCISE 2: INSTRUMENT FLYING (Advanced)

- (a) Long briefing objectives:
 - (1) full panel;
 - (2) unusual attitudes: recoveries;
 - (3) transference to instruments after take-off;
 - (4) limited panel;
 - (5) basic flight manoeuvres;
 - (6) unusual attitudes: recoveries.
- (b) Air exercise:
 - (1) full panel;
 - (2) unusual attitudes: recoveries;
 - (3) limited panel;
 - (4) repeat of the above exercises.

EXERCISE 3: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF VOR

- (a) Long briefing objectives:
 - (1) availability of VOR stations en-route;
 - (2) station frequencies and identification;
 - (3) signal reception range;
 - (4) effect of altitude;
 - (5) VOR radials;
 - (6) use of OBS;
 - (7) to or from indicator;
 - (8) orientation;
 - (9) selecting radials;
 - (10) intercepting a pre-selected radial;
 - (11) assessment of distance to interception;
 - (12) effects of wind;
 - (13) maintaining a radial;
 - (14) tracking to and from a VOR station;
 - (15) procedure turns;
 - (16) station passage;
 - (17) use of two stations for obtaining a fix;
 - (18) pre-selecting fixes along a track;
 - (19) assessment of ground speed and timing;
 - (20) holding procedures;
 - (21) various entries;
 - (22) communication (R/T procedures and ATC liaison).

- (b) Air exercise:
 - (1) station selection and identification;
 - (2) orientation;
 - (3) intercepting a pre-selected radial;
 - (4) R/T procedures and ATC liaison;
 - (5) maintaining a radial inbound;
 - (6) recognition of station passage;
 - (7) maintaining a radial outbound;
 - (8) procedure turns;
 - (9) use of two stations to obtain a fix along the track;
 - (10) assessment of ground speed and timing;
 - (11) holding procedures and entries;
 - (12) holding at a pre-selected fix;
 - (13) holding at a VOR station.

EXERCISE 4: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF ADF (Automatic DF equipment)

- (a) Long briefing objectives:
 - (1) availability of NDB facilities en-route;
 - (2) location, frequencies, tuning (as applicable) and identification codes;
 - (3) signal reception range;
 - (4) static interference;
 - (5) night effect;
 - (6) station interference;
 - (7) mountain effect;
 - (8) coastal refraction;
 - (9) orientation in relation to an NDB;
 - (10) homing;
 - (11) intercepting a pre-selected magnetic bearing and tracking inbound;
 - (12) station passage;
 - (13) tracking outbound;
 - (14) time and distance checks;
 - (15) use of two NDBs to obtain a fix or alternatively use of one NDB and one other navaid;
 - (16) holding procedures and various approved entries;
 - (17) communication (R/T procedures and ATC liaison).
- (b) Air exercise:
 - (1) selecting, tuning and identifying an NDB;
 - (2) ADF orientation;
 - (3) communication (R/T procedures and ATC liaison);
 - (4) homing;
 - (5) tracking inbound;
 - (6) station passage;
 - (7) tracking outbound;
 - (8) time and distance checks;
 - (9) intercepting a pre-selected magnetic bearing;
 - (10) determining the airship's position from two NDBs or alternatively from one NDB and one other navaid;
 - (11) ADF holding procedures and various approved entries.

EXERCISE 5: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF VHF/DF

- (a) Long briefing objectives:
 - (1) availability of VHF/DF facilities en-route;
 - (2) location, frequencies, station call signs and hours of operation;
 - (3) signal and reception range;
 - (4) effect of altitude;
 - (5) communication (R/T procedures and ATC liaison);
 - (6) obtaining and using types of bearings, for example QTE, QDM, QDR;
 - (7) homing to a station;

- (8) effect of wind;
- (9) use of two VHF/DF stations to obtain a fix (or alternatively one VHF/DF station and one other navaid);
- (10) assessment of groundspeed and timing.
- (b) Air exercise:
 - (1) establishing contact with a VHF/DF station;
 - (2) R/T procedures and ATC liaison;
 - (3) obtaining and using a QDR and QTE;
 - (4) homing to a station;
 - (5) effect of wind;
 - (6) use of two VHF/DF stations to obtain a fix (or alternatively one VHF/DF station and one other navaid);
 - (7) assessment of groundspeed and timing.

EXERCISE 6: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF DME

- (a) Long briefing objectives:
 - (1) availability of DME facilities;
 - (2) location, frequencies and identification codes;
 - (3) signal reception range;
 - (4) slant range;
 - (5) use of DME to obtain distance, groundspeed and timing;
 - (6) use of DME to obtain a fix.
- (b) Air exercise:
 - (1) station selection and identification;
 - (2) use of equipment functions;
 - (3) distance;
 - (4) groundspeed;
 - (5) timing;
 - (6) DME arc approach;
 - (7) DME holding.

EXERCISE 7: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF TRANSPONDERS

- (a) Long briefing objectives:
 - (1) operation of transponders;
 - (2) code selection procedure;
 - (3) emergency codes;
 - (4) precautions when using airborne equipment.
- (b) Air exercise:
 - (1) operation of transponders;
 - (2) types of transponders;
 - (3) code selection procedure;
 - (4) emergency codes;
 - (5) precautions when selecting the required code.

EXERCISE 8: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF EN-ROUTE RADAR SERVICES

- (a) Long briefing objectives:
 - (1) availability of radar services;
 - (2) location, station frequencies, call signs and hours of operation;
 - (3) AIP and NOTAMS;
 - (4) provision of service;
 - (5) communication (R/T, procedures and ATC liaison);
 - (6) airspace radar advisory service;
 - (7) emergency service;
 - (8) aircraft separation standards.
- (b) Air exercise:
 - (1) communication (R/T procedures and ATC liaison);

- (2) establishing the service required and position reporting;
- (3) method of reporting conflicting traffic;
- (4) terrain clearance.

EXERCISE 9: PRE-FLIGHT AND AERODROME DEPARTURE AND ARRIVAL PROCEDURES

- (a) Long briefing objectives:
 - (1) determining the serviceability of the airship radio;
 - (2) navigation equipment;
 - (3) obtaining the departure clearance;
 - (4) setting up radio navaids before take-off for example VOR frequencies, required radials, etc.;
 - (5) aerodrome departure procedures, frequency changes;
 - (6) altitude and position reporting as required;
 - (7) SID procedures;
 - (8) obstacle clearance considerations.
- (b) Air exercise:
 - (1) radio equipment serviceability checks;
 - (2) departure clearance;
 - (3) navaid selection;
 - (4) frequencies, radials, etc.;
 - (5) aerodrome departure checks, frequency changes, altitude and position reports;
 - (6) SID procedures.

EXERCISE 10: INSTRUMENT APPROACHES: ILS APPROACHES TO SPECIFIED MINIMA AND MISSED APPROACHES PROCEDURES

- (a) Long briefing objectives:
 - (1) precision approach charts;
 - (2) approach to the initial approach fix and minimum sector altitude;
 - (3) navaid requirements, for example radar, ADF, etc.;
 - (4) communication (ATC liaison and R/T phraseology);
 - (5) review;
 - (6) holding procedure;
 - (7) the final approach track;
 - (8) forming a mental picture of the approach;
 - (9) completion of aerodrome approach checks;
 - (10) initial approach procedure;
 - (11) selection of the ILS frequency and identification;
 - (12) obstacle clearance altitude or height;
 - (13) operating minima;
 - (14) achieving the horizontal and vertical patterns;
 - (15) assessment of distance, groundspeed time, and rate of descent from the final approach fix to the aerodrome;
 - (16) use of DME (as applicable);
 - (17) go-around and missed approach procedure;
 - (18) review of the published instructions;
 - (19) transition from instrument to visual flight (sensory illusions);
 - (20) visual manoeuvring after an instrument approach;
 - (i) circling approach;
 - (ii) visual approach to landing.
- (b) Air exercise:
 - (1) initial approach to the ILS;
 - (2) completion of approach planning;
 - (3) holding procedure;
 - (4) frequency selection and identification of ILS;
 - (5) review of the published procedure and minimum sector altitude;
 - (6) communication (ATC liaison and R/T phraseology);
 - (7) determination of operating minima and altimeter setting;
 - (8) weather consideration, for example cloud base and visibility;
 - (9) availability of runway lighting;

- (10) ILS entry methods;
- (11) radar vectors;
- (12) procedural method;
- (13) assessment of approach time from the final approach fix to the aerodrome;
- (14) determination of:
 - (i) the descent rate on final approach;
 - (ii) the wind velocity at the surface (and the length of the landing runway);
 - (iii) the obstruction heights to be borne in mind during visual manoeuvring after an instrument approach;
- (15) circling approach;
- (16) the approach:
 - (i) at the final approach fix;
 - (ii) use of DME (as applicable);
 - (iii) ATC liaison;
 - (iv) note time and establish air speed and descent rate;
 - (v) maintaining the localiser and glide path;
 - (vi) anticipation in change of wind velocity and its effect on drift;
 - (vii) decision height;
 - (viii) runway direction.
- (17) missed approach procedure;
- (18) transition from instrument to visual flight;
- (19) circling approach;
- (20) visual approach to landing.

EXERCISE 11: INSTRUMENT APPROACHES: NDB APPROACHES TO SPECIFIED MINIMA AND MISSED APPROACHES PROCEDURE

- (a) Long briefing objectives:
 - (1) non-precision approach charts;
 - (2) initial approach to the initial approach fix and minimum sector altitude;
 - (3) ATC liaison;
 - (4) communication (ATC procedures and R/T phraseology);
 - (5) approach planning:
 - (i) holding procedure;
 - (ii) the approach track;
 - (iii) forming a mental picture of the approach;
 - (iv) initial approach procedure;
 - (v) operating minima;
 - (vi) completion of approach planning.
 - (6) achieving the horizontal and vertical patterns;
 - (7) assessment of distance, groundspeed time, and rate of descent from the final approach fix to the aerodrome;
 - (8) use of DME (as applicable);
 - (9) go-around and missed approach procedure;
 - (10) review of the published instructions;
 - (11) transition from instrument to visual flight (sensory illusions);
 - (12) visual manoeuvring after an instrument approach;
 - (13) circling approach;
 - (14) visual approach to landing.
- (b) Air exercise:
 - (1) completion of approach planning including;
 - (2) determination of:
 - (i) descent rate from the final approach fix;
 - (ii) the wind velocity at the surface and length of the landing runway;
 - (iii) the obstruction heights to be borne in mind during visual manoeuvring after an instrument approach.
 - (3) circling approach;
 - (4) go-around and missed approach procedure;
 - (5) initial approach;
 - (6) frequency selection and identification;

- (7) review of the published procedure and minimum safe sector altitude;
- (8) ATC liaison and R/T phraseology;
- (9) determination of decision height and altimeter setting;
- (10) weather considerations, for example cloud base and visibility;
- (11) availability of runway lighting;
- (12) determination of inbound track;
- (13) assessment of time from final approach fix to the missed approach point;
- (14) ATC liaison;
- (15) the outbound procedure (inclusive completion of pre-landing checks);
- (16) the inbound procedure;
- (17) re-check of identification code;
- (18) altimeter setting re-checked;
- (19) the final approach;
- (20) note time and descent rate;
- (21) maintaining the final approach track;
- (22) anticipation of change in wind velocity and its effect on the drift;
- (23) minimum descent altitude or height;
- (24) runway direction;
- (25) go-around and missed approach procedure;
- (26) transition from instrument to visual flight (sensory illusions);
- (27) visual approach.

EXERCISE 12: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF GNNS (to be developed)

- (a) Long briefing objectives: use of GNSS.
- (b) Air exercise: use of GNSS.

AMC1 FCL.930.MCCI MCCI — Training course AEROPLANES

GENERAL

- (a) The objective of the technical training is to apply the core instructor competencies acquired during the teaching and learning training to MCC training.
- (b) During the practical training the applicant should demonstrate the ability to instruct a pilot in MCC.
- (c) To supervise applicants for MCCI certificates, the adequate experience should include at least three type rating or MCC courses.
- (d) It is to be noted that airmanship is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at the appropriate times during each flight.
- (e) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.

COURSE OBJECTIVE

- (f) The course should be designed to give adequate training to the applicant in theoretical knowledge instruction and FSTD instruction to instruct those aspects of MCC required by an applicant for a type rating on a first MP aeroplane.
- (g) Confirmation of competency of the applicant to be authorised as an MCCI(A) will be determined by the applicant conducting at least 3 hours MCC instruction to a satisfactory standard on the relevant FNPT or FFS under the supervision of a TRI(A), SFI(A) or MCCI(A) nominated by the ATO for this purpose.
- (h) The course consists of three parts:
 - (1) Part 1: teaching and learning that should follow the content of AMC1 FCL.920;
 - (2) Part 2: technical theoretical knowledge instruction (technical training);
 - (3) Part 3: flight instruction.

Part 1

The content of the teaching and learning part of the FI training course, as established in AMC1 FCL.930.FI, should be used as guidance to develop the course syllabus.

Part 2

TECHNICAL THEORETICAL KNOWLEDGE INSTRUCTION SYLLABUS

- (a) The FSTD training consists of the application of core instructor competencies to MCC training in a commercial air transport environment, including principles of threat and error management and CRM. The content of the training programme should cover MCC course exercises in sufficient depth to meet the standard required for issue of the MCCI(A) certificate.
- (b) The course should be related to the type of FSTD on which the applicant wishes to instruct. A training programme should give details of all theoretical knowledge instruction.
- (c) Identification and application of human factors (as set in the ATPL syllabus 040) related to MCC aspects of the training.

Part 3

FLIGHT INSTRUCTION SYLLABUS

- (a) The content of the instruction programme should cover training exercises as applicable to the MCC requirements of an applicant for a MP type rating.
- (b) Training exercises:

The exercises should be accomplished as far as possible in a simulated commercial air transport environment. The instruction should cover the following areas:

- (1) pre-flight preparation, including documentation, and computation of take-off performance data;
- (2) pre-flight checks, including radio and navigation equipment checks and setting;
- (3) before take-off checks, including powerplant checks, and take-off briefing by the PF;
- (4) normal take-offs with different flap settings, tasks of PF and PNF, call-outs;
- rejected take-offs; crosswind take-offs; take-offs at maximum take-off mass; engine failure after v₁;
- (6) normal and abnormal operation of aircraft systems, use of checklists;
- (7) selected emergency procedures to include engine failure and fire, smoke control and removal, windshear during take-off and landing, emergency descent, incapacitation of a flight crew member;
- (8) early recognition of and reaction on approaching stall in differing aircraft configurations;
- (9) instrument flight procedures, including holding procedures; precision approaches using raw navigation data, flight director and automatic pilot, one engine simulated inoperative approaches, non-precision and circling approaches, approach briefing by the PF, setting of navigation equipment, call-out procedures during approaches; computation of approach and landing data;
- (10) go-arounds; normal and with one engine simulated inoperative, transition from instrument to visual flight on reaching decision height or minimum descent height or altitude;
- (11) landings, normal, crosswind and with one engine simulated inoperative, transition from instrument to visual flight on reaching decision height or minimum descent height or altitude.

SUBPART K — EXAMINERS

GM1 FCL.1000 Examiner certificates SPECIAL CONDITIONS

When new aircraft are introduced, requirements such as to hold a licence and rating equivalent to the one for which the skill test is being conducted, or to have adequate flight experience, may not be possible to comply with. In this case, to allow for the first ratings for these aircraft to be issued to applicants, competent authorities need the possibility to issue a specific certificate that does not have to comply with the requirements established in this Subpart.

MCAA would only give these certificates to holders of other examiner certificates. As far as possible, preference should be given to persons with experience in similar types or classes of aircraft, for example, in aircraft having the same kind and number of engines or rotors and of the same order of mass or technology.

The certificate should ideally be limited in validity to the time needed to qualify the first examiners for the new aircraft in accordance with this Subpart, but in any case it should not exceed the 3 years established in the rule.

GM1 FCL.1005 (b) Limitation of privileges in case of vested interests

Examples of a situation where the examiner should consider if his/her objectivity is affected are when the applicant is a relative or a friend of the examiner, or when they are linked by economical interests or political affiliations, etc.

AMC1 FCL.1010 Prerequisites for examiners

When evaluating the applicant's background, MCAA would evaluate the personality and character of the applicant, and his/her cooperation with MCAA.

MCAA may also take into account whether the applicant has been convicted of any relevant criminal or other offenses, taking into account national law and principles of non-discrimination.

AMC1 FCL.1015 Examiner standardisation GENERAL

(a) MCAA may provide the course itself or through an arrangement with an ATO. This arrangement should

- (a) MCAA may provide the course itself or through an arrangement with an ATO. This arrangement shoul clearly state that the ATO is acting under the management system of MCAA.
- (b) The course should last:
 - (1) for the FE and FIE, at least 1 day, divided into theoretical and practical training;
 - (2) for other examiners, at least 3 days, divided into theoretical training (1 day) and practical training in an FFS conducting role played proficiency checks and skill tests (at least 2 days).
- (c) MCAA or the ATO should determine any further training required before presenting the candidate for the examiner assessment of competence.

CONTENT

- (d) The training should comprise:
 - (1) Theoretical training covering at least:
 - (i) the contents of AMC2 FCL.1015 and the FEM;
 - (ii) Part-FCL and related AMCs and GM relevant to their duties;
 - (iii) operational requirements and related AMCs and GM relevant to their duties;
 - (iv) national requirements relevant to their examination duties;
 - (v) fundamentals of human performance and limitations relevant to flight examination;
 - (vi) fundamentals of evaluation relevant to applicant's performance;
 - (vii) management system of ATOs;
 - (viii) MCC, human performance and limitations, if applicable.
 - (2) Examiners should also be briefed on the protection requirements for personal data, liability, accident insurance and fees, as applicable in the member state concerned.

- (3) All items above are the core knowledge requirements for an examiner and are recommended as the core course material. This core course may be studied before recommended examiner training is commenced. The core course may utilise any suitable training format.
- (4) Practical training consisting of at least:
 - (i) knowledge and management of the test for which the certificate is to be sought. These are described in the relevant modules in the FEM;
 - (ii) knowledge of the administrative procedures pertaining to that test or check.
- (5) For an initial examiner certificate, practical training should include the examination of the test profile sought, consisting of the conduct of at least two test or check profiles in the role of examiner (these two tests or checks profiles can be performed in the same simulator session), including briefing, conduct of the skill test and proficiency check, assessment of the applicant to whom the test or check is given, debriefing and recording or documentation under the supervision of an examiner of the appropriate category on the applicable type. This training is conducted in the aircraft if approval for testing or checking in the aircraft is required. If examiner privileges in FSTD's are required, practical instruction in the use of FSTD(s) for testing or checking should also be completed.
- (6) If examiner privileges are to include the conduct of proficiency checks for the revalidation or renewal of an instrument rating, practical instruction should include the conduct of at least four instrument check profiles in the role of examiner, including briefing, conduct of the skill test and proficiency check, assessment of the applicant to whom the test or check is given, debriefing and recording or documentation under the supervision of an examiner of the appropriate category on the applicable type. This training is conducted in the aircraft if approval for testing or checking in the aircraft is required. If examiner privileges in both FSTD and aircraft are required, at least one of the instrument check profiles should be conducted in an FSTD.
- (7) For extension of an examiner certificate to further types (as required for TRE), further practical training on the new type may be required, consisting of the conduct of at least one test or check profile in the role of examiner on the new type, including briefing, conduct of the skill test and proficiency check, assessment of the applicant to whom the test or check is given, debriefing and recording or documentation under the supervision of an examiner of the appropriate category on the applicable type. A further examiner check on the new type may be required, which may be supervised by an inspector of MCAA or a suitably authorised senior examiner.

AMC2 FCL.1015 Examiner standardisation STANDARDISATION ARRANGEMENTS FOR EXAMINERS

LIMITATIONS

- (a) An examiner should allow an applicant adequate time to prepare for a test or check, normally not more than 1 hour.
- (b) An examiner should plan a test or check flight so that all required exercises can be performed while allowing sufficient time for each of the exercises and with due regard to the weather conditions, traffic situation, ATC requirements and local procedures.

PURPOSE OF A TEST OR CHECK

- (c) Determine through practical demonstration during a test or check that an applicant has acquired or maintained the required level of knowledge and skill or proficiency.
- (d) Improve training and flight instruction in ATOs by feedback of information from examiners about items or sections of tests or checks that are most frequently failed.
- (e) Assist in maintaining and, where possible, improving air safety standards by having examiners display good airmanship and flight discipline during tests or checks.

CONDUCT OF TEST OR CHECK

(f) An examiner will ensure that an applicant completes a test or check in accordance with Part-FCL requirements and is assessed against the required test or check standards.

- (g) Each item within a test or check section should be completed and assessed separately. The test or check schedule, as briefed, should not normally be altered by an examiner. A failed item is not always a failed section, for example type rating skill test where a failure of an item in a section does not fail the entire section, only the failed item is taken again.
- (h) Marginal or questionable performance of a test or check item should not influence an examiner's assessment of any subsequent items.
- (i) An examiner should verify the requirements and limitations of a test or check with an applicant during the pre-flight briefing.
- (j) When a test or check is completed or discontinued, an examiner should debrief the applicant and give reasons for items or sections failed. In case of a failed or discontinued skill test and proficiency check, the examiner should provide appropriate advice to assist the applicant in re-tests or re-checks.
- (k) Any comment on, or disagreement with, an examiner's test or check evaluation or assessment made during a debriefing will be recorded by the examiner on the test or check report, and will be signed by the examiner and countersigned by the applicant.

EXAMINER PREPARATION

- (1) An examiner should supervise all aspects of the test or check flight preparation, including, where necessary, obtaining or assuring an ATC 'slot' time.
- (m) An examiner will plan a test or check in accordance with Part-FCL requirements. Only the manoeuvres and procedures set out in the appropriate test or check form will be undertaken. The same examiner should not re-examine a failed applicant without the agreement of the applicant.

EXAMINER APPROACH

(n) An examiner should encourage a friendly and relaxed atmosphere to develop both before and during a test or check flight. A negative or hostile approach should not be used. During the test or check flight, the examiner should avoid negative comments or criticisms and all assessments should be reserved for the debriefing.

ASSESSMENT SYSTEM

- (o) Although test or checks may specify flight test tolerances, an applicant should not be expected to achieve these at the expense of smoothness or stable flight. An examiner should make due allowance for unavoidable deviations due to turbulence, ATC instructions, etc. An examiner should terminate a test or check only when it is clear that the applicant has not been able to demonstrate the required level of knowledge, skill or proficiency and that a full re-test will be necessary or for safety reasons. An examiner will use one of the following terms for assessment:
 - (1) a 'pass', provided that the applicant demonstrates the required level of knowledge, skill or proficiency and, where applicable, remains within the flight test tolerances for the licence or rating;
 - (2) a 'fail' provided that any of the following apply:
 - (i) the flight test tolerances have been exceeded after the examiner has made due allowance for turbulence or ATC instructions;
 - (ii) the aim of the test or check is not completed;
 - (iii) the aim of exercise is completed but at the expense of safe flight, violation of a rule or regulation, poor airmanship or rough handling;
 - (iv) an acceptable level of knowledge is not demonstrated;
 - (v) an acceptable level of flight management is not demonstrated;
 - (vi) the intervention of the examiner or safety pilot is required in the interest of safety.
 - (3) a 'partial pass' in accordance with the criteria shown in the relevant skill test appendix of Part-FCL.

METHOD AND CONTENTS OF THE TEST OR CHECK

- (p) Before undertaking a test or check an examiner will verify that the aircraft or FSTD intended to be used is suitable and appropriately equipped for the test or check.
- (q) A test or check flight will be conducted in accordance with the AFM and, if applicable, the AOM.
- (r) A test or check flight will be conducted within the limitations contained in the operations manual of an ATO.

(s) Contents:

- (1) a test or check is comprised of:
 - (i) oral examination on the ground (where applicable);
 - (ii) pre-flight briefing;
 - (iii) in-flight exercises;
 - (iv) post-flight debriefing.
- (2) oral examination on the ground should include:
 - (i) aircraft general knowledge and performance;
 - (ii) planning and operational procedures;
 - (iii) other relevant items or sections of the test or check.
- (3) pre-flight briefing should include:
 - (i) test or check sequence;
 - (ii) power setting, speeds and approach minima, if applicable;
 - (iii) safety considerations.
- (4) in-flight exercises will include each relevant item or section of the test or check;
- (5) post-flight debriefing should include:
 - (i) assessment or evaluation of the applicant;
 - (ii) documentation of the test or check with the applicant's FI present, if possible.
- (t) A test or check is intended to simulate a practical flight. Thus, an examiner may set practical scenarios for an applicant while ensuring that the applicant is not confused and air safety is not compromised.
- (u) When manoeuvres are to be flown by sole reference to instruments, the examiner should ensure that a suitable method of screening is used to simulate IMC.
- (v) An examiner should maintain a flight log and assessment record during the test or check for reference during the post or flight debriefing.
- (w) An examiner should be flexible to the possibility of changes arising to pre-flight briefings due to ATC instructions, or other circumstances affecting the test or check.
- (x) Where changes arise to a planned test or check an examiner should be satisfied that the applicant understands and accepts the changes. Otherwise, the test or check flight should be terminated.
- (y) Should an applicant choose not to continue a test or check for reasons considered inadequate by an examiner, the applicant will be assessed as having failed those items or sections not attempted. If the test or check is terminated for reasons considered adequate by the examiner, only these items or sections not completed will be tested during a subsequent test or check.
- (z) An examiner may terminate a test or check at any stage, if it is considered that the applicant's competency requires a complete re-test or re-check.

GM1 FCL.1015 Examiner standardisation

- (a) An examiner should plan per day not more than:
 - (1) three tests or checks relating to PPL, CPL, IR or class ratings;
 - (2) four tests or checks relating to LAPL, SPL or BPL;
 - (3) two tests or checks related to CPL, IR or ATPL;
 - (4) two assessments of competence related to instructor certificates;
 - (5) four tests or checks relating to SP type ratings.

- (b) An examiner should plan at least 2 hours for a LAPL, SPL or BPL, 3 hours for a PPL, CPL, IR or class rating test or checks, and at least 4 hours for FI, CPL, IR, MPL, ATPL or MP type rating tests or checks, including pre-flight briefing and preparation, conduct of the test, check or assessment of competence, debriefing, evaluation of the applicant and document-tation.
- (c) When planning the duration of a test, check or assessment of competence, the following values may be used as guidance:
 - (1) 45 minutes for a LAPL(B) or BPL and SP class ratings VFR only;
 - (2) 90 minutes for LAPL(A) or (H), PPL and CPL, including navigation section;
 - (3) 60 minutes for IR, FI and SP type or class ratings;
 - (4) 120 minutes for CPL, MPL, ATPL and MP type ratings.
- (d) For the LAPL(S) and SPL test or check flight the flight time must be sufficient to allow that all the items in each test or check section can be fully completed. If not all the items can be completed in one flight, additional flights have to be done.

AMC1 FCL.1020 Examiners assessment of competence

GENERAL

(a) MCAA may nominate either one of its inspectors or a senior examiner to assess the competence of applicants for an examiner certificate.

DEFINITIONS

- (b) Definitions:
 - (1) 'Inspector': the inspector of MCAA conducting the examiner competence assessment;
 - (2) 'Examiner applicant': the person seeking certification as an examiner;
 - (3) 'Candidate': the person being tested or checked by the examiner applicant. This person may be a pilot for whom the test or check would be required, or the inspector of MCAA who is conducting the examiner certification acceptance test.

CONDUCT OF THE ASSESSMENT

(c) An inspector of MCAA or a senior examiner will observe all examiner applicants conducting a test on a 'candidate' in an aircraft for which examiner certificate is sought. Items from the related training course and test or check schedule will be selected by the inspector for examination of the 'candidate' by the examiner applicant. Having agreed with the inspector the content of the test, the examiner applicant will be expected to manage the entire test. This will include briefing, the conduct of the flight, assessment and debriefing of the 'candidate'. The inspector will discuss the assessment with the examiner applicant before the 'candidate' is debriefed and informed of the result.

BRIEFING THE 'CANDIDATE'

- (d) The 'candidate' should be given time and facilities to prepare for the test flight. The briefing should cover the following:
 - (1) the objective of the flight;
 - (2) licensing checks, as necessary;
 - (3) freedom for the 'candidate' to ask questions;
 - (4) operating procedures to be followed (for example operators manual);
 - (5) weather assessment;
 - (6) operating capacity of 'candidate' and examiner;
 - (7) aims to be identified by 'candidate';
 - (8) simulated weather assumptions (for example icing and cloud base);
 - (9) use of screens (if applicable);(10) contents of exercise to be performed;
 - (1) agreed speed and handling parameters (for example V-speeds, bank angle, approach minima);
 - (12) use of R/T;
 - (13) respective roles of 'candidate' and examiner (for example during emergency);
 - (14) administrative procedures (for example submission of flight plan).

- (e) The examiner applicant should maintain the necessary level of communication with the 'candidate'. The following check details should be followed by the examiner applicant:
 - (1) involvement of examiner in a MP operating environment;
 - (2) the need to give the 'candidate' precise instructions;
 - (3) responsibility for safe conduct of the flight;
 - (4) intervention by examiner, when necessary;
 - (5) use of screens;
 - (6) liaison with ATC and the need for concise, easily understood intentions;
 - (7) prompting the 'candidate' about required sequence of events (for example following a go-around);
 - (8) keeping brief, factual and unobtrusive notes.

ASSESSMENT

- (f) The examiner applicant should refer to the flight test tolerances given in the relevant skill test. Attention should be paid to the following points:
 - (1) questions from the 'candidate';
 - (2) give results of the test and any sections failed;
 - (3) give reasons for failure.

DEBRIEFING

- (g) The examiner applicant should demonstrate to the inspector the ability to conduct a fair, unbiased debriefing of the 'candidate' based on identifiable factual items. A balance between friendliness and firmness should be evident. The following points should be discussed with the 'candidate', at the applicant's discretion:
 - (1) advise the candidate on how to avoid or correct mistakes;
 - (2) mention any other points of criticism noted;
 - (3) give any advice considered helpful.

RECORDING OR DOCUMENTATION

- (h) The examiner applicant should demonstrate to the inspector the ability to complete the relevant records correctly. These records may be:
 - (1) the relevant test or check form;
 - (2) licence entry;
 - (3) notification of failure form;
 - (4) relevant company forms where the examiner has privileges of conducting operator proficiency checks.

DEMONSTRATION OF THEORETICAL KNOWLEDGE

(i) The examiner applicant should demonstrate to the inspector a satisfactory knowledge of the regulatory requirements associated with the function of an examiner.

AMC1 FCL.1020; FCL.1025 Senior Examiners QUALIFICATION OF SENIOR EXAMINERS

- (a) A senior examiner specifically tasked by MCAA to observe skill tests or proficiency checks for the revalidation of examiner certificates should:
 - (1) hold a valid or current examiner certificate appropriate to the privileges being given;
 - (2) have examiner experience level acceptable to MCAA;
 - (3) have conducted a number of skill tests or proficiency checks as a Part-FCL examiner.
- (b) MCAA may conduct a pre-assessment of the applicant or candidate carrying out a skill test and proficiency check under supervision of an inspector of MCAA.
- (c) Applicants should be required to attend a senior examiner briefing, course or seminar arranged by MCAA. Content and duration will be determined by MCAA and should include:

- (1) pre-course self-study;
- (2) legislation;
- (3) the role of the senior examiner;
- (4) an examiner assessment;
- (5) national administrative requirements.
- (d) The validity of the authorisation should not exceed the validity of the examiners certificate, and in any case should not exceed 3 years. The authorisation may be revalidated in accordance with procedures established by MCAA.

AMC1 FCL.1025 Validity, revalidation and renewal of examiner certificates EXAMINER REFRESHER SEMINAR

The examiner refresher seminar should follow the content of the examiner standardisation course, included in AMC1 FCL.1015, and take into account specific contents adequate to the category of examiner affected.

AMC1 FCL.1030 (b)(3) Conduct of skill tests, proficiency checks and assessments of competence OBLIGATIONS FOR EXAMINERS APPLICATION AND REPORT FORMS

Common application and report forms can be found:

- (a) For skill tests or proficiency checks for issue, revalidation or renewal of LAPL, BPL, SPL, PPL, CPL and IR in AMC1 to Appendix 7;
- (b) For training, skill tests or proficiency checks for ATPL, MPL or class and type ratings, in AMC1 to Appendix 9;
- (c) For assessments of competence for instructors, in AMC5 FCL.935.

APPENDICES

AMC1 to Appendix 3 Training courses for the issue of a CPL and an ATPL GENERAL

- (a) When ensuring that the applicant complies with the prerequisites for the course, in accordance with ORA.ATO.145, the ATO should check that the applicant has enough knowledge of mathematics, physics and English to facilitate the understanding of the theoretical knowledge instruction content of the course.
- (b) Whenever reference is made to a certain amount of hours of training, this means a full hour. Time not directly assigned to training (such as breaks, etc.) is not to be counted towards the total amount of time that is required.

A. ATP integrated course: aeroplanes

(a) The ATP integrated course should last between 12 and 36 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for previous experience given to an applicant who already holds a PPL should be entered into the applicant's training record. In the case of a student pilot who does not hold a pilot licence and with the approval of MCAA, an ATO may designate certain dual exercises to be flown in a helicopter or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 750 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by MCAA, in suitable proportions.

The 750 hours of instruction should be divided in such a way that in each subject the minimum hours are:

(1)	Air law	40 hours	
(2)	Aircraft general knowledge	80 hours	
(3)	Flight performance and planning	90 hours	
(4)	Human performance and limitations	50 hours	
(5)	Meteorology	60 hours	
(6)	Navigation	150 hours	
(7)	Operational procedures	20 hours	
(8)	Principles of flight	30 hours	
(9)	Communications	30 hours	
0.1			m

Other subdivision of hours may be agreed upon between MCAA and the ATO.

FLYING TRAINING

- (d) The flying instruction is divided into five phases:
 - (1) phase 1:

Exercises up to the first solo flight comprise a total of at least 10 hours dual flight instruction on an SE aeroplane including:

- (i) pre-flight operations, mass and balance determination, aeroplane inspection and servicing;
- (ii) aerodrome and traffic pattern operations, collision avoidance and precautions;
- (iii) control of the aeroplane by external visual references;
- (iv) normal take-offs and landings;
- (v) flight at critically low air speeds, recognition of recovery from incipient and full stalls, spin avoidance;
- (vi) unusual attitudes and simulated engine failure.
- (2) phase 2:

Exercises up to the first solo cross-country flight comprise a total of at least 10 hours of dual flight instruction and at least 10 hours solo flight including:

- (i) maximum performance (short field and obstacle clearance) take-offs and short-field landings;
- (ii) flight by reference solely to instruments, including the completion of a 180 ° turn;
- (iii) dual cross-country flying using external visual references, DR and radio navigation aids, diversion procedures;

- (iv) aerodrome and traffic pattern operations at different aerodromes;
- (v) crosswind take-offs and landings;
- (vi) abnormal and emergency procedures and manoeuvres, including simulated aeroplane equipment malfunctions;
- (vii) operations to, from and transiting controlled aerodromes, compliance with ATS procedures, R/T procedures and phraseology;
- (viii) knowledge of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS.
- (3) phase 3:

Exercises up to the VFR navigation progress test comprise a total of at least 5 hours of dual instruction and at least 40 hours as PIC.

The dual instruction and testing up to the VFR navigation progress test should comprise:

- (i) repetition of exercises of phases 1 and 2;
- (ii) VFR flight at relatively critical high air speeds, recognition of and recovery from spiral dives;
- (iii) VFR navigation progress test conducted by an FI not connected with the applicant's training;
- (iv) night flight time including take-offs and landings as PIC.

(4) phase 4:

- Exercises up to the instrument rating skill test comprise:
- (i) at least 55 hours instrument flight, which may contain up to 25 hours of instrument ground time in an FNPT I or up to 40 hours in an FNPT II or FFS which should be conducted by an FI or an authorised SFI;
- (ii) 20 hours instrument time flown as SPIC;
- (iii) pre-flight procedures for IFR flights, including the use of the flight manual and appropriate ATS documents in the preparation of an IFR flight plan;
- (iv) procedures and manoeuvres for IFR operation under normal, abnormal and emergency conditions covering at least:
 - (A) transition from visual to instrument flight on take-off;
 - (B) SIDs and arrivals;
 - (C) en-route IFR procedures;
 - (D) holding procedures;
 - (E) instrument approaches to specified minima;
 - (F) missed approach procedures;
 - (G) landings from instrument approaches, including circling.
- (v) in-flight manoeuvres and specific flight characteristics;
- (vi) operation of an ME aeroplane in the exercises of (iv), including operation of the aeroplane solely by reference to instruments with one engine simulated inoperative, and engine shut-down and restart (the latter training should be at a safe altitude unless carried out in an FSTD).
- (5) phase 5:
 - (i) instruction and testing in MCC comprise the relevant training requirements;
 - (ii) if a type rating for MP aeroplanes is not required on completion of this part, the applicant will be provided with a certificate of course completion for MCC training.

B. ATP modular theoretical knowledge course: aeroplanes

- (a) The aim of this course is to train pilots who have not received the theoretical knowledge instruction during an integrated course to the level of theoretical knowledge required for the ATPL.
- (b) An approved course should include formal classroom work and may include the use of such facilities as interactive video, slide or tape presentation, learning carrels and computer-based training and other media distance learning (correspondence) courses as approved by MCAA. Approved distance learning (correspondence) courses may also be offered as part of the course.
- (c) The ATP modular course should last 18 months. This period may be extended where additional training is provided by the ATO. The flight instruction and skill test need to be completed within the period of validity of the pass in the theoretical examinations.

C. CPL/IR integrated course: aeroplanes

(a) The CPL/IR integrated course should last between 9 and 30 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for previous experience given to an applicant who already holds a PPL should be entered into the applicant's training record. In the case of a student pilot who does not hold a pilot licence and with the approval of MCAA, an ATO may designate certain dual exercises to be flown in a helicopter or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 500 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by MCAA, in suitable proportions.

The 500 hours of instruction should be divided in such a way that in each subject the minimum hours are:

(1)	Air law	30 hours
(2)	Aircraft general knowledge	50 hours
(3)	Flight performance and planning	60 hours
(4)	Human performance and limitations	15 hours
(5)	Meteorology	40 hours
(6)	Navigation	100 hours
(7)	Operational procedures	10 hours
(8)	Principles of flight	25 hours
(9)	Communications	30 hours

Other subdivisions of hours may be agreed upon between MCAA and the ATO.

FLYING TRAINING

- (d) The flying instruction is divided into four phases:
 - (1) phase 1:

Exercises up to the first solo flight comprise a total of at least 10 hours dual flight instruction on an SE aeroplane, including:

- (i) pre-flight operations, mass and balance determination, aeroplane inspection and servicing;
- (ii) aerodrome and traffic pattern operations, collision avoidance and precautions;
- (iii) control of the aeroplane by external visual references;
- (iv) normal take-offs and landings;
- (v) flight at critically low air speeds, recognition of and recovery from incipient and full stalls, spin avoidance;
- (vi) unusual attitudes and simulated engine failure.

(2) phase 2:

Exercises up to the first solo cross-country flight comprise a total of at least 10 hours of dual flight instruction and at least 10 hours solo flight including:

- (i) maximum performance (short field and obstacle clearance) take-offs and short-field landings;
- (ii) flight by reference solely to instruments, including the completion of a 180 ° turn;
- (iii) dual cross-country flying using external visual references, DR and radio navigation aids, diversion procedures;
- (iv) aerodrome and traffic pattern operations at different aerodromes;
- (v) crosswind take-offs and landings;
- (vi) abnormal and emergency operations and manoeuvres, including simulated aeroplane equipment malfunctions;
- (vii) operations to, from and transiting controlled aerodromes, compliance with ATS procedures, R/T procedures and phraseology;
- (viii) knowledge of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS.
- (3) phase 3:

Exercises up to the VFR navigation progress test comprise a total of at least 5 hours of instruction and at least 40 hours as PIC.

The dual instruction and testing up to the VFR navigation progress test and the skill test should contain the following:

- (i) repetition of exercises of phases 1 and 2;
- (ii) VFR flight at relatively critical high air speeds, recognition of and recovery from spiral dives;
- (iii) VFR navigation progress test conducted by an FI not connected with the applicant's training;
- (iv) night flight time including take-offs and landings as PIC.

(4) phase 4:

Exercises up to the instrument rating skill test comprise:

- (i) at least 55 hours instrument time, which may contain up to 25 hours of instrument ground time in an FNPT I or up to 40 hours in an FNPT II or FFS which should be conducted by an FI or an authorised SFI;
- (ii) 20 hours instrument time flown as SPIC;
- (iii) pre-flight procedures for IFR flights, including the use of the flight manual and appropriate ATS documents in the preparation of an IFR flight plan;
- (iv) procedures and manoeuvres for IFR operation under normal, abnormal and emergency conditions covering at least:
- (A) transition from visual to instrument flight on take-off;
- (B) SIDs and arrivals;
- (C) en-route IFR procedures;
- (D) holding procedures;
- (E) instrument approaches to specified minima;
- (F) missed approach procedures;
- (G) landings from instrument approaches, including circling.
- in-flight manoeuvres and particular flight characteristics;
- (vi) operation of either an SE or an ME aeroplane in the exercises of (iv), including in the case of an ME aeroplane operation of the aeroplane solely by reference to instruments with one engine simulated inoperative and engine shut-down and restart. The latter exercise is to be conducted at a safe altitude unless carried out in an FSTD.

D. CPL integrated course: aeroplanes

(a) The CPL integrated course should last between 9 and 24 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(v)

(b) Credit for the hours flown should be entered into the applicant's training record. In the case of a student pilot who does not hold a pilot licence and with the approval of MCAA, an ATO may designate certain dual exercises to be flown in a helicopter or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 350 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by MCAA, in suitable proportions.

FLYING TRAINING

- (d) The flying instruction is divided into four phases:
 - (1) phase 1:

Exercises up to the first solo flight comprise a total of at least 10 hours dual flight instruction on an SE aeroplane, including:

- (i) pre-flight operations, mass and balance determination, aeroplane inspection and servicing;
- (ii) aerodrome and traffic pattern operations, collision avoidance and precautions;
- (iii) control of the aeroplane by external visual references;
- (iv) normal take-offs and landings;
- (v) flight at relatively slow air speeds, recognition of and recovery from incipient and full stalls, spin avoidance;
- (vi) unusual attitudes and simulated engine failure.
- (2) phase 2:

Exercises up to the first solo cross-country flight comprise a total of at least 10 hours of dual flight instruction and at least 10 hours solo flight including:

- (i) maximum performance (short field and obstacle clearance) take-offs and short-field landings;
- (ii) flight by reference solely to instruments, including the completion of a 180 ° turn;
- (iii) dual cross-country flying using external visual references, DR and radio navigation aids, diversion procedures;
- (iv) aerodrome and traffic pattern operations at different aerodromes;
- (v) crosswind take-offs and landings;

- (vi) abnormal and emergency procedures and manoeuvres, including simulated aeroplane equipment malfunctions;
- (vii) operations to, from and transiting controlled aerodromes, compliance with ATS procedures, R/T procedures and phraseology;
- (vii) knowledge of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS.
- (3) phase 3:

Exercises up to the VFR navigation progress test comprise a total of at least 30 hours instruction and at least 58 hours as PIC, including:

- (a) at least 10 hours instrument time, which may contain 5 hours of instrument ground time in an FNPT or an FFS and should be conducted by an FI or an authorised SFI;
- (b) repetition of exercises of phases 1 and 2, which should include at least 5 hours in an aeroplane certificated for the carriage of at least four persons and have a variable pitch propeller and retractable landing gear;
- (c) VFR flight at relatively critical high air speeds, recognition of and recovery from spiral dives;
- (d) night flight time including take-offs and landings as PIC.

(4) phase 4:

The dual instruction and testing up to the CPL (A) skill test contain the following:

- (i) up to 30 hours instruction which may be allocated to specialised aerial work training;
- (ii) repetition of exercises in phase 3, as required;
- (iii) in-flight manoeuvres and particular flight characteristics;
- (iv) ME training.

If required, operation of an ME aeroplane including operation of the aeroplane with one engine simulated inoperative, and engine shutdown and restart (the latter exercise at a safe altitude unless carried out in an FSTD).

E. CPL modular course: aeroplanes

- (a) The CPL modular course should last 18 months. This period may be extended where additional training is provided by the ATO. The flight instruction and skill test need to be completed within the period of validity of the pass in the theoretical examinations.
- (b) An approved course should include formal classroom work and may include the use of such facilities as interactive video, slide or tape presentation, learning carrels and computer-based training and other media distance learning (correspondence) courses as approved by MCAA. Approved distance learning (correspondence) courses may also be offered as part of the course.

THEORETICAL KNOWLEDGE

(c) The 250 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by MCAA, in suitable proportions.

FLYING TRAINING

- (d) The following flight time is suggested for the flying training:
 - (1) visual flight training: suggested flight time
 (i) Exercise 1: pre-flight operations: mass and balance determination, aeroplane inspection and servicing.
 (ii) Exercise 2: 0:45 hours
 - take-off, traffic pattern, approach and landing, use of checklist, collision avoidance and checking procedures.
 - (iii) Exercise 3: 0:45 hours
 - traffic patterns: simulated engine failure during and after take-off.
 (iv) Exercise 4: 1:00 hours maximum performance (short field and obstacle clearance) take-offs and short-field landings.
 - (v) Exercise 5: 1:00 hours crosswind take-offs, landings and go-arounds.
 - (vi) Exercise 5: 0:45 hoursflight at relatively critical high air speeds; recognition of and recovery from spiral dives.

(vii) Exercise 7: 0:45 hours flight at critically slow air speeds, spin avoidance, recognition of and recovery from incipient and full stalls.

- (viii) Exercise 8: 10:00 hours cross-country flying using DR and radio navigation aids; flight planning by the applicant; filing of ATC flight plan; evaluation of weather briefing documentation, NOTAM, etc.; R/T procedures and phraseology; positioning by radio navigation aids; operation to, from and transiting controlled aerodromes, compliance with ATS procedures for VFR flights, simulated radio communication failure, weather deterioration, diversion procedures; simulated engine failure during cruise flight; selection of an emergency landing strip.
- (2)instrument flight training:
 - This module is identical to the 10 hours basic instrument flight module as set out in AMC2 (i) to Appendix 6. This module is focused on the basics of flying by sole reference to instruments, including limited panel and unusual attitudes.
 - All exercises may be performed in an FNPT I or II or an FFS. If instrument flight training is (ii) in VMC, a suitable means of simulating IMC for the student should be used.
 - A BITD may be used for the following exercises: (9), (10), (11), (12), (14) and (16). (iii)
 - The use of the BITD is subject to the following: (iv)
 - (A) the training is complemented by exercises on an aeroplane;
 - (B) the record of the parameters of the flight is available;
 - an FI(A) or IRI(A) conducts the instruction. (C)
 - Exercise 9: 0:30 hours (v) Basic instrument flying without external visual cues; horizontal flight; power changes for acceleration or deceleration, maintaining straight and level flight; turns in level flight with 15 ° and 25 ° bank, left and right; roll-out onto predetermined headings.
 - (vi) Exercise 10: 0:45 hours Repetition of exercise 9; additionally climbing and descending, maintaining heading and
 - speed, transition to horizontal flight; climbing and descending turns. 0:45 hours
 - (vii) Exercise 11:
 - Instrument pattern:
 - start exercise, decelerate to approach speed, flaps into approach configuration; (A)
 - (B) initiate standard turn (left or right);
 - (C) roll out on opposite heading, maintain new heading for 1 minute;
 - (D) standard turn, gear down, descend 500 ft/min;
 - (E) roll out on initial heading, maintain descent (500 ft/min) and new heading for 1 minute:
 - (F) transition to horizontal flight, 1.000 ft below initial flight level;
 - (G) initiate go-around;
 - (H) climb at best rate of climb speed.
 - (viii) Exercise 12: 0:45 hours
 - Repetition of exercise 9 and steep turns with 45° bank; recovery from unusual attitudes
 - Exercise 13: 0:45 hours (ix) Repetition of exercise 12 (x) Exercise 14: 0:45 hours Radio navigation using VOR, NDB or, if available, VDF; interception of predetermined ODM and ODR. Exercise 15: (xi) 0:45 hours
 - Repetition of exercise 9 and recovery from unusual attitudes.
 - Exercise 16: 0:45 hours (xii) Repetition of exercise 9, turns and level change and recovery from unusual attitudes with simulated failure of the artificial horizon or directional gyro.
 - (xiii) Exercise 17: 0:45 hours
 - Recognition of, and recovery from, incipient and full stalls. (xiv) Exercise 18: 3:30 hours
 - Repetition of exercises (14), (16) and (17).
- (3) ME training

If required, operation of an ME aeroplane in the exercises 1 through 18, including operation of the aeroplane with one engine simulated inoperative, and engine shutdown and restart. Before commencing training, the applicant should have complied with the type and class ratings requirements as appropriate to the aeroplane used for the test.

F. ATP/IR integrated course: helicopters

(a) The ATP/IR integrated course should last between 12 and 36 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for the hours flown should be entered into the applicant's training record. In case of a student pilot who does not hold a pilot licence and with the approval of MCAA, an ATO may designate certain dual exercises to be flown in an aeroplane or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

- (c) The 750 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by MCAA, in suitable proportions.
 - The 750 hours of instruction should be divided in such a way that in each subject the minimum hours are:

(1)	Air law	40 hours
(2)	Aircraft general knowledge	80 hours
(3)	Flight performance and planning	90 hours
(4)	Human performance and limitations	50 hours
(5)	Meteorology	60 hours
(6)	Navigation	150 hours
(7)	Operational procedures	20 hours
(8)	Principles of flight	30 hours
(9)	Communications	30 hours
0.1		1.0.1

Other subdivision of hours may be agreed upon between MCAA and the ATO.

- (d) The flight instruction is divided into four phases:
 - (1) phase 1:

Flight exercises up to the first solo flight comprise a total of not less than 12 hours dual flight instruction on a helicopter, including:

- (i) pre-flight operations, mass and balance determination, helicopter inspection and servicing;
- (ii) aerodrome and traffic pattern operations, collision avoidance and procedures;
- (iii) control of the helicopter by external visual reference;
- (iv) take-offs, landings, hovering, look-out turns and normal transitions from and to the hover;
- (v) emergency procedures, basic auto-rotations, simulated engine failure, ground resonance recovery if relevant to type.
- (2) phase 2:

Flight exercises until general handling and day VFR navigation progress check, and basic instrument flying progress check. This phase comprises a total flight time of not less than 128 hours including 73 hours of dual flight instruction flight time and including at least 5 hours VFR conversion training on an ME helicopter, 15 hours of solo flight and 40 hours flown as student PIC. The instruction and testing contain the following:

- (i) sideways and backwards flight, turns on the spot;
- (ii) incipient vortex ring recovery;
- (iii) advanced/touchdown auto-rotations, simulated engine-off landings, practice forced landings. Simulated equipment malfunctions and emergency procedures relating to malfunctions of engines, controls, electrical and hydraulic circuits;
- (iv) steep turns;
- (v) transitions, quick stops, out of wind manoeuvres, sloping ground landings and take-offs;
- (vi) limited power and confined area operations, including low level operations to and from unprepared sites;
- (vii) flight by sole reference to basic flight instruments, including completion of a 180 ° turn and recovery from unusual attitudes to simulate inadvertent entry into cloud;
- (viii) cross-country flying by external visual reference, DR and radio navigation aids, diversion procedures;
- (ix) aerodrome and traffic pattern operations at different aerodromes;
- (x) operations to, from and transiting controlled aerodromes; compliance with ATS procedures, R/T procedures and phraseology;
- (xi) application of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS;

- (xii) night flight, including take-offs and landings as PIC;
- (xiii) general handling, day VFR navigation and basic instrument flying progress checks in accordance with Appendix 4 to Part-FCL, conducted by an FI not connected with the applicant's training.
- (3) phase 3:

Flight exercises up to IR skill test. This part comprises a total of 40 hours dual instrument flight time, including 10 hours of an ME IFR certificated helicopter.

The instruction and testing should contain the following:

- (i) pre-flight procedures for IFR flights, including the use of the flight manual and appropriate ATS documents in the preparation of an IFR flight plan;
- (ii) procedures and manoeuvres for IFR operation under normal, abnormal and emergency conditions covering at least:
 - (A) transition from visual to instrument flight on take-off;
 - (B) SIDs and arrivals;
 - (C) en-route IFR procedures;
 - (D) holding procedures;
 - (E) instrument approaches to specified minima;
 - (F) missed approach procedure;
 - (G) landings from instrument approaches;
 - (H) in-flight manoeuvres and particular flight characteristics;
 - (I) instrument exercises with one engine simulated inoperative.
- (4) phase 4:

Instruction in MCC should comprise the relevant training set out in FCL.735.H and AMC1 FCL, 735.A, FCL.735.H and FCL.735.As.

If a type rating for MP helicopter is not required on completion of this part, the applicant should be provided with a certificate of course completion for MCC training.

G. ATP integrated course: helicopters

(a) The ATP integrated course should last between 12 and 36 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for the hours flown should be entered into the applicant's training record. In case of a student pilot who does not hold a pilot licence and with the approval of MCAA, an ATO may designate certain dual exercises to be flown in an aeroplane or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 650 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by MCAA, in suitable proportions.

The 650 hours of instruction should be divided in such a way that in each subject the minimum hours are:

(1)	Air law	30 hours
(2)	Aircraft general knowledge	70 hours
(3)	Flight performance and planning	65 hours
(4)	Human performance and limitations	40 hours
(5)	Meteorology	40 hours
(6)	Navigation	120 hours
(7)	Operational procedures	20 hours
(8)	Principles of flight	30 hours
(9)	Communications	25 hours
0.1	1 1: : :	MOAA

Other subdivision of hours may be agreed upon between MCAA and the ATO.

- The flight instruction is divided into three phases:
 - (1) phase 1:

(d)

- Flight exercises up to the first solo flight comprise a total of not less than 12 hours dual flight instruction on a helicopter, including:
- (i) pre-flight operations, mass and balance determination, helicopter inspection and servicing;
- (ii) aerodrome and traffic pattern operations, collision avoidance and procedures;

- (iii) control of the helicopter by external visual reference;
- (iv) take-offs, landings, hovering, look-out turns and normal transitions from and to the hover;
- (v) emergency procedures, basic auto-rotations, simulated engine failure, ground resonance recovery if relevant to type.
- (2) phase 2:

Flight exercises until general handling and day VFR navigation progress and basic instrument flying progress check conducted by an FI not connected with the applicant's training. This phase comprises a total flight time of not less than 128 hours, including 73 hours of dual instruction flight time and including at least 5 hours VFR conversion training on an ME helicopter, 15 hours of solo flight and 40 hours flown as student PIC. The instruction and testing contain the following:

- (i) sideways and backwards flight, turns on the spot;
- (ii) incipient vortex ring recovery;
- (iii) touchdown or advanced auto-rotations, simulated engine-off landings, practice forced landings. Simulated equipment malfunctions and emergency procedures relating to malfunctions of engines, controls, electrical and hydraulic circuits;
- (iv) steep turns;
- (v) transitions, quick stops, out of wind manoeuvres, sloping ground landings and take-offs;
- (vi) limited power and confined area operations, including low level operations to and from unprepared sites;
- (vii) 10 hours flight by sole reference to basic flight instruments, including completion of a 180 ° turn and recovery from unusual attitudes to simulate inadvertent entry into cloud;
- (viii) cross-country flying by external visual reference, DR and radio navigation aids, diversion procedures;
- (ix) aerodrome and traffic pattern operations at different aerodromes;
- (x) operations to, from and transiting controlled aerodromes, compliance with ATS procedures, R/T procedures and phraseology;
- (xi) application of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS;
- (xii) night flight, including take-offs and landings as PIC;
- (xiii) general handling, day VFR navigation and basic instrument flying progress checks in accordance with Appendix 4 to Part-FCL, conducted by an FI not connected with the applicant's training.

(3) phase 3:

Instruction in MCC comprises the relevant training set out in FCL.735.H and AMC1 FCL,735.A, FCL.735.H and FCL.735.As.

If a type rating for MP helicopter is not required on completion of this part, the applicant should be provided with a certificate of course completion for MCC training.

H. ATP modular theoretical knowledge course: helicopters

- (a) The aim of this course is to train pilots who have not received the theoretical knowledge instruction during an integrated course to the level of theoretical knowledge required for the ATPL.
- (b) An approved course should include formal classroom work and may include the use of such facilities as interactive video, slide or tape presentation, learning carrels and computer-based training and other media distance learning (correspondence) courses as approved by MCAA. Approved distance learning (correspondence) courses may also be offered as part of the course.
- (c) The ATP modular course should last 18 months. This period may be extended where additional training is provided by the ATO. The flight instruction and skill test need to be completed within the period of validity of the pass in the theoretical examinations.

I. CPL/IR integrated course: helicopters

(a) The CPL/IR integrated course should last between 9 and 30 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for the hours flown should be entered into the applicant's training record. In case of a student pilot who does not hold a pilot licence and with the approval of MCAA, an ATO may designate certain dual exercises to be flown in an aeroplane or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 500 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by MCAA, in suitable proportions.

The 500 hours of instruction should be divided in such a way that in each subject the minimum hours are:

(1) Air law 30 hours (2) Aircraft general knowledge 50 hours (3) Flight performance and planning 60 hours (4) Human performance and limitations 15 hours (5) Meteorology 40 hours Navigation 100 hours (6) Operational procedures (7)10 hours (8) Principles of flight 25 hours (9) Communications 30 hours

Other subdivision of hours may be agreed upon between MCAA and the ATO.

FLYING TRAINING

- (d) The flight instruction is divided into three phases:
 - (1) phase 1:
 - Flight exercises up to the first solo flight. This part comprises a total of at least 12 hours dual flight instruction on a helicopter including:
 - (i) pre-flight operations: mass and balance determination, helicopter inspection and servicing;
 - (ii) aerodrome and traffic pattern operations, collision avoidance and procedures;
 - (iii) control of the helicopter by external visual reference;
 - (iv) take-offs, landings, hovering, look-out turns and normal transitions from and to the hover;
 - (v) emergency procedures, basic auto-rotation, simulated engine failure, ground resonance recovery if relevant to type.

(2) phase 2:

Flight exercises until general handling and day VFR navigation progress check conducted by an FI not connected with the applicant's training, and basic instrument progress check. This part comprises a total flight time of not less than 128 hours, including 73 hours of dual instruction flight time and including at least 5 hours VFR conversion training on an ME helicopter, 15 hours of solo flight and 40 hours flown as SPIC. The instruction and testing contain the following:

- (i) sideways and backwards flight, turns on the spot;
- (ii) incipient vortex ring recovery;
- touchdown or advanced auto-rotation and simulated engine-off landings, practice forced landings. Simulated equipment malfunctions and emergency procedures relating to malfunctions of engines, controls, electrical and hydraulic circuits;
- (iv) steep turns;
- (v) transitions, quick stops, out of wind manoeuvres, sloping ground landings and take-offs;
- (vi) limited power and confined area operations, including selection of and low level operations to and from unprepared sites;
- (vii) flight by sole reference to basic flight instruments, including completion of 180 degree turn and recovery from unusual attitudes to simulate inadvertent entry into cloud;
- (viii) cross-country flying by external visual reference, DR and radio navigation aids and diversion procedures;
- (ix) aerodrome and traffic pattern operations at different aerodromes;
- (x) operations to, from and transiting controlled aerodromes, compliance with ATS procedures, R/T procedures and phraseology;
- (xi) application of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS;
- (xii) night flight, including take-offs and landings as PIC;
- (xiii) general handling, day VFR navigation and basic instrument flying progress checks in accordance with Appendix 4 to Part-FCL, conducted by an FI not connected with the applicant's training.

(3) phase 3:

Flight exercises up to IR skill test. This part comprises a total of 40 hours dual instrument flight time, including 10 hours of an ME IFR certificated helicopter.

The instruction and testing should contain the following:

- (i) pre-flight procedures for IFR flights, including the use of the flight manual and appropriate ATS documents in the preparation of an IFR flight plan;
- (ii) procedures and manoeuvres for IFR operation under normal, abnormal and emergency conditions covering at least:
 - (A) transition from visual to instrument flight on take-off;
 - (B) SIDs and arrivals;
 - (C) en-route IFR procedures;
 - (D) holding procedures;
 - (E) instrument approaches to specified minima;
 - (F) missed approach procedure;
 - (G) landings from instrument approaches;
 - (H) in-flight manoeuvres and particular flight characteristics;
 - (I) instrument exercises with one engine simulated inoperative.

J. CPL integrated course: helicopters

(a) The CPL integrated course should last between 9 and 24 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for the hours flown should be entered into the applicant's training record. In case of a student pilot who does not hold a pilot licence and with the approval of MCAA, an ATO may designate certain dual exercises to be flown in an aeroplane or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 350 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by MCAA, in suitable proportions.

The 350 hours of instruction should be divided in such a way that in each subject the minimum hours are:

(1)	Air law	25 hours	
(2)	Aircraft general knowledge	30 hours	
(3)	Flight performance and planning	25 hours	
(4)	Human performance and limitations	10 hours	
(5)	Meteorology	30 hours	
(6)	Navigation	55 hours	
(7)	Operational procedures	8 hours	
(8)	Principles of flight	20 hours	
(9)	Communications	10 hours	
0.1	1 11 1 1 1 1 1 1		-

Other subdivision of hours may be agreed upon between MCAA and the ATO.

FLYING TRAINING

(d)

- The flight instruction is divided into two phases:
- (1) phase 1:
 - Flight exercises up to the first solo flight. This part comprises a total of not less than 12 hours dual flight instruction on a helicopter, including:
 - (i) pre-flight operations: mass and balance determination, helicopter inspection and servicing;
 - (ii) aerodrome and traffic pattern operations, collision avoidance and procedures;
 - (iii) control of the helicopter by external visual reference;
 - (iv) take-offs, landings, hovering, look-out turns and normal transitions from and to the hover;
 - (v) emergency procedures, basic auto-rotations, simulated engine failure, ground resonance recovery if relevant to type.
- (2) phase 2:

Flight exercises until general handling and day VFR navigation progress check conducted by an FI not connected with the applicant's training, and basic instrument progress check. This part comprises a total flight time of not less than 123 hours, including 73 hours of dual instruction flight time, 15 hours of solo flight and 35 hours flown as SPIC. The instruction and testing contain the following:

- (i) sideways and backwards flight, turns on the spot;
- (ii) incipient vortex ring recovery;
- (iii) touchdown or advanced auto-rotations and simulated engine-off landings, practice forced landings. Simulated equipment malfunctions and emergency procedures relating to malfunctions of engines, controls, electrical and hydraulic circuits;
- (iv) steep turns;
- (v) transitions, quick stops, out of wind manoeuvres, sloping ground landings and take-offs;
- (vi) limited power and confined area operations, including selection of and low level operations to and from unprepared sites;
- (vii) flight by sole reference to basic flight instruments, including completion of a 180° turn and recovery from unusual attitudes to simulate inadvertent entry into cloud;
- (viii) cross-country flying by external visual reference, DR and radio navigation aids, diversion procedures;
- (ix) aerodrome and traffic pattern operations at different aerodromes;
- (x) operations to, from and transiting controlled aerodromes, compliance with ATS procedures, R/T procedures and phraseology;
- (xi) application of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS;
- (xii) night flight, including take-offs and landings as PIC;
- (xiii) general handling, day VFR navigation and basic instrument flying progress checks in accordance with Appendix 4 to Part-FCL, conducted by an FI not connected with the applicant's training.

K. CPL modular course: helicopters

- (a) The CPL modular course should last 18 months. This period may be extended where additional training is provided by the ATO. The flight instruction and skill test need to be completed within the period of validity of the pass in the theoretical examinations.
- (b) An approved course should include formal classroom work and may include the use of facilities such as interactive video, slide or tape presentation, learning carrels and computer-based training and other media distance learning (correspondence) courses as approved by MCAA. Approved distance learning (correspondence) courses may also be offered as part of the course.

THEORETICAL KNOWLEDGE

(c) The 250 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by MCAA, in suitable proportions.

FLYING TRAINING

(d) The flying instruction comprises the following items. The flight time allocated to each exercise is at the discretion of the FI, provided that at least 5 hours flight time is allocated to cross-country flying.

VISUAL INSTRUCTION

- (e) Within the total of dual flight instruction time, the applicant may have completed during the visual phase up to 5 hours in a helicopter FFS or FTD 2, 3 or FNPT II, III.
 - (1) pre-flight operations: mass and balance calculations, helicopter inspection and servicing;
 - (2) level flight speed changes, climbing, descending, turns, basic auto-rotations, use of checklist, collision avoidance and checking procedures;
 - (3) take-offs and landings, traffic pattern, approach, simulated engine failures in the traffic pattern. Sideways and backwards flight and spot turns in the hover;
 - (4) recovery from incipient vortex ring condition;
 - (5) advanced auto-rotations covering the speed range from low speed to maximum range and manoeuvre in auto-rotations (180°, 360° and 'S' turns) and simulated engine-off landings;
 - selection of emergency landing areas, auto-rotations following simulated emergencies to given areas and steep turns at 30° and 45° bank;
 - (7) manoeuvres at low level and quick-stops;
 - (8) landings, take-offs and transitions to and from the hover when heading out of wind;
 - (9) landings and take-offs from sloping or uneven ground;
 - (10) landings and take-offs with limited power;
 - (11) low level operations into and out of confined landing sites;

(12) cross-country flying using dead reckoning and radio navigation aids, flight planning by the applicant, filing of ATC flight plan, evaluation of weather briefing documentation, NOTAM, etc., R/T procedures and phraseology, positioning by radio navigation aids; operation to, from and transiting controlled aerodromes, compliance with ATS procedures for VFR flights, simulated radio communication failure, weather deterioration, diversion procedures; location of an off airfield landing site and simulated approach.

BASIC INSTRUMENT INSTRUCTION

- (f) A maximum of 5 hours of the following exercises may be performed in an FFS or FTD or FNPT. Flight training should be carried out in VMC using a suitable means of simulating IMC for the student.
 - Exercise 1: Instrument flying without external visual cues. Level flight performing speed changes, maintaining flight altitude (level, heading) turns in level flight at rate 1 and 30° bank, left and right; roll-out on predetermined headings;
 - (2) Exercise 2: repetition of exercise 1; additionally climbing and descending, maintaining heading and speed, transition to horizontal flight; climbing and descending turns;
 - (3) Exercise 3: repetition of exercise 1; and recovery from unusual attitudes;
 - (4) Exercise 4: radio navigation;
 - (5) Exercise 5:

repetition of exercise 1; and turns using standby magnetic compass and standby artificial horizon (if fitted).

GM1 to Appendix 3; Appendix 6; FCL.735.H

OVERVIEW OF FSTD TRAINING CREDITS FOR DUAL INSTRUCTION IN HELICOPTER FLYING TRAINING COURSES

	FSTD credits				
	Dual	Solo	SPIC	Total	FFS;FTD; NPT
Visual, including ME T/R training	75 hrs	15 hrs	40 hrs	130 hrs	30 hrs FFS C/D level or 25 hrs FTD 2, 3 or 20 hrs FNPT II/III
Basic instrument	10 hrs	-	-	10 hrs	20 hrs FFS or FTD 2, 3 or
Instrument rating training	40 hrs	-	-	40 hrs	FNPT II/III or 10 hrs in at least an FNPT I
МСС	15 hrs	-	-	15 hrs	15 hrs FFS or FTD 2, 3 (MCC) or FNPT II/III (MCC)
Total	140 hrs	55	hrs	195 hrs	65 hrs FFS or 60 hrs FTD 2, 3 or 55 hrs FNPT II/III or 10 hrs in at least an FNPT I

	FSTD credits				
	Dual	Solo	SPIC	Total	FFS;FTD; NPT
Visual, including ME T/R training	75 hrs	15 hrs	40 hrs	130 hrs	30 hrs FFS C/D level or 25 hrs FTD 2, 3 or 20 hrs FNPT II/III
Basic instrument	10 hrs	-	-	10 hrs	5 hrs in at least an FNPT I
MCC/VFR	10 hrs	-	-	10 hrs	10 hrs FFS or FTD 2, 3 (MCC) or FNPT II/III (MCC)
Total	95 hrs	55 hrs		150 hrs	40 hrs FFS or 35 hrs FTD 2, 3 or 30 hrs FNPT II/III or 5 hrs in at least an FNPT I

	FSTD credits				
	Dual	Solo	SPIC	Total	FFS;FTD; NPT
Visual, including ME T/R training	75 hrs	15 hrs	40 hrs	130 hrs	30 hrs FFS C/D level or 25 hrs FTD 2, 3 or 20 hrs FNPT II/III
Basic instrument	10 hrs	-	-	10 hrs	20 hrs FFS or FTD 2, 3 or
Instrument rating training	40 hrs	-	-	40 hrs	FNPT II/III or 10 hrs in at least an FNPT I
Total	125 hrs	55	hrs	180 hrs	50 hrs FFS or 45 hrs FTD 2, 3 or 40 hrs FNPT II/III or 10 hrs in at least an FNPT I

	FSTD credits				
	Dual	Solo	SPIC	Total	FFS;FTD; NPT
Visual, including ME T/R training	75 hrs	15 hrs	35 hrs	125 hrs	30 hrs FFS C/D level or 25 hrs FTD 2, 3 or 20 hrs FNPT II/III
Basic instrument	10 hrs	-	-	10 hrs	5 hrs in at least an FNPT I
Total	85 hrs	50	hrs	135 hrs	35 hrs FFS or 30 hrs FTD 2, 3 or 25 hrs FNPT II/III or 5 hrs in at least an FNPT I

	FSTD credits				
	Dual	Solo	SPIC	Total	FFS;FTD; NPT
Visual	20 hrs	-	-	20 hrs	5 hrs FFS or FTD 2, 3 or FNPT II/III
Basic instrument	10 hrs	-	-	10 hrs	5 hrs in at least an FNPT I
Total	30 hrs	-	-	30 hrs	10 hrs FFS or FTD 2, 3 or FNPT II/III or 5 hrs in at least an FNPT I

	FSTD credits				
	Dual	Solo	SPIC	Total	FFS;FTD; NPT
SE	50 hrs	-	-	50 hrs	35 hrs FFS or FTD 2, 3 or FNPT II/III or 20 hrs FNPT I (H) or (A)
ME	55hrs	-	-	55 hrs	40 hrs FFS or FTD 2, 3 or FNPT II/III or 20 hrs FNPT I (H) or (A)

	FSTD credits				
	Dual	Solo	SPIC	Total	FFS;FTD; NPT
MCC / IR	20 hrs	-	-	20 hrs	20 hrs FFS C/D level or 25 hrs FTD 2, 3 (MCC) or FNPT II/III (MCC)
MCC / VFR	15 hrs	-	-	15 hrs	15 hrs FFS or FTD 2, 3 or FNPT II/III (MCC) or FNPT II/III (MCC)
MCC/IR for MCC VFR holder	5 hrs	-	-	5 hrs	5 hrs FFS or FTD 2, 3 (MCC) or FNPT II/III (MCC)

Note: In this matrix FSTD credits refer to helicopter FSTDs if not mentioned otherwise.

GM1 to Appendix 5 Integrated MPL training course GENERAL

- (a) In broad terms, the MPL holder is expected to be able to complete the airline operators' conversion course with a high probability of success and within the time frame normally allowed for this phase. The standard is equivalent to what is currently expected from graduates of the ATP (A) integrated course who have completed type rating training.
- (b) The general approach is to use the existing ATP(A) integrated training course as a reference and to implement progressively the MPL integrated training course and specifically the transfer from actual flight to simulated flight.
- (c) This transfer should be organised in a way that is similar to the approach used for ETOPS. Successive evolutions of the training syllabus introduce progressively a higher level of simulated flight and a reduction of actual flight. Change from one version to the next should only take place after enough experience has been gained and once its results, including those of airline operator conversion courses, have been analysed and taken into account.

MPL TRAINING SCHEME

(d) The following scheme should be applied:

MPL Training Scheme Minimum 240 hours of training, including "Pilot Flying" (PF) and "Pilot Non Flying" (PNF)

Phases of training		hases of training	Training items	Flight and simulated flight training media - Minimum level requirement -		Ground training media
4		Phase 4 – advanced Type rating training within an airline oriented environment	 CRM Landing training All weather LOFT Abnormal procedures Normal procedures 	Aeroplane: ME Multi-crew certified FSTD FS level D or C + ATC simulation	12 take-offs and landings as PF 	
	Integrated TEM	Phase 3 – intermediate Application of multi- crew operations in a high erformance ME turbine aeroplane	CRM LOFT Abnormal procedures Normal procedures Multi-crew Instrument flight	FSTD: representing an ME turbine powered aeroplane to be operated with a co-pilot and qualified to an equivalent standard to level B + ATC simulation	PF / PNF	 CBT E-learning Part task
	TEM principles	Phase 2–basic Introduction of multi- crew operations and instrument flight	CRM PF / PNF complement IFR cross-country Instrument flight	Aeroplane: SE or ME FSTD: FNPT II + MCC	PF / PNF	trainerClass room
$\left[\right]$	s [Phase 1 – core flying skills Specific basic SP training	 CRM VFR Cross-country Solo flight Basic Instrument flight Principles of flight Cockpit procedures Upset recovery Night flight 	Aeroplane: SE or ME FSTD: FNPT I / BITD	PF	

THEORETICAL KNOWLEDGE INSTRUCTION

(e) The 750 hours of theoretical knowledge instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by MCAA, in suitable proportions.

COMPETENCY UNITS, COMPETENCY ELEMENTS AND PERFORMANCE CRITERIA

- (f) Apply human performance principles, including principles of threat and error management:
 - (1) cooperation;
 - (2) leadership and managerial skills;

- (3) situation awareness;
- (4) decision making.

These behaviour categories are intended to help in the effective utilisation of all available resources to achieve safe and efficient operations.

These behaviour categories may be adapted and extended to incorporate issues like communication and use of automation if it is considered to be relevant to the development of the curriculum.

(g) Perform Aircraft Ground and Pre-Flight Operations

List of competency elements and performance criteria:

(1) demonstrate attitudes and behaviours appropriate to the safe conduct of flight, including recognising and managing potential threats and errors;

Duty Observation and assessment
Satisfactory (S)
Unsatisfactory (U)

(2)	perform dispatch duties:	(S) or (U)
	(i) verifies technical condition of the a/c, including adequate use of MEL;	PF/PNF
	(ii) checks technical bulletins and notices;	PF/PNF
	(iii) determines operational environment and pertinent weather;	PF/PNF
	(iv) determines impact of weather on aircraft performance;	PF/PNF
	(v) applies flight planning and load procedures;	PF/PNF
	(vi) determines fuel requirement;	PF/PNF
	(vii) files an ATS flight plan (if required).	PF/PNF
(3)	provide flight crew and cabin crew briefings;	
	(i) briefed flight crew in all relevant matters;	PF
	(ii) briefed cabin crew in all relevant matters.	PF
(4)	perform pre-flight checks and cockpit preparation:	
	(i) ensures the airworthiness of the aircraft;	PF
	(ii) performs the cockpit preparation and briefings;	PF/PNF
	(iii) performs FMS initialisation, data insertion and confirmation;	PF/PNF
	(iv) optimises & checks take-off performance & take-off data calculation.	PF/PNF
(5)	perform engine start:	
	(i) asks for, receives acknowledges and checks ATC clearance;	PNF
	(ii) performs engine start procedure;	PF/PNF
	(iii) uses standard communication procedures with ground crew and ATC.	PF/PNF
(6)	perform taxi out:	
	(i) receives, checks and adheres to taxi clearance;	PNF
	(ii) taxis the aircraft, including use of exterior lighting;	PF
	(iii) complies to taxi clearance;	PF/PNF
	(iv) maintains look-out for conflicting traffic and obstacles;	PF/PNF
	(v) operates thrust, brakes and steering;	PF
	(vi) conducts relevant briefings;	PF
	(vii) uses standard communication procedures with crew and ATC;	PNF
	(viii) completes standard operating procedures and checklists;	PF/PNF
	(ix) updates and confirms FMS data;	PF/PNF
	(x) manages changes in performance and departure route;	PF/PNF
	(xi) completes de or anti-ice procedures.	PF/PNF
(7)	manage abnormal and emergency situations:	
	(i) identifies the abnormal condition;	PF/PNF
	(ii) interprets the abnormal condition;	PF/PNF
	(iii) performs the procedure for the abnormal condition.	PF/PNF
(8)	communicate with cabin crew, passengers and company:	
	(i) communicates relevant information with cabin crew;	PF
	(ii) communicates relevant information with company;	PF/PNF
	(iii) makes passenger announcements when appropriate.	PF/PNF

(h)	Perform take-off			
(1)	List of competency elements and performance criteria:	ht including recognising		
(1)	(1) demonstrate attitudes and behaviours appropriate to the safe conduct of flight, including re and managing potential threats and errors.			
(2)	perform pre-take-off and pre-departure preparation:	(S) or (U)		
(2)	(i) checks and acknowledges line up clearance;	PF/PNF		
	(ii) checks correct runway selection ;	PF/PNF		
	(iii) confirms validity of performance data;	PF/PNF		
	(iv) checks approach sector and runway are clear;	PF/PNF		
	(v) confirms all checklists and take-off preparations completed;	PF/PNF		
	(vi) lines up the aircraft on centre line without losing distance;	PF		
	(vii) checks weather on departure sector;	PF/PNF		
	(viii) checks runway status and wind.	PF/PNF		
(3)	perform take-off roll:			
	(i) applies take-off thrust;	PF		
	(ii) checks engine parameters;	PNF		
	(iii) checks air speed indicators;	PF/PNF		
	(iv) stays on runway centre line.	PF		
(4)	perform transition to instrument flight rules:			
	(i) applies v1 procedures;	PF / PNF		
	(ii) rotates at vr to initial pitch attitude;	PF		
	(iii) establishes initial wings level attitude;	PF		
	(iv) retracts landing gear;	PNF		
	(v) maintains climb out speed.	PF		
(5)	perform initial climb to flap retraction altitude:			
	(i) sets climb power;	PF		
	(ii) adjusts attitude for acceleration;	PF		
	(iii) selects flaps according flap speed schedule;	PF/PNF		
	(iv) observes speed restrictions;	PF		
	(v) completes relevant checklists.	PF/PNF		
(6)	perform rejected take-off:	DE		
	(i) recognises the requirement to abort the take-off;	PF		
	(ii) applies the rejected take-off procedure;	PF DE/DNE		
(7)	(iii) assesses the need to evacuate the aircraft.	PF/PNF		
(7)	perform navigation:	DE		
	 (i) complies to departure clearance; (ii) compliant with applicable departure procedures, for example speeds. 	PF PF		
	(ii) complies with published departure procedures, for example speeds;(iii) monitors navigation accuracy;	PF PF/PNF		
	(iii) monitors navigation accuracy;(iv) communicates and coordinates with ATC.	PNF		
(8)	manage abnormal and emergency situations:	r INI [,]		
(0)	(i) identifies the abnormal condition;	PF/PNF		
	(ii) interprets the abnormal condition;	PF/PNF		
	(iii) performs the procedure for the abnormal condition.	PF/PNF		
	(iii) performs the procedure for the abilitrinal condition.	11/111		
(i)	Perform climb			
(-)	List of competency elements and performance criter	ia:		
(1)	demonstrate attitudes and behaviours appropriate to the safe conduct of flig			
	and managing potential threats and errors;			
(2)	perform SID or en-route navigation:	(S) or (U)		
	(i) complies with departure clearance and procedures;	PF		
	(ii) demonstrates terrain awareness;	PF/PNF		
	(iii) monitors navigation accuracy;	PF/PNF		
	(iv) adjusts flight to weather and traffic conditions;	PF		

```
performs the after take-off items;
(i)
```

PNF

PF

PF/PNF

PF/PNF

(4)	modify	v climb speeds, rate of climb and cruise altitude:	
	(i) .	recognises the need to change speed, rate of climb or cruise altitude;	PF
	(ii)	selects and maintains the appropriate climb speed or rate of climb;	PF
	(iii)	selects optimum cruise flight level.	PF/PNF
(5)	perform	n systems operations and procedures:	
	(i)	monitors operation of all systems;	PF/PNF
	(ii)	operates systems as required.	PF/PNF
(6)	manag	e abnormal and emergency situations:	
	(i)	identifies the abnormal condition;	PF/PNF
	(ii)	interprets the abnormal condition;	PF/PNF
	(iii)	performs the procedure for the abnormal condition.	PF/PNF
(7)	commu	inicate with cabin crew, passengers and company:	
	(i)	communicates relevant information with cabin crew;	PF
	(ii)	communicates relevant information with company;	PF/PNF
	(iii)	makes passenger announcements when appropriate.	PF

(j) **Perform cruise**

List of competency elements and performance criteria

(1)	demonstrate attitudes and behaviours	s appropriate to the	safe conduct of flight,	including recognising
	and managing potential threats and er	rors;		

	and managing potential threads and errors,	
(2)	monitor navigation accuracy:	(S) or (U)
	(i) demonstrates adequate area knowledge;	PF/PNF
	(ii) demonstrates adequate route knowledge;	PF/PNF
	(iii) navigates according to flight plan and clearance	
	(iv) adjusts flight to weather and traffic conditions;	
	(v) communicates and coordinates with ATC;	PNF
	(vi) observes minimum altitudes;	PF/PNF
	(vii) uses all means of automation.	PF
(3)	monitor flight progress:	
	(i) selects optimum speed;	PF
	(ii) selects optimum cruise flight level;	PF
	(iii) monitors and controls fuel status;	PF/PNF
	(iv) recognises the need for a possible diversion;	PF/PNF
	(v) creates a diversion contingency plan if required	l. PF/PNF
(4)	perform descent and approach planning:	
	(i) checks weather of destination and alternate air	port; PF/PNF
	(ii) checks runway in use and approach procedure;	PF/PNF
	(iii) sets the FMS accordingly;	PNF
	(iv) checks landing weight and landing distance rec	uired; PNF
	(v) checks MEA, MGA and MSA;	PF/PNF
	(vi) identifies top of descent point.	PF
(5)	perform systems operations and procedures:	
	(i) monitors operation of all systems;	PF/PNF
	(ii) operates systems as required.	PNF
(6)	manage abnormal and emergency situations:	
	(i) identifies the abnormal condition;	PF/PNF
	(ii) interprets the abnormal condition;	PF/PNF
	(iii) performs the procedure for the abnormal condi	
(7)	communicate with cabin crew, passengers and company	
	(i) communicates relevant information with cabin	
	(ii) communicates relevant information with comp	any; PF/PNF
	(iii) makes passenger announcements when approp	riate. PF

Perform descent (**k**)

List of competency elements and performance criteria:

Demonstrate attitudes and behaviours appropriate to the safe conduct of flight, including recognising (1)and managing potential threats and errors; (S) or (U)

- (2) initiate and manage descent:
 - starts descent according to ATC clearance or optimum descent point; (i) PF PF
 - selects optimum speed and descent rate; (ii)

	(iii)	adjusts speed to existing environmental conditions;	PF
	(iv)	recognises the need to adjust the descent path;	PF
	(v)	adjusts the flight path as required;	PF
	(vi)	utilises all means of FMS descent information.	PF
(3)	monitor	and perform en route and descent navigation:	
	(i)	complies with arrival clearance and procedures;	PF
	(ii)	demonstrates terrain awareness;	PF/PNF
	(iii)	monitors navigation accuracy;	PF/PNF
	(iv)	adjusts flight to weather and traffic conditions;	PF
	(v)	communicates and coordinates with ATC;	PNF
	(vi)	observes minimum altitudes;	PF/PNF
	(vii)	selects appropriate level or mode of automation;	PF
	(viii)	complies with altimeter setting procedures.	PF/PNF
(4)	re-plann	ing and update of approach briefing:	
	(i)	re-checks destination weather and runway in use;	PNF
	(ii)	briefs or re-briefs about instrument approach and landing as required;	PF
	(iii)	reprograms the FMS as required;	PNF
	(iv)	re-checks fuel status.	PF/PNF
(5)	perform	holding:	
	(i)	identifies holding requirement;	PF/PNF
	(ii)	programs FMS for holding pattern;	PNF
	(iii)	enters and monitors holding pattern;	PF
	(iv)	assesses fuel requirements and determines max holding time;	PF/PNF
	(v)	reviews the need for a diversion;	PF/PNF
	(vi)	initiates diversion.	PF
(6)	perform	systems operations and procedures:	
	(i)	monitors operation of all systems;	PF/PNF
	(ii)	operates systems as required.	PF/PNF
(7)	-	abnormal and emergency situations:	
	(i)	identifies the abnormal condition;	PF/PNF
	(ii)	interprets the abnormal condition;	PF/PNF
	(iii)	performs the procedure for the abnormal condition.	PF/PNF
(8)		nicate with cabin crew, passengers and company:	
	(i)	communicates relevant information with cabin crew;	PF
	(ii)	communicates relevant information with company;	PF/PNF
	(iii)	makes passenger announcements when appropriate;	PF

(l) Perform approach

List of competency elements and performance criteria:

demonstrate attitudes and behaviours appropriate to the safe conduct of flight, including recognising and managing potential threats and errors;
 perform approach in general: (S) or (U)

n out our	n annuach in concult	$(\mathbf{S}) \circ \mathbf{r} (\mathbf{U})$
-	n approach in general:	(S) or (U)
(i)	executes approach according to procedures and situation;	PF
(ii)	selects appropriate level or mode of automation;	PF
(iii)	selects optimum approach path;	PF
(iv)	operates controls smooth and coordinated;	PF
(v)	performs speed reduction and flap extension;	PF/PNF
(vi)	performs relevant checklists;	PF/PNF
(vii)	initiates final descent;	PF
(viii)	achieves stabilised approach criteria;	PF
(ix)	ensures adherence to minima;	PF/PNF
(x)	initiates go-around if required;	PF
(xi)	masters transition to visual segment.	PF
perforr	n precision approach:	
(i)	performs ILS approach;	PF
(ii)	performs MLS approach.	PF
perforr	n non-precision approach:	
(i)	performs VOR approach;	PF
(ii)	performs NDB approach;	PF
(iii)	performs SRE approach;	PF

(3)

(4)

	(iv)	performs GNSS approach;	PF	
	(v)	performs ILS loc approach;	PF	
	(vi)	performs ILS back beam approach.	PF	
(5)	perform	m approach with visual reference to ground:		
	(i)	performs standard visual approach;	PF	
	(ii)	performs circling approach.	PF	
(6)	monito	or the flight progress:		
	(i)	insures navigation accuracy;	PF/PNF	
	(ii)	communicates with ATC and crew members;	PNF	
	(iii)	monitors fuel status.	PF/PNF	
(7)	perform	m systems operations and procedures:		
	(i)	monitors operation of all systems;	PF	
	(ii)	operates systems as required.	PF	
(8)	manag	e abnormal and emergency situations:		
	(i)	identifies the abnormal condition;	PF/PNF	
	(ii)	interprets the abnormal condition;	PF/PNF	
	(iii)	performs the procedure for the abnormal condition.	PF/PNF	
(9)	perform	m missed approach and go-around:		
	(i)	initiates go-around procedure;	PF	
	(ii)	navigates according to missed approach procedure;	PF	
	(iii)	completes the relevant checklists;	PF/PNF	
	(iv)	initiates approach or diversion after the go-around;	PF	
	(v)	communicates with ATC and crew members.	PNF	
(10)		unicate with cabin crew, passengers and company:		
	(i)	communicates relevant information with cabin crew;	PF	
	(ii)	communicates relevant information with company;	PF/PNF	
	(iii)	makes passenger announcements when appropriate;	PF	
	(iv)	initiates go-around procedure.	PF	
(m)	Perfor	rm landing		
		List of competency elements and performance criteri	a:	
(1)	demon	strate attitudes and behaviours appropriate to the safe conduct of		ing
		anaging potential threats and errors;		C
(2)		e aircraft;	(S) or (U)	
	/•>		DE	

(2)	land the aircraft;		(S) or (U)
	(i) maintains a stabilised approach path during visual segment;	;	PF
	(ii) recognises and acts on changing conditions for wind shift o	r	
	wind shear segment;	PF	
	(iii) initiates flare;		PF
	(iv) controls thrust;		PF
	(v) achieves touchdown in touchdown zone on centre line;		PF
	(vi) lowers nose wheel;		PF
	(vii) maintains centre line;		PF
	(viii) performs after-touchdown procedures;		PF
	(ix) makes use of appropriate braking and reverse thrust;		PF
	(x) vacates runway with taxi speed.		PF
(3)	perform systems operations and procedures:		
	(i) monitors operation of all systems;		PF
	(ii) operates systems as required.		PF
(4)	manage abnormal and emergency situations:		
	(i) identifies the abnormal condition;		PF/PNF
	(ii) interprets the abnormal condition;		PF/PNF
	(iii) performs the procedure for the abnormal condition.		PF/PNF
(n)	Perform after landing and post flight operations		
	List of competency elements and performance of	criteria:	
(1)	demonstrate attitudes and behaviours appropriate to the safe condu	uct of flig	ht, including recognising
	and managing potential threats and errors;		
(2)	perform taxiing and parking:		(S) or (U)

Penior	in taking the parting.	
(i)	receives, checks and adheres to taxi clearance;	PNF
(ii)	taxies the aircraft including use of exterior lighting;	PF

	(iii)	controls taxi speed;	PF/PNF
	(iv)	maintains centre line;	PF
	(v)	maintains look-out for conflicting traffic and obstacles;	PF
	(vi)	identifies parking position;	PF/PNF
	(vii)	complies with marshalling or stand guidance;	PF/PNF
	(viii)	applies parking and engine shut down procedures;	PF
	(ix)	completes with relevant checklists.	PF/PNF
(3)		n aircraft post-flight operations:	
	(i)	communicates to ground personnel and crew;	PF
	(ii)	completes all required flight documentation;	PF/PNF
	(iii)	ensures securing of the aircraft;	PF
	(iv)	conducts the debriefings.	PF
(4)	perform	n systems operations and procedures:	
	(i)	monitors operation of all systems;	PF/PNF
	(ii)	operates systems as required.	PF/PNF
(5)	manag	e abnormal and emergency situations:	
	(i)	identifies the abnormal condition;	PF/PNF
	(ii)	interprets the abnormal condition;	PF/PNF
	(iii)	performs the procedure for the abnormal condition.	PF/PNF
(6)	comm	inicate with cabin crew, passengers and company:	
	(i)	communicates relevant information with cabin crew;	PF
	(ii)	communicates relevant information with company;	PF/PNF
	(iii)	makes passenger announcements when appropriate.	PF

PRINCIPLES OF THREAT AND ERROR MANAGEMENT

(o) One model that explains the principles of threat and error management is the TEM model.

(1) The components of the TEM model:

There are three basic components in the TEM model, from the perspective of flight crews: threats, errors and undesired aircraft states. The model proposes that threats and errors are part of everyday aviation operations that must be managed by flight crews, since both threats and errors carry the potential to generate undesired aircraft states. Flight crews must also manage undesired aircraft states, since they carry the potential for unsafe outcomes. Undesired state management is an essential component of the TEM model, as important as threat and error management. Undesired aircraft state management largely represents the last opportunity to avoid an unsafe outcome and thus maintain safety margins in flight operations.

- (2) Threats:
 - (i) Threats are defined as events or errors that occur beyond the influence of the flight crew, increase operational complexity, and which must be managed to maintain the margins of safety. During typical flight operations, flight crews have to manage various contextual complexities. Such complexities would include, for example, dealing with adverse meteorological conditions, airports surrounded by high mountains, congested airspace, aircraft malfunctions, errors committed by other people outside of the cockpit, such as air traffic controllers, flight attendants or maintenance workers, and so forth. The TEM model considers these complexities as threats because they all have the potential to negatively affect flight operations by reducing margins of safety;
 - (ii) Some threats can be anticipated, since they are expected or known to the flight crew. For example, flight crews can anticipate the consequences of a thunderstorm by briefing their response in advance, or prepare for a congested airport by making sure they keep a watchful eye on other aircraft as they execute the approach;
 - (iii) Some threats can occur unexpectedly, such as an in-flight aircraft malfunction that happens suddenly and without warning. In this case, flight crews must apply skills and knowledge acquired through training and operational experience;
 - (iv) Lastly, some threats may not be directly obvious to, or observable by, flight crews immersed in the operational context, and may need to be uncovered by safety analysis. These are considered latent threats. Examples of latent threats include equipment design issues, optical illusions, or shortened turn-around schedules;
 - (v) Regardless of whether threats are expected, unexpected, or latent, one measure of the effectiveness of a flight crew's ability to manage threats is whether threats are detected with the necessary anticipation to enable the flight crew to respond to them through deployment of appropriate countermeasures;

- (vi) Threat management is a building block to error management and undesired aircraft state management. Although the threat-error linkage is not necessarily straightforward, and although it may not be always possible to establish a linear relationship, or one-to-one mapping between threats, errors and undesired states, archival data demonstrates that mismanaged threats are normally linked to flight crew errors, which in turn are often linked to undesired aircraft states. Threat management provides the most proactive option to maintain margins of safety in flight operations, by voiding safety-compromising situations at their roots. As threat managers, flight crews are the last line of defence to keep threats from impacting flight operations;
- (vii) Table 1 presents examples of threats, grouped under two basic categories derived from the TEM Model. Environmental threats occur due to the environment in which flight operations take place. Some environmental threats can be planned for and some will arise spontaneously, but they all have to be managed by flight crews in real time. Organisational threats, on the other hand, can be controlled (for example removed or, at least, minimised) at source by aviation organisations. Organisational threats are usually latent in nature. Flight crews still remain the last line of defence, but there are earlier opportunities for these threats to be mitigated by aviation organisations themselves.

Environmental threats	Organisational threats		
(A) weather: thunderstorms, turbulence, icing, wind	(A) operational pressure: delays, late arrivals or		
shear, cross or tailwind, very low or high	equipment changes;		
temperatures;	(B) aircraft: aircraft malfunction, automation event or		
(B) ATC: traffic congestion, ACAS RA/TA, ATC	anomaly, MEL/CDL; ATC runway change, ATIS		
command, ATC error, ATC language difficulty,	communication or units of measurement		
ATC non-standard phraseology,	(QFE/meters);		

(C)	airport: contaminated or short runway;	(C) cabin: flight attendant error, cabin event		
	contaminated taxiway, lack of, confusing, faded	distraction, interruption, cabin door security;		
	signage, markings, birds, aids unserviceable,			
	complex surface navigation procedures or airport			
	constructions;	(D) maintenance: maintenance event or error;		
(D)	terrain: high ground, slope, lack of references or	(E) other: similar call-signs.		
	'black hole';	(F) dispatch: dispatch paperwork event or error;		
(E)	ground: ground-handling event, de-icing or	(G) documentation: manual error or chart error;		
	ground crew error;	(H) other: crew scheduling event.		

 Table 1 Examples of threats (list is not exhaustive)

(3) Errors:

- (i) Errors are defined actions or inactions by the flight crew that lead to deviations from organisational or flight crew intentions or expectations. Unmanaged or mismanaged errors frequently lead to undesired aircraft states. Errors in the operational context thus tend to reduce the margins of safety and increase the probability of adverse events;
- (ii) Errors can be spontaneous (for example without direct linkage to specific, obvious threats), linked to threats, or part of an error chain. Examples of errors would include the inability to maintain stabilised approach parameters, executing a wrong automation mode, failing to give a required callout, or misinterpreting an ATC clearance;
- (iii) Regardless of the type of error, an error's effect on safety depends on whether the flight crew detects and responds to the error before it leads to an undesired aircraft state and to a potential unsafe outcome. This is why one of the objectives of TEM is to understand error management (for example detection and response), rather than to solely focus on error causality (for example causation and commission). From the safety perspective, operational errors that are timely detected and promptly responded to (for example properly managed), errors that do not lead to undesired aircraft states, do not reduce margins of safety in flight operations, and thus become operationally inconsequential. In addition to its safety value, proper error management represents an example of successful human performance, presenting both learning and training value;
- (iv) Capturing how errors are managed is then as important, if not more, as capturing the prevalence of different types of error. It is of interest to capture if and when errors are detected and by whom, the response(s) upon detecting errors, and the outcome of errors. Some errors are quickly detected and resolved, thus becoming operationally inconsequential, while others go undetected or are

mismanaged. A mismanaged error is defined as an error that is linked to or induces an additional error or undesired aircraft state;

- (v) Table 2 presents examples of errors, grouped under three basic categories derived from the TEM model. In the TEM concept, errors have to be 'observable' and therefore, the TEM model uses the 'primary interaction' as the point of reference for defining the error categories;
- (vi) The TEM model classifies errors based upon the primary interaction of the pilot or flight crew at the moment the error is committed. Thus, in order to be classified as aircraft handling error, the pilot or flight crew must be interacting with the aircraft (for example through its controls, automation or systems). In order to be classified as procedural error, the pilot or flight crew must be interacting with a procedure (for example checklists; SOPs; etc.). In order to be classified as communication error, the pilot or flight crew must be interacting with people (ATC, ground crew, other crewmembers, etc.);
- (vii) Aircraft handling errors, procedural errors and communication errors may be unintentional or involve intentional non-compliance. Similarly, proficiency considerations (for example skill or knowledge deficiencies, training system deficiencies) may underlie all three categories of error. In order to keep the approach simple and avoid confusion, the TEM model does not consider intentional non-compliance and proficiency as separate categories of error, but rather as sub-sets of the three major categories of error.

 Aircraft handling errors Aircraft handling, flight controls: vertical, lateral or speed deviations, incorrect flaps or speed brakes, thrust reverser or power settings; (B) automation: incorrect altitude, speed, heading, auto throttle settings, incorrect mode executed or incorrect entries; (C) systems, radio, instruments: incorrect packs, incorrect anti-icing, incorrect altimeter, incorrect fuel switches settings, incorrect speed bug or incorrect radio frequency dialled; (D) ground navigation: attempting to turn down wrong taxiway or runway, taxi too
 flaps or speed brakes, thrust reverser or power settings; (B) automation: incorrect altitude, speed, heading, auto throttle settings, incorrect mode executed or incorrect entries; (C) systems, radio, instruments: incorrect packs, incorrect anti-icing, incorrect altimeter, incorrect fuel switches settings, incorrect speed bug or incorrect radio frequency dialled;
 (B) automation: incorrect altitude, speed, heading, auto throttle settings, incorrect mode executed or incorrect entries; (C) systems, radio, instruments: incorrect packs, incorrect anti-icing, incorrect altimeter, incorrect fuel switches settings, incorrect speed bug or incorrect radio frequency dialled;
 mode executed or incorrect entries; (C) systems, radio, instruments: incorrect packs, incorrect anti-icing, incorrect altimeter, incorrect fuel switches settings, incorrect speed bug or incorrect radio frequency dialled;
altimeter, incorrect fuel switches settings, incorrect speed bug or incorrect radio frequency dialled;
frequency dialled;
(D) ground navigation: attempting to turn down wrong taxiway or runway, taxi too
(D) ground navigation, attempting to tain down wrong taxtway of fullway, taxt too
fast, failure to hold short or missed taxiway or runway.
Procedural errors Procedural errors
(A) SOPs: failure to cross-verify automation inputs;
(B) checklists: wrong challenge and response; items missed, checklist performed
late or at the wrong time;
(C) callouts: omitted or incorrect callouts;
(D) briefings: omitted briefings; items missed;
(E) documentation: wrong weight and balance, fuel information, ATIS, or
clearance information recorded, misinterpreted items on paperwork; incorrect
logbook entries or incorrect application of MEL procedures.
Communication errors Communication errors
(A) crew to external: missed calls, misinterpretations of instructions, incorrect
read-back, wrong clearance, taxiway, gate or runway communicated;
(B) pilot to pilot: within crew miscommunication or mis-interpretation.

Table 2 Examples of errors (list is not exhaustive)

- (4) Undesired aircraft states:
 - (i) Undesired aircraft states are flight crew-induced aircraft position or speed deviations, misapplication of flight controls, or incorrect systems configuration, associated with a reduction in margins of safety. Undesired aircraft states that result from ineffective threat or error management may lead to compromising situations and reduce margins of safety in flight operations. Often considered at the cusp of becoming an incident or accident, undesired aircraft states must be managed by flight crews;
 - (ii) Examples of undesired aircraft states would include lining up for the incorrect runway during approach to landing, exceeding ATC speed restrictions during an approach, or landing long on a short runway requiring maximum braking. Events such as equipment malfunctions or ATC controller errors can also reduce margins of safety in flight operations, but these would be considered threats;
 - (iii) Undesired states can be managed effectively, restoring margins of safety, or flight crew response(s) can induce an additional error, incident, or accident;
 - (iv) Table 3 presents examples of undesired aircraft states, grouped under three basic categories derived from the TEM model;

Aircraft handling	(A) aircraft control (attitude);			
C C	(B) vertical, lateral or speed deviations;			
	(C) unnecessary weather penetration;			
	(D) unauthorised airspace penetration;			
	(E) operation outside aircraft limitations;			
	(F) unstable approach;			
	(G) continued landing after unstable approach;			
	(H) long, floated, firm or off-centreline landing.			
Ground navigation	(A) proceeding towards wrong taxiway or runway;			
	(B) Wrong taxiway, ramp, gate or hold spot.			
Incorrect aircraft configurations	(A) incorrect systems configuration;			
	(B) incorrect flight controls configuration;			
	(C) incorrect automation configuration;			
	(D) incorrect engine configuration;			
	(E) incorrect weight and balance configuration.			

Table 3 Examples of undesired aircraft states (list is not exhaustive)

- (v) An important learning and training point for flight crews is the timely switching from error management to undesired aircraft state management. An example would be as follows: a flight crew selects a wrong approach in the FMC. The flight crew subsequently identifies the error during a cross-check prior to the FAF. However, instead of using a basic mode (for example heading) or manually flying the desired track, both flight crew members become involved in attempting to reprogram the correct approach prior to reaching the FAF. As a result, the aircraft 'stitches' through the localiser, descends late, and goes into an unstable approach. This would be an example of the flight crew getting 'locked in' to error management, rather than switching to undesired aircraft state management. The use of the TEM model assists in educating flight crews that, when the aircraft is in an undesired state, the basic task of the flight crew is undesired aircraft state management. It also illustrates how easy it is to get locked in to the error management phase;
- (vi) Also from a learning and training perspective, it is important to establish a clear differentiation between undesired aircraft states and outcomes. Undesired aircraft states are transitional states between a normal operational state (for example a stabilised approach) and an outcome. Outcomes, on the other hand, are end states, most notably, reportable occurrences (for example incidents and accidents). An example would be as follows: a stabilised approach (normal operational state) turns into an unstabilised approach (undesired aircraft state) that results in a runway excursion (outcome);
- (vii) The training and remedial implications of this differentiation are of significance. While at the undesired aircraft state stage, the flight crew has the possibility, through appropriate TEM, of recovering the situation, returning to a normal operational state, thus restoring margins of safety. Once the undesired aircraft state becomes an outcome, recovery of the situation, return to a normal operational state, and restoration of margins of safety is not possible.
- (5) Countermeasures:
 - (i) Flight crews must, as part of the normal discharge of their operational duties, employ countermeasures to keep threats, errors and undesired aircraft states from reducing margins of safety in flight operations. Examples of countermeasures would include checklists, briefings, callouts and SOPs, as well as personal strategies and tactics. Flight crews dedicate significant amounts of time and energies to the application of countermeasures to ensure margins of safety during flight operations. Empirical observations during training and checking suggest that as much as 70 % of flight crew activities may be countermeasures-related activities.
 - (ii) All countermeasures are necessarily flight crew actions. However, some countermeasures to threats, errors and undesired aircraft states that flight crews employ build upon 'hard' resources provided by the aviation system. These resources are already in place in the system before flight crews report for duty, and are therefore considered as systemic-based countermeasures. The following would be examples of 'hard' resources that flight crews employ as systemic-based countermeasures:
 - (A) ACAS;(B) TAWS;(C) SOPs;(D) checklists;

- (E) briefings;
- (F) training;
- (G) etc.
- (iii) Other countermeasures are more directly related to the human contribution to the safety of flight operations. These are personal strategies and tactics, individual and team countermeasures that typically include canvassed skills, knowledge and attitudes developed by human performance training, most notably, by CRM training. There are basically three categories of individual and team countermeasures:

(A) planning countermeasures: essential for managing anticipated and unexpected threats;

- (B) execution countermeasures: essential for error detection and error response;
- (C) review countermeasures: essential for managing the changing conditions of a flight.
- (iv) Enhanced TEM is the product of the combined use of systemic-based and individual and team countermeasures. Table 4 presents detailed examples of individual and team countermeasures. Further guidance on countermeasures can be found in the sample assessment guides for terminal training objectives (PANS-TRG, Chapter 3, Attachment B) as well as in the ICAO manual, Line Operations Safety Audit (LOSA) (Doc 9803).

Planning countermeasures						
SOP briefing	The required briefing was interactive and operationally thorough	(A) Concise, not rushed, and metSOP requirements;(B) Bottom lines were established				
Plans stated	Operational plans and decisions were communicated and acknowledged	Shared understanding about plans: 'Everybody on the same page'				
Workload assignment	Roles and responsibilities were defined for normal and non-normal situations	Workload assignments were communicated and acknowledged				
Contingency management	Crew members developed effective strategies to manage threats to safety	(A) Threats and their consequences were anticipated;(B) Used all available resources to manage threats				
Execution countermeasures						
Monitor and cross-check	Crew members actively monitored and cross-checked systems and other crew members	Aircraft position, settings, and crew actions were verified				
Workload management	Operational tasks were prioritised and properly managed to handle primary flight duties	(A) Avoided task fixation;(B) Did not allow work overload				
Automation management	Automation was properly managed to balance situational and workload requirements(A) Automation setup was br to other members (B) Effective recovery techni from automation anomalies					
Review countermeasures						
Evaluation and modification of plans	Existing plans were reviewed and modified when necessary	Crew decisions and actions were openly analysed to make sure the existing plan was the best plan				
Inquiry	Crew members asked questions to investigate and/or clarify current plans of action	Crew members not afraid to express a lack of knowledge: 'Nothing taken for granted' attitude				
Assertiveness	Crew members stated critical information or solutions with appropriate persistence	Crew members spoke up without hesitation				

Table 4 Examples of individual and team countermeasures

AMC1 to Appendix 6 Modular training courses for the IR

ALL MODULAR FLYING TRAINING COURSES FOR THE IR, EXCEPT COMPETENCY-BASED MODULAR FLYING TRAINING COURSE

- (a) The theoretical knowledge instruction may be given at an ATO conducting theoretical knowledge instruction only, in which case the HT of that organisation should supervise that part of the course.
- (b) The 150 hours of theoretical knowledge instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by MCAA, in suitable proportions. Approved distance learning (correspondence) courses may also be offered as part of the course.

AMC2 to Appendix 6 Modular training courses for the IR

SECTION A IR (A) - MODULAR FLYING TRAINING COURSE

- (a) This 10 hours module is focused on the basics of flying by sole reference to instruments, including limited panel and unusual attitude recovery.
- (b) All exercises may be performed in an FNPT I or II or an FFS, for a maximum of 5 hours. If instrument flight training is in VMC, a suitable means of simulating IMC for the student should be used.
- (c) A BITD may be used for the exercises 1, 2, 3, 4, 6, and 8.
- (d) The use of the BITD is subject to the following:
 - (1) the training should be complemented by exercises on an aeroplane;
 - (2) the record of the parameters of the flight must be available;
 - (3) an FI(A) or IRI(A) should conduct the instruction.

EXERCISES

- (e) Exercise 1:
 - (1) basic instrument flying without external visual cues; (2) horizontal flight; power changes for acceleration or deceleration;
 - (3) maintaining straight and level flight;
 - (4) turns in level flight with 15 $^{\circ}$ and 25 $^{\circ}$ bank, left and right;
 - (5) roll-out onto predetermined headings.
- (f) Exercise 2:
 - (1) repetition of exercise
 - (2) additionally climbing, descending, maintaining heading and speed, transition to horizontal flight;
 - (3) climbing and descending turns.
- (g) Exercise 3:
 - Instrument pattern:
 - (1) start exercise, decelerate to approach speed, flaps into approach configuration;
 - (2) initiate standard turn (left or right);
 - (3) roll out on opposite heading, maintain new heading for 1 minute;
 - (4) standard turn, gear down, descend 500 ft/min; roll out on initial heading, maintain descent (500 ft/min) and new heading for 1 minute;
 - (5) transition to horizontal flight, 1000 ft below initial flight level;
 - (6) initiate go-around;
 - (7) climb at best rate of climb speed.
- (h) Exercise 4:

0:45 hours

Repetition of exercise 1 and steep turns with 45° bank; recovery from unusual attitudes.

(i) Exercise 5: Repetition of exercise 4. 0:45 hours

1: 0:45 hours

0:45 hours

0:30 hours

(j)	Exercise 6:(1) radio navigation using VOR, NDB or, if available, VDF;(2) interception of predetermined QDM, QDR.	0:45 hours
(k)	Exercise 7:	0:45 hours
	 Repetition of exercise 1 and recovery from unusual attitudes. (1) Exercise 8: (1) Repetition of exercise 1; (2) turns, level change and recovery from unusual attitudes with or directional gyro. 	0:45 hours simulated failure of the artificial horizon
(m)	Exercise 9: Recognition of, and recovery from, incipient and full stalls.	0:45 hours
(n)	Exercise 10: Repetition of exercises 6, 8 and 9.	3:30 hours

CERTIFICATE OF COMPLETION OF BASIC INSTRUMENT FLIGHT MODULE

CERTIFICATE OF COMPLETION OF BASIC INSTRUMENT FLIGHT MODULE Pilot's last name(s): First name(s): Number: Type of licence: Flight training hours Flight training hours performed on SE performed on ME aeroplane: aeroplane Flight training hours performed in an FSTD Signature of applicant: (maximum 5 hours): The satisfactory completion of basic instrument flight module according to requirements is certified below:

TRAINING					
Basic instrument flight module training received during period:					
From:	To:	At:	ATO:		
Location and date:		Signature of head of training:			
Type and number of licence	e and state of issue:	Name(s) in capital letters of	f authorised instructor:		

AMC3 to Appendix 6 Modular training courses for the IR SECTION Aa IR (A) – COMPETENCY-BASED MODULAR FLYING TRAINING COURSE

(a) THEORETICAL KNOWLEDGE INSTRUCTION Page 103 of 105

(1) The theoretical knowledge instruction may be given at an approved training organisation conducting theoretical knowledge instruction only, in which case the Head of Training of that organisation should supervise that part of the course.

(2) The required theoretical knowledge instruction for the IR following the competency-based route may contain computer-based training, e-learning elements, interactive video, slide/tape presentation, learning carrels and other media as approved by the authority, in suitable proportions. Approved distance learning (correspondence) courses may also be offered as part of the course. The minimum amount of classroom teaching has to be provided as required by ORA.ATO.305.

(b) THEORETICAL KNOWLEDGE EXAMINATION

The applicant for the IR following the competency-based training route should pass an examination to demonstrate a level of theoretical knowledge appropriate to the privileges granted in the subjects further detailed in FCL.615 (b). The number of questions per subject, the distribution of questions and the time allocated to each subject is detailed in AMC2 ARA.FCL.300 (b).

AMC4 to Appendix 6 Modular training courses for the IR

SECTION Aa IR (A) – COMPETENCY-BASED MODULAR FLYING TRAINING COURSE FLYING TRAINING

(a) The instrument flight instruction outside an ATO provided by an IRI(A) or an FI(A) holding the privilege to provide training for the IR in accordance with Appendix 6 Section Aa (6)(a)(i)(A) may consist of instrument flight time under instruction or instrument ground time or a combination thereof.

TRAINING AIRCRAFT

- (b) The aeroplane used for the instrument flight training provided outside an ATO by an IRI (A) or FI (A) should be:
 - fitted with primary flight controls that are instantly accessible by both the student and the instructor (for example dual flight controls or a centre control stick). Swing-over flight controls should not be used; and
 - (2) suitably equipped to simulate instrument meteorological conditions (IMC) and for the instrument flight training required.
- (c) The FSTD used for the instrument flight instruction provided outside an ATO by an IRI(A) or FI(A) should be suitably equipped to simulate instrument meteorological conditions (IMC) and for the instrument flight training required

AMC5 to Appendix 6 Modular training courses for the IR

SECTION Aa IR (A) – COMPETENCY-BASED MODULAR FLYING TRAINING COURSE (6)(a)(i)(B); (6)(b)(i)(B)

PRIOR EXPERIENCE OF FLIGHT TIME UNDER IFR AS PIC

A rating giving privileges to fly under IFR and in IMC referred to in (6)(a)(i)(B) and (6)(b)(i)(B) may be any of the following:

- (a) an EIR rating issued by a competent authority of an EASA Member State; or
- (b) a national instrument rating issued by MCAA; or
- (c) an instrument rating issued in compliance with the requirements of Annex 1 to the Chicago Convention by a third country.

The amount of credit given should not exceed the amount of hours completed as instrument flight time.

AMC6 to Appendix 6 Modular training courses for the IR

SECTION Aa IR (A) – COMPETENCY-BASED MODULAR FLYING TRAINING COURSE (6)(a)(ii); (6)(b)(ii)

PRIOR INSTRUMENT FLIGHT TIME UNDER INSTRUCTION

Prior instrument flight time under instruction on aeroplanes, as referred in (6)(a)(ii) and (6)(b)(ii), may be instrument flight time completed for the issue of:

- (a) an EIR rating issued by a competent authority of an EASA Member State; or
- (b) a national instrument rating prior to the application of this Regulation MCAR AIRCREW; or
- (c) an instrument rating in compliance with the requirements of Annex 1 to the Chicago Convention by a third country.

AMC7 to Appendix 6 Modular training courses for the IR

SECTION Aa IR (A) – COMPETENCY-BASED MODULAR FLYING TRAINING COURSE (6) (c); (6) (d) PRE-ENTRY ASSESSMENT AND TRAINING RECORD

(a) PRE-ENTRY ASSESSMENT Page 105 of 105

The assessment to establish the amount of training to be credited and to identify the training needs should be based on the training syllabus established in Appendix 6 Aa.

- (b) TRAINING RECORD
 - (1) Before initiating the assessment the applicant should provide to an ATO a training record containing the details of the previous flight instruction provided by the IRI (A) or the FI (A). This training record should at least specify the aircraft type and registration used for the training, the number of flights and the total amount of instrument time under instruction. It should also specify all the exercises completed during the training by using the syllabus contained in Appendix 6 Aa.
 - (2) The instructor having provided the training should keep the training records containing all the details of the flight training given for a period of at least 5 years after the completion of the training.

AMC8 to Appendix 6 Modular training courses for the IR

SECTION Aa IR (A) – COMPETENCY-BASED MODULAR FLYING TRAINING COURSE (8)

In order to be credited in full towards the multi-engine IR (A) training course requirements, the applicant should:

- (a) hold a multi-engine IR(A), issued in accordance with the requirements of Annex 1 to the Chicago Convention by a third country;
- (b) have the minimum experience required in Appendix 6 Aa paragraph 8(c), of which at least 15 hours should be completed in a multi-engine aeroplane.

AMC9 to Appendix 6 Modular training courses for the IR AIRSHIPS

BASIC INSTRUMENT FLIGHT MODULE TRAINING COURSE

- (a) This 10 hours module is focused on the basics of flying by sole reference to instruments, including limited panel and unusual attitude recovery.
- (b) All exercises may be performed in an FNPT I or II or an FFS, for a maximum of 5 hours. If instrument flight training is in VMC, a suitable means of simulating IMC for the student should be used.
- (c) A BITD may be used for the exercises 1, 2, 3, 4, 6 and 8.
- (d) The use of the BITD is subject to the following:
 - (1) the training should be complemented by exercises on an airship;
 - (2) the record of the parameters of the flight must be available;
 - (3) an FI(As) or IRI(As) should conduct the instruction.

EXERCISES

(e) Exercise

1: 0:30 hours

(1) basic instrument flying without external visual cues;
 (2) horizontal flight;

(f)	 (3) maintaining straight and level flight; (4) turns in level flight, left and right; (5) rollout onto predetermined headings. Exercise 2: (1) Repetition of exercise additionally climbing and descending (2) maintaining heading and speed; (3) transition to horizontal flight; (4) climbing and descending turns. 	1; 0:45 hours
(g)	Exercise 3:	0:45 hours
(6)	Instrument pattern:	0.15 10415
	(1) start exercise, decelerate to approach speed, approach configur	ration;
	(2) initiate standard turn (left or right);	,
	(3) rollout on opposite heading, maintain new heading for 1 minut	te;
	(4) standard turn, descend with given rate (for example 500 ft/min);
	(5) rollout on initial heading, maintain descent (for example 500 f	
	(6) transition to horizontal flight (for example 1000 ft below initia	l level);
	(7) initiate go-around;	
(1)	(8) climb at best rate of climb speed.	
(h)	Exercise 4:	1; 0:45 hours
	(1) repetition of exercise	
	(2) recovery from unusual attitudes. Exercise 5	4. 0:45 hours
(1)		4. 0:45 nours
(\mathbf{i})	Repetition of exercise Exercise 6	0:45 hours
(j)	(1) radio navigation using VOR, NDB or, if available, VDF;	0.45 nouis
	(2) interception of predetermined QDM, QDR.	
(k)	Exercise 7	1; 0:45 hours
(11)	(1) repetition of exercise	,
	(2) recovery from unusual attitudes.	
(1)	Exercise 8	1; 0:45 hours
	(1) repetition of exercise	·
	(2) turns, level change and recovery from unusual attitudes with	simulated failure of the artificial horizon
	or directional gyro.	
(m)	Exercise 9	4:15 hours
	Repetition of exercises (6) and (8).	

CERTIFICATE OF COMPLETION OF BASIC INSTRUMENT FLIGHT MODULE

CERTIFICATE OF COMPLETION OF BASIC INSTRUMENT FLIGHT MODULE					
Pilot's last name(s):		First name(s):			
Type of licence:		Number:			
Flight training hours performed on airship:		Flight training hours performed in an FSTD (maximum 5 hours)			
	Signature of applicant:				

The satisfactory completion of basic instrument flight module according to requirements is certified below:

TRAINING					
Basic instrument flight module training received during period:					
From:	ATO:				
Location and date:		Signature of head of training:			
Type and number of licence and state of issue:		Name(s) in capital letters of authorised instructor:			

GM1 to Appendix 7 IR skill test

To the skill test, an ME centreline thrust aeroplane is considered an SE aeroplane.

AMC1 to Appendix 7 IR skill test

LAPL, BPL, SPL, PPL, CPL, IR SKILL TEST AND PROFICIENCY CHECK APPLICATION AND REPORT FORM

APPLICATION AND REPORT FORM LAPL, BPL, SPL, PPL, CPL, IR SKILL TEST AND PROFICIENCY CHECK						
Applicant's last name(s):				LAPL: A H B S		
Applicant's first name(s):				BPL:	SPL:	
Signature of applicant:				PPL: A	PPL: A H As	
Type of licence*:				CPL: A	CPL: A 🗌 H 🗌 As	
Licence number*:						
1 Details of the flight						
Group, class, type of aircraft:	Registration:					
Aerodrome or site:	Take-off time:	-off time: Landing time:			Flight time:	
					Total flight time:	
2 Result of the test						
Skill test details:						
Pass D Fail Partial p				pass		

3 Remarks	
Location and date:	
Examiner's certificate number *:	Type and number of licence:
Signature of examiner:	Name(s) in capital letters:

* if applicable

AMC1 to Appendix 9 Training, skill test and proficiency check for MPL, ATPL, type and class ratings, and proficiency check for IRs

APPLICATION AND REPORT FORM

If applicable, this form is also the certificate of completion of the type rating course for ZFTT.

APPLICATION AND REPORT FORM ATPL, MPL, TYPE RATING, TRAINING, SKILL TEST AND PROFICIENCY CHECK AEROPLANES (A) AND HELICOPTERS (H)										
Applicant's last name(s):				0	SE-SP:	А	Н		ME-SP: A 🗌 H	
Applicant's first name(s):		Aircraft:		SE-MP	: A	Н		ME-MP:A H		
Signature of applicant:		Operations:		SP				МР		
Type of licence held:		Checklist: Train		Trainin	g reco	rd:		Type rating:		
Licence number:				Skill test:			Class rating:			
Proficiency check:			ATPL	:	MPL:				IR:	
1 Theoretical training for the issue of a type or class rating performed during period										
From:	То:				At:					
Mark obtained:	% (Pass mark 75%):				Type and number of licence:					
Signature of HT:					Name(s) in capital letters:					
2 FSTD										
FSTD (aircraft type):	Three or more axe			es:Yes l	s:Yes No Ready f			or service and used: Yes No		
FSTD manufacturer:	Motion or system:			:		Visual aid: Yes No				
FSTD operator:			FSTD ID code:							
Total training time at the controls:			Instrument approaches at aerodromes to a decision altitude or height of:							
Location, date and time:			Type and number of licence:							
Type rating instructor Class rating instructor										
Signature of instructor:			Name(s) in capital letters:							

3 Flight training: in the aircraft in the FSTD (for ZFTT)						
Type of aircraft:	Registration:	Flight time at the controls:				
ake-offs: Landings:		Training aerodromes or sites (take-offs, approaches and landings):				
Take-off time:		Landing time:				
Location and date:		Type and number of licence held:				
Type rating instructor		Class rating instructor				
Signature of instructor:		Name(s) in capital letters:				

4 Skill test Proficiency check				
Skill test and proficiency check details:				
Aerodrome or site:	Total flight time:			
Take-off time:	Landing time:			
Pass 🗆 Fail 🗆	Reason(s) why, if failed:			
Location and date:	SIM or aircraft registration:			
Examiner's certificate number (if applicable):	Type and number of licence:			
Signature of examiner:	Name(s) in capital letters:			

AMC2 to Appendix 9 Training, skill test and proficiency check for MPL, ATPL, type and class ratings, and proficiency check for IRs

TRAINING, SKILL TEST AND PROFICIENCY CHECK: SP AEROPLANES

Section 3.B of the training and skill test and proficiency check content for SP aeroplanes included in Appendix 9.B should include training on a circling approach, after an IFR approach.

ACCEPTABLE MEANS OF COMPLIANCE (AMC) AND GUIDANCE MATERIAL (GM) TO ANNEX IV (PART-MED)

TABLE OF CONTENTS

SUBPART A General requirements

Section 1 General AMC1 MED.A.015 Medical confidentiality AMC1 MED.A.020 Decrease in medical fitness AMC1 MED.A.025 Obligations of AeMC, AME, GMP and OHMP

Section 2

Requirements for medical certificates

AMC1 MED.A.030 Medical certificates AMC1 MED.A.035 Application for a medical certificate AMC1 MED.A.045 Validity, revalidation and renewal of medical certificates

SUBPART B

Specific requirements for class 1, class 2 and LAPL medical certificates AMC for class 1, class 2 and LAPL medical certificates

Section 1

General AMC1 MED.B.001 Limitations to class 1, class 2 and LAPL medical certificates GM1 MED.B.001 Limitation codes

Section 29

Specific requirements for class 1 medical certificates AMC1 MED.B.010 Cardiovascular system AMC1 MED.B.015 Respiratory system AMC1 MED.B.020 Digestive system AMC1 MED.B.025 Metabolic and endocrine systems AMC1 MED.B.030 Haematology AMC1 MED.B.035 Genitourinary system AMC1 MED.B.040 Infectious disease AMC1 MED.B.045 Obstetrics and gynaecology AMC1 MED.B.050 Musculoskeletal system AMC1 MED.B.055 Psychiatry AMC1 MED.B.060 Psychology AMC1 MED.B.065 Neurology AMC1 MED.B.070 Visual system AMC1 MED B.075 Colour vision AMC1 MED.B.080 Otorhino-laryngology AMC1 MED.B.085 Dermatology AMC1 MED.B.090 Oncology

Section 3

Specific requirements for class 2 medical certificates AMC2 MED.B.010 Cardiovascular system AMC2 MED.B.015 Respiratory system AMC2 MED.B.020 Digestive system AMC2 MED.B.025 Metabolic and endocrine systems AMC2 MED.B.030 Haematology AMC2 MED.B.035 Genitourinary system AMC2 MED.B.040 Infectious diseases AMC2 MED.B.045 Obstetrics and gynaecology AMC2 MED.B.050 Musculoskeletal system AMC2 MED.B.055 Psychiatry AMC2 MED.B.060 Psychology AMC2 MED.B.065 Neurology AMC2 MED.B.070 Visual system AMC2 MED B.075 Colour vision AMC2 MED.B.080 Otorhino-laryngology AMC2 MED.B.085 Dermatology AMC MED.B.090 Oncology

Section 4

Specific requirements for LAPL medical certificates AMC1 MED.B.095 Medical examination and/or assessment of applicants for LAPL medical certificates AMC2 MED.B.095 Cardiovascular system AMC3 MED.B.095 Respiratory system AMC4 MED.B.095 Digestive system AMC5 MED.B.095 Metabolic and endocrine systems GM1 MED.B.095 Diabetes mellitus Type 2 treated with insulin AMC6 MED.B.095 Haematology AMC7 MED.B.095 Genitourinary system AMC8 MED.B.095 Infectious disease AMC9 MED.B.095 Obstetrics and gynaecology AMC10 MED.B.095 Musculoskeletal system AMC11 MED.B.095 Psychiatry AMC12 MED.B.095 Psychology AMC13 MED.B.095 Neurology AMC14 MED.B.095 Visual system AMC15 MED.B.095 Colour vision AMC16 MED.B.095 Otorhino-laryngology AMC17 MED.B.095 Dermatology AMC18 MED.B.095 Oncology

SUBPART C

Requirements for medical fitness of cabin crew

Section 1 General requirements AMC1 MED.C.005 Aero-medical assessments

Section 2

Requirements for aero-medical assessment of cabin crew AMC1 MED.C.025 Content of aero-medical assessments AMC2 MED.C.025 Cardiovascular system AMC3 MED.C.025 Respiratory system AMC4 MED.C.025 Digestive system AMC5 MED.C.025 Metabolic and endocrine systems AMC6 MED.C.025 Haematology AMC7 MED.C.025 Genitourinary system AMC8 MED.C.025 Infectious disease AMC9 MED.C.025 Obstetrics and gynaecology AMC10 MED.C.025 Musculoskeletal system AMC11 MED.C.025 Psychiatry AMC12 MED.C.025 Psychology AMC13 MED.C.025 Neurology AMC14 MED.C.025 Visual system AMC15 MED.C.025 Colour vision AMC16 MED.C.025 Otorhino-laryngology AMC17 MED.C.025 Dermatology AMC18 MED.C.025 Oncology GM1 MED.C.025 Content of aero-medical assessments

Section 3

Additional requirements for applicants for, and holders of, a cabin crew licence

AMC1 MED.C.030 Cabin crew medical report AMC1 MED.C.035 Limitations

SUBPART D

Aero-medical examiners (AMEs) AMC1 MED.D.010 Requirements for the issue of an AME certificate AMC1 MED.D.015 Requirements for the extension of privileges GM1 MED.D.030 Refresher training in aviation medicine

AMC/GM to PART-MEDICAL SUBPART A

General requirements

Section 1 General

AMC1 MED.A.015 Medical confidentiality

To ensure medical confidentiality, all medical reports and records should be securely held with accessibility restricted to personnel authorised by the medical assessor.

AMC1 MED.A.020 Decrease in medical fitness

If in any doubt about their fitness to fly, use of medication or treatment:

- (a) holders of class 1 or class 2 medical certificates should seek the advice of an AeMC or AME;
- (b) holders of LAPL medical certificates should seek the advice of an AeMC, AME, or of the GMP who issued the holder's medical certificate;
- (c) suspension of exercise of privileges: holders of a medical certificate should seek the advice of an AeMC or AME when they have been suffering from any illness involving incapacity to function as a member of the flight crew for a period of at least 21 days.

AMC1 MED.A.025 Obligations of AeMC, AME, GMP and OHMP

- (a) The report required in MED.A.025 (b)(4) should detail the results of the examination and the evaluation of the findings with regard to medical fitness.
- (b) The report may be submitted in electronic format, but adequate identification of the examiner should be ensured.
- (c) If the medical examination is carried out by two or more AMEs or GMPs, only one of them should be responsible for coordinating the results of the examination, evaluating the findings with regard to medical fitness, and signing the report.

Section 2

Requirements for medical certificates

AMC1 MED.A.030 Medical certificates

- (a) A class 1 medical certificate includes the privileges and validities of class 2 and LAPL medical certificates.
- (b) A class 2 medical certificate includes the privileges and validities of a LAPL medical certificate.

AMC1 MED.A.035 Application for a medical certificate

When applicants do not present a current or previous medical certificate to the AeMC, AME or GMP prior to the relevant examinations, the AeMC, AME or GMP should not issue the medical certificate unless relevant information is received from MCAA.

AMC1 MED.A.045 Validity, revalidation and renewal of medical certificates

The validity period of a medical certificate (including any associated examination or special investigation) is determined by the age of the applicant at the date of the medical examination.

Subpart B

Specific requirements for class 1, class 2 and LAPL medical certificates

AMC for class 1, class 2 and LAPL medical certificates

Section 1 General

AMC1 MED.B.001 Limitations to class 1, class 2 and LAPL medical certificates

- (a) An AeMC or AME may refer the decision on fitness of the applicant to MCAA in borderline cases or where fitness is in doubt.
- (b) In cases where a fit assessment can only be considered with a limitation, the AeMC, AME or MCAA should evaluate the medical condition of the applicant in consultation with flight operations and other experts, if necessary.
- (c) Limitation codes:

	Code	Limitation
1	TML	restriction of the period of validity of the medical certificate
2	VDL	correction for defective distant vision
3	VML	correction for defective distant, intermediate and near vision
4	VNL	correction for defective near vision
5	CCL	correction by means of contact lenses only
6	VCL	valid by day only
7	HAL	valid only when hearing aids are worn
8	APL	valid only with approved prosthesis
9	OCL	valid only as co-pilot
10	OPL	valid only without passengers (PPL and LAPL only)
11	SSL	special restriction as specified
12	OAL	restricted to demonstrated aircraft type
13	AHL	valid only with approved hand controls
14	SIC	specific regular medical examination(s) - contact MCAA
15	RXO	specialist ophthalmological examinations

(d) Entry of limitations

- (1) Limitations 1 to 4 may be imposed by an AME or an AeMC.
- (2) Limitations 5 to 15 should only be imposed:
 - (i) for class 1 medical certificates by MCAA;
 - (ii) for class 2 medical certificates by the AME or AeMC in consultation with MCAA;
 - (iii) f or LAPL medical certificates by an AME or AeMC.
- (e) Removal of limitations
 - (1) For class 1 medical certificates, all limitations should only be removed by MCAA.
 - (2) For class 2 medical certificates, limitations may be removed by MCAA or by an AeMC or AME in consultation with MCAA.
 - (3) For LAPL medical certificates, limitations may be removed by an AeMC or AME.

GM1 MED.B.001 Limitation codes

TML Time limitation

The period of validity of the medical certificate is limited to the duration as shown on the medical certificate. This period of validity commences on the date of the medical examination. Any period of validity remaining on the previous medical certificate is no longer valid. The pilot should present him/herself for re-examination when advised and should follow any medical recommendations.

VDL Wear corrective lenses and carry a spare set of spectacles

Correction for defective distant vision: whilst exercising the privileges of the licence, the pilot should wear spectacles or contact lenses that correct for defective distant vision as examined and approved by the AME. Contact lenses may not be worn until cleared to do so by the AME. If contact lenses are worn, a spare set of spectacles, approved by the AME, should be carried.

VML Wear multifocal spectacles and carry a spare set of spectacles

Correction for defective distant, intermediate and near vision: whilst exercising the privileges of the licence, the pilot should wear spectacles that correct for defective distant, intermediate and near vision as examined and approved by the AME. Contact lenses or full frame spectacles, when either correct for near vision only, may not be worn.

VNL Have available corrective spectacles and carry a spare set of spectacles

Correction for defective near vision: whilst exercising the privileges of the licence, the pilot should have readily available spectacles that correct for defective near vision as examined and approved by the AME. Contact lenses or full frame spectacles, when either correct for near vision only, may not be worn.

VCL Valid by day only

The limitation allows private pilots with varying degrees of colour deficiency to exercise the privileges of their licence by daytime only. Applicable to class 2 medical certificates only.

OML Valid only as or with qualified co-pilot

This applies to crew members who do not meet the medical requirements for single crew operations, but are fit for multi-crew operations. Applicable to class 1 medical certificates only.

OCL Valid only as co-pilot

This limitation is a further extension of the OML limitation and is applied when, for some well defined medical reason, the pilot is assessed as safe to operate in a co-pilot role but not in command. Applicable to class 1 medical certificates only.

OPL Valid only without passengers

This limitation may be considered when a pilot with a musculoskeletal problem, or some other medical condition, may involve an increased element of risk to flight safety which might be acceptable to the pilot but which is not acceptable for the carriage of passengers. Applicable to class 2 and LAPL medical certificates only.

OSL Valid only with safety pilot and in aircraft with dual controls

The safety pilot is qualified as PIC on the class/type of aircraft and rated for the flight conditions. He/she occupies a control seat, is aware of the type(s) of possible incapacity that the pilot whose medical certificate has been issued with this limitation may suffer and is prepared to take over the aircraft controls during flight. Applicable to class 2 and LAPL medical certificates only.

OAL Restricted to demonstrated aircraft type

This limitation may apply to a pilot who has a limb deficiency or some other anatomical problem which had been shown by a medical flight test or flight simulator testing to be acceptable but to require a restriction to a specific type of aircraft.

SIC Specific regular medical examination(s) contact MCAA

This limitation requires the AME to contact MCAA before embarking upon renewal or recertification medical assessment. It is likely to concern a medical history of which the AME should be aware prior to undertaking the assessment.

RXO Specialist ophthalmological examinations

Specialist ophthalmological examinations are required for a significant reason. The limitation may be applied by an AME but should only be removed by MCAA.

Section 2

Specific requirements for class 1 medical certificates

AMC1 MED.B.010 Cardiovascular system

(a) Examination

Exercise electrocardiography

An exercise ECG when required as part of a cardiovascular assessment should be symptom limited and completed to a minimum of Bruce Stage IV or equivalent.

(b) General

- (1) Cardiovascular risk factor assessment
 - (i) Serum lipid estimation is case finding and significant abnormalities should require review, investigation and supervision by the AeMC or AME in consultation with MCAA.
 - (ii) An accumulation of risk factors (smoking, family history, lipid abnormalities, hypertension, etc.) should require cardiovascular evaluation by the AeMC or AME in consultation with MCAA.
- (2) Cardiovascular assessment
 - (i) Reporting of resting and exercise electrocardiograms should be by the AME or an accredited specialist.
 - (ii) The extended cardiovascular assessment should be undertaken at an AeMC or may be delegated to a cardiologist.
- (c) Peripheral arterial disease
 - If there is no significant functional impairment, a fit assessment may be considered by MCAA, provided:
 - (1) applicants without symptoms of coronary artery disease have reduced any vascular risk factors to an appropriate level;
 - (2) applicants should be on acceptable secondary prevention treatment;
 - (3) exercise electrocardiography is satisfactory. Further tests may be required which should show no evidence of myocardial ischaemia or significant coronary artery stenosis.
- (d) Aortic aneurysm
 - (1) Applicants with an aneurysm of the infra-renal abdominal aorta may be assessed as fit with a multipilot limitation by MCAA. Follow-up by ultra-sound scans or other imaging techniques, as necessary, should be determined by MCAA.
 - (2) Applicants may be assessed as fit by MCAA after surgery for an infra-renal aortic aneurysm with a multi-pilot limitation at revalidation if the blood pressure and cardiovascular assessment are satisfactory. Regular cardiological review should be required.
- (e) Cardiac valvular abnormalities
 - (1) Applicants with previously unrecognised cardiac murmurs should undergo evaluation by a cardiologist and assessment by MCAA. If considered significant, further investigation should include at least 2D Doppler echocardiography or equivalent imaging.
 - (2) Applicants with minor cardiac valvular abnormalities may be assessed as fit by MCAA. Applicants with significant abnormality of any of the heart valves should be assessed as unfit.
 - (3) Aortic valve disease
 - (i) Applicants with a bicuspid aortic valve may be assessed as fit if no other cardiac or aortic abnormality is demonstrated. Follow-up with echocardiography, as necessary, should be determined by MCAA.
 - (ii) Applicants with aortic stenosis require MCAA review. Left ventricular function should be intact. A history of systemic embolism or significant dilatation of the thoracic aorta is disqualifying. Those with a mean pressure gradient of up to 20 mmHg may be assessed as fit. Those with mean pressure gradient above 20 mmHg but not greater than 40 mmHg may be assessed as fit with a multi-pilot limitation. A mean pressure gradient up to 50 mmHg may be acceptable. Follow-up

with 2D Doppler echocardiography, as necessary, should be determined by MCAA. Alternative measurement techniques with equivalent ranges may be used.

- (iii) Applicants with trivial aortic regurgitation may be assessed as fit. A greater degree of aortic regurgitation should require a multi-pilot limitation. There should be no demonstrable abnormality of the ascending aorta on 2D Doppler echocardiography. Follow-up, as necessary, should be determined by MCAA.
- (4) Mitral valve disease
 - (i) Asymptomatic applicants with an isolated mid-systolic click due to mitral leaflet prolapse may be assessed as fit.
 - (ii) Applicants with rheumatic mitral stenosis should normally be assessed as unfit.
 - (iii) Applicants with uncomplicated minor regurgitation may be assessed as fit. Periodic cardiolological review should be determined by MCAA.
 - (iv) Applicants with uncomplicated moderate mitral regurgitation may be considered as fit with a multi-pilot limitation if the 2D Doppler echocardiogram demonstrates satisfactory left ventricular dimensions and satisfactory myocardial function is confirmed by exercise electrocardiography. Periodic cardiological review should be required, as determined by MCAA.
 - (v) Applicants with evidence of volume overloading of the left ventricle demonstrated by increased left ventricular end-diastolic diameter or evidence of systolic impairment should be assessed as unfit.
- (f) Valvular surgery

Applicants with cardiac valve replacement/repair should be assessed as unfit. A fit assessment may be considered by MCAA.

- (1) Aortic valvotomy should be disqualifying.
- (2) Mitral leaflet repair for prolapse is compatible with a fit assessment, provided post-operative investigations reveal satisfactory left ventricular function without systolic or diastolic dilation and no more than minor mitral regurgitation.
- (3) Asymptomatic applicants with a tissue valve or with a mechanical valve who, at least 6 months following surgery, are taking no cardioactive medication may be considered for a fit assessment with a multi-pilot limitation by MCAA. Investigations which demonstrate normal valvular and ventricular configuration and function should have been completed as demonstrated by:
 - (i) a satisfactory symptom limited exercise ECG. Myocardial perfusion imaging/stress echocardiography should be required if the exercise ECG is abnormal or any coronary artery disease has been demonstrated;
 - (ii) a 2D Doppler echocardiogram showing no significant selective chamber enlargement, a tissue valve with minimal structural alteration and a normal Doppler blood flow, and no structural or functional abnormality of the other heart valves. Left ventricular fractional shortening should be normal.

Follow-up with exercise ECG and 2D echocardiography, as necessary, should be determined by MCAA.

- (4) Where anticoagulation is needed after valvular surgery, a fit assessment with a multi-pilot limitation may be considered after review by MCAA. The review should show that the anticoagulation is stable. Anticoagulation should be considered stable if, within the last 6 months, at least 5 INR values are documented, of which at least 4 are within the INR target range.
- (g) Thromboembolic disorders

Arterial or venous thrombosis or pulmonary embolism are disqualifying whilst anticoagulation is being used as treatment. After 6 months of stable anticoagulation as prophylaxis, a fit assessment with multi-pilot limitation may be considered after review by MCAA. Anticoagulation should be considered stable if, within the last 6 months, at least 5 INR values are documented, of which at least 4 are within the INR target range. Pulmonary embolus should require full evaluation. Following cessation of anti-coagulant therapy, for any indication, applicants should require review by MCAA.

- (h) Other cardiac disorders
 - (1) Applicants with a primary or secondary abnormality of the pericardium, myocardium or endocardium should be assessed as unfit. A fit assessment may be considered by MCAA following complete resolution and satisfactory cardiological evaluation which may include 2D Doppler echocardiography, exercise ECG and/or myocardial perfusion imaging/stress echocardiography and 24-hour ambulatory ECG. Coronary angiography may be indicated. Frequent review and a multi-pilot limitation may be required after fit assessment.

(2) Applicants with a congenital abnormality of the heart, including those who have undergone surgical correction, should be assessed as unfit. Applicants with minor abnormalities that are functionally unimportant may be assessed as fit by MCAA following cardiological assessment. No cardioactive medication is acceptable. Investigations may include 2D Doppler echocardiography, exercise ECG and 24-hour ambulatory ECG. Regular cardiological review should be required.

(i) Syncope

- (1) Applicants with a history of recurrent vasovagal syncope should be assessed as unfit. A fit assessment may be considered by MCAA after a 6-month period without recurrence provided cardiological evaluation is satisfactory. Such evaluation should include:
 - (i) a satisfactory symptom limited 12 lead exercise ECG to Bruce Stage IV or equivalent. If the exercise ECG is abnormal, myocardial perfusion imaging/stress echocardiography should be required;
 - (ii) a 2D Doppler echocardiogram showing neither significant selective chamber enlargement nor structural or functional abnormality of the heart, valves or myocardium;
 - (iii) a 24-hour ambulatory ECG recording showing no conduction disturbance, complex or sustained rhythm disturbance or evidence of myocardial ischaemia.
- (2) A tilt test carried out to a standard protocol showing no evidence of vasomotor instability may be required.
- (3) Neurological review should be required.
- (4) A multi-pilot limitation should be required until a period of 5 years has elapsed without recurrence. MCAA may determine a shorter or longer period of multi-pilot limitation according to the individual circumstances of the case.
- (5) Applicants who experienced loss of consciousness without significant warning should be assessed as unfit.

(j) Blood pressure

- (1) The diagnosis of hypertension should require cardiovascular review to include potential vascular risk factors.
- (2) Anti-hypertensive treatment should be agreed by MCAA. Acceptable medication may include:
 - (i) non-loop diuretic agents;
 - (ii) ACE inhibitors;
 - (iii) angiotensin II/AT1 blocking agents (sartans);
 - (iv) slow channel calcium blocking agents;
 - (v) certain (generally hydrophilic) beta-blocking agents.
- (3) Following initiation of medication for the control of blood pressure, applicants should be re-assessed to verify that the treatment is compatible with the safe exercise of the privileges of the licence held.

(k) Coronary artery disease

- (1) Chest pain of uncertain cause should require full investigation.
- (2) In suspected asymptomatic coronary artery disease, exercise electrocardiography should be required. Further tests may be required, which should show no evidence of myocardial ischaemia or significant coronary artery stenosis.
- (3) Evidence of exercise-induced myocardial ischaemia should be disqualifying.
- (4) After an ischaemic cardiac event, including revascularisation, applicants without symptoms should have reduced any vascular risk factors to an appropriate level. Medication, when used to control cardiac symptoms, is not acceptable. All applicants should be on acceptable secondary prevention treatment.
 - (i) A coronary angiogram obtained around the time of, or during, the ischaemic myocardial event and a complete, detailed clinical report of the ischaemic event and of any operative procedures should be available to MCAA:
 - (A) there should be no stenosis more than 50 % in any major untreated vessel, in any vein or artery graft or at the site of an angioplasty/stent, except in a vessel subtending a myocardial infarction. More than two stenoses between 30 % and 50 % within the vascular tree should not be acceptable;
 - (B) the whole coronary vascular tree should be assessed as satisfactory by a cardiologist, and particular attention should be paid to multiple stenoses and/or multiple revascularisations;
 - (C) an untreated stenosis greater than 30 % in the left main or proximal left anterior descending coronary artery should not be acceptable.

- (ii) At least 6 months from the ischaemic myocardial event, including revascularisation, the following investigations should be completed (equivalent tests may be substituted):
 - (A) an exercise ECG showing neither evidence of myocardial ischaemia nor rhythm or conduction disturbance;
 - (B) an echocardiogram showing satisfactory left ventricular function with no important abnormality of wall motion (such as dyskinesia or akinesia) and a left ventricular ejection fraction of 50 % or more;
 - (C) in cases of angioplasty/stenting, a myocardial perfusion scan or stress echocardiogram, which should show no evidence of reversible myocardial ischaemia. If there is any doubt about myocardial perfusion in other cases (infarction or bypass grafting) a perfusion scan should also be required;
 - (D) further investigations, such as a 24-hour ECG, may be necessary to assess the risk of any significant rhythm disturbance.
- (iii) Follow-up should be annually (or more frequently, if necessary) to ensure that there is no deterioration of the cardiovascular status. It should include a review by a cardiologist, exercise ECG and cardiovascular risk assessment. Additional investigations may be required by MCAA.
 - (A) After coronary artery vein bypass grafting, a myocardial perfusion scan or equivalent test should be performed if there is any indication, and in all cases within 5 years from the procedure.
 - (B) In all cases, coronary angiography should be considered at any time if symptoms, signs or non-invasive tests indicate myocardial ischaemia.
- (iv) Successful completion of the 6-month or subsequent review will allow a fit assessment with a multi-pilot limitation.
- (1) Rhythm and conduction disturbances
 - (1) Any significant rhythm or conduction disturbance should require evaluation by a cardiologist and appropriate follow-up in the case of a fit assessment. Such evaluation should include:
 - (i) exercise ECG to the Bruce protocol or equivalent. Bruce stage 4 should be achieved and no significant abnormality of rhythm or conduction, or evidence of myocardial ischaemia should be demonstrated. Withdrawal of cardioactive medication prior to the test should normally be required;
 - (ii) 24-hour ambulatory ECG which should demonstrate no significant rhythm or conduction disturbance;
 - (iii) 2D Doppler echocardiogram which should show no significant selective chamber enlargement or significant structural or functional abnormality, and a left ventricular ejection fraction of at least 050 %.

Further evaluation may include (equivalent tests may be substituted):

- (iv) 24-hour ECG recording repeated as necessary;
- (v) electrophysiological study;
- (vi) myocardial perfusion imaging;
- (vii) cardiac magnetic resonance imaging (MRI);
- (viii) coronary angiogram.
- (2) Applicants with frequent or complex forms of supra ventricular or ventricular ectopic complexes require full cardiological evaluation.
- (3) Ablation

Applicants who have undergone ablation therapy should be assessed as unfit. A fit assessment may be considered by MCAA following successful catheter ablation and should require a multi-pilot limitation for at least one year, unless an electrophysiological study, undertaken at a minimum of 2 months after the ablation, demonstrates satisfactory results. For those whose long-term outcome cannot be assured by invasive or non-invasive testing, an additional period with a multi-pilot limitation and/or observation may be necessary.

(4) Supraventricular arrhythmias

Applicants with significant disturbance of supraventricular rhythm, including sinoatrial dysfunction, whether intermittent or established, should be assessed as unfit. A fit assessment may be considered by MCAA if cardiological evaluation is satisfactory.

- (i) Atrial fibrillation/flutter
 - (A) For initial applicants, a fit assessment should be limited to those with a single episode of arrhythmia which is considered by MCAA to be unlikely to recur.
 - (B) For revalidation, applicants may be assessed as fit if cardiological evaluation is satisfactory.

- (ii) Applicants with asymptomatic sinus pauses up to 2.5 seconds on resting electrocardiography may be assessed as fit if exercise electrocardiography, echocardiography and 24-hour ambulatory ECG are satisfactory.
- (iii) Symptomatic sino-atrial disease should be disqualifying.
- (5) Mobitz type 2 atrio-ventricular block Applicants with Mobitz type 2 AV block should require full cardiological evaluation and may be assessed as fit in the absence of distal conducting tissue disease.
- (6) Complete right bundle branch block Applicants with complete right bundle branch block should require cardiological evaluation on first presentation and subsequently:
 - (i) for initial applicants under age 40, a fit assessment may be considered by MCAA. Initial applicants over age 40 should demonstrate a period of stability of 12 months;
 - (ii) for revalidation, a fit assessment may be considered if the applicant is under age 40. A multi-pilot limitation should be applied for 12 months for those over age 40.
- (7) Complete left bundle branch block
 - A fit assessment may be considered by MCAA:
 - (i) Initial applicants should demonstrate a 3-year period of stability.
 - (ii) For revalidation, after a 3-year period with a multi-pilot limitation applied, a fit assessment without multi-pilot limitation may be considered.
 - (iii) Investigation of the coronary arteries is necessary for applicants over age 40.
- (8) Ventricular pre-excitation
 - A fit assessment may be considered by MCAA:
 - (i) Asymptomatic initial applicants with pre-excitation may be assessed as fit if an electrophysiological study, including adequate drug-induced autonomic stimulation reveals no inducible re-entry tachycardia and the existence of multiple pathways is excluded.
 - (ii) Asymptomatic applicants with pre-excitation may be assessed as fit at revalidation with a multipilot limitation.
- (9) Pacemaker

Applicants with a subendocardial pacemaker should be assessed as unfit. A fit assessment may be considered at revalidation by MCAA no sooner than 3 months after insertion and should require:

- (i) no other disqualifying condition;
- (ii) a bipolar lead system, programmed in bipolar mode without automatic mode change of the device;
- (iii) that the applicant is not pacemaker dependent;
- (iv) regular follow-up, including a pacemaker check; and
- (v) a multi-pilot limitation.
- (10) QT prolongation

Prolongation of the QT interval on the ECG associated with symptoms should be disqualifying. Asymptomatic applicants require cardiological evaluation for a fit assessment and a multi-pilot limitation may be required.

AMC1 MED.B.015 Respiratory system

- (a) Examination
 - (1) Spirometry
 - Spirometric examination is required for initial examination. An FEV1/FVC ratio less than 70 % at initial examination should require evaluation by a specialist in respiratory disease.
 - (2) Chest radiography Posterior/anterior chest radiography may be required at initial, revalidation or renewal examinations when indicated on clinical or epidemiological grounds.
- (b) Chronic obstructive airways disease

Applicants with chronic obstructive airways disease should be assessed as unfit. Applicants with only minor impairment of their pulmonary function may be assessed as fit.

(c) Asthma

Applicants with asthma requiring medication or experiencing recurrent attacks of asthma may be assessed as fit if the asthma is considered stable with satisfactory pulmonary function tests and medication is compatible with flight safety. Systemic steroids are disqualifying.

(d) Inflammatory disease

For applicants with active inflammatory disease of the respiratory system a fit assessment may be considered when the condition has resolved without sequelae and no medication is required.

- (e) Sarcoidosis
 - (1) Applicants with active sarcoidosis should be assessed as unfit. Investigation should be undertaken with respect to the possibility of systemic, particularly cardiac, involvement. A fit assessment may be considered if no medication is required, and the disease is investigated and shown to be limited to hilar lymphadenopathy and inactive.
 - (2) Applicants with cardiac sarcoid should be assessed as unfit.

(f) Pneumothorax

- (1) Applicants with a spontaneous pneumothorax should be assessed as unfit. A fit assessment may be considered if respiratory evaluation is satisfactory:
 - (i) 1 year following full recovery from a single spontaneous pneumothorax;
 - (ii) at revalidation, 6 weeks following full recovery from a single spontaneous pneumothorax, with a multi-pilot limitation;
 - (iii) following surgical intervention in the case of a recurrent pneumothorax provided there is satisfactory recovery.
- (2) A recurrent spontaneous pneumothorax that has not been surgically treated is disqualifying.
- (3) A fit assessment following full recovery from a traumatic pneumothorax as a result of an accident or injury may be acceptable once full absorption of the pneumothorax is demonstrated.

(g) Thoracic surgery

- (1) Applicants requiring major thoracic surgery should be assessed as unfit for a minimum of 3 months following operation or until such time as the effects of the operation are no longer likely to interfere with the safe exercise of the privileges of the applicable licence(s).
- (2) A fit assessment following lesser chest surgery may be considered by MCAA after satisfactory recovery and full respiratory evaluation.
- (h) Sleep apnoea syndrome/sleep disorder

Applicants with unsatisfactorily treated sleep apnoea syndrome should be assessed as unfit.

AMC1 MED.B.020 Digestive system

(a) Oesophageal varices

Applicants with oesophageal varices should be assessed as unfit.

(b) Pancreatitis

Applicants with pancreatitis should be assessed as unfit pending assessment. A fit assessment may be considered if the cause (e.g. gallstone, other obstruction, medication) is removed.

- (c) Gallstones
 - (1) Applicants with a single asymptomatic large gallstone discovered incidentally may be assessed as fit if not likely to cause incapacitation in flight.
 - (2) An applicant with asymptomatic multiple gallstones may be assessed as fit with a multi-pilot limitation.
- (d) Inflammatory bowel disease

Applicants with an established diagnosis or history of chronic inflammatory bowel disease should be assessed as fit if the inflammatory bowel disease is in established remission and stable and that systemic steroids are not required for its control.

(e) Peptic ulceration

Applicants with peptic ulceration should be assessed as unfit pending full recovery and demonstrated healing.

- (f) Abdominal surgery
 - (1) Abdominal surgery is disqualifying for a minimum of 3 months. An earlier fit assessment may be considered if recovery is complete, the applicant is asymptomatic and there is only a minimal risk of secondary complication or recurrence.

(2) Applicants who have undergone a surgical operation on the digestive tract or its adnexa, involving a total or partial excision or a diversion of any of these organs, should be assessed as unfit for a minimum period of 3 months or until such time as the effects of the operation are no longer likely to interfere with the safe exercise of the privileges of the applicable licence(s).

AMC1 MED.B.025 Metabolic and endocrine systems

(a) Metabolic, nutritional or endocrine dysfunction

Applicants with metabolic, nutritional or endocrine dysfunction may be assessed as fit if the condition is asymptomatic, clinically compensated and stable with or without replacement therapy, and regularly reviewed by an appropriate specialist.

(b) Obesity

Applicants with a Body Mass Index \geq 35 may be assessed as fit only if the excess weight is not likely to interfere with the safe exercise of the applicable licence(s) and a satisfactory cardiovascular risk review has been undertaken.

(c) Addison's disease

Addison's disease is disqualifying. A fit assessment may be considered, provided that cortisone is carried and available for use whilst exercising the privileges of the licence(s). Applicants may be assessed as fit with a multi-pilot limitation.

(d) Gout

Applicants with acute gout should be assessed as unfit. A fit assessment may be considered once asymptomatic, after cessation of treatment or the condition is stabilised on anti-hyperuricaemic therapy.

(e) Thyroid dysfunction

Applicants with hyperthyroidism or hypothyroidism should be assessed as unfit. A fit assessment may be considered when a stable euthyroid state is attained.

(f) Abnormal glucose metabolism

Glycosuria and abnormal blood glucose levels require investigation. A fit assessment may be considered if normal glucose tolerance is demonstrated (low renal threshold) or impaired glucose tolerance without diabetic pathology is fully controlled by diet and regularly reviewed.

- (g) Diabetes mellitus
 - Subject to good control of blood sugar with no hypoglycaemic episodes:
 - (1) applicants with diabetes mellitus not requiring medication may be assessed as fit;
 - (2) the use of antidiabetic medications that are not likely to cause hypoglycaemia may be acceptable for a fit assessment with a multi-pilot limitation.

AMC1 MED.B.030 Haematology

(a) Abnormal haemoglobin

Applicants with abnormal haemoglobin should be investigated.

- (b) Anaemia
 - (1) Applicants with anaemia demonstrated by a reduced haemoglobin level or haematocrit less than 32 % should be assessed as unfit and require investigation. A fit assessment may be considered in cases where the primary cause has been treated (e.g. iron or B12 deficiency) and the haemoglobin or haematocrit has stabilised at a satisfactory level.
 - (2) Anaemia which is unamenable to treatment is disqualifying.
- (c) Polycythaemia

Applicants with polycythaemia should be assessed as unfit and require investigation. A fit assessment with a multi-pilot limitation may be considered if the condition is stable and no associated pathology is demonstrated.

(d) Haemoglobinopathy

- (1) Applicants with a haemoglobinopathy should be assessed as unfit. A fit assessment may be considered where minor thalassaemia or other haemoglobinopathy is diagnosed without a history of crises and where full functional capability is demonstrated. The haemoglobin level should be satisfactory.
- (2) Applicants with sickle cell disease should be assessed as unfit.
- (e) Coagulation disorders

Applicants with a coagulation disorder should be assessed as unfit. A fit assessment may be considered if there is no history of significant bleeding episodes.

(f) Haemorrhagic disorders

Applicants with a haemorrhagic disorder require investigation. A fit assessment with a multi-pilot limitation may be considered if there is no history of significant bleeding.

- (g) Thrombo-embolic disorders
 - (1) Applicants with a thrombotic disorder require investigation. A fit assessment with a multi-pilot limitation may be considered if there is no history of significant clotting episodes.
 - (2) An arterial embolus is disqualifying.
- (h) Disorders of the lymphatic system

Applicants with significant localised and generalised enlargement of the lymphatic glands and diseases of the blood should be assessed as unfit and require investigation. A fit assessment may be considered in cases of an acute infectious process which is fully recovered or Hodgkin's lymphoma or other lymphoid malignancy which has been treated and is in full remission.

(i) Leukaemia

- (1) Applicants with acute leukaemia should be assessed as unfit. Once in established remission, applicants may be assessed as fit.
- (2) Applicants with chronic leukaemia should be assessed as unfit. After a period of demonstrated stability a fit assessment may be considered.
- (3) Applicants with a history of leukaemia should have no history of central nervous system involvement and no continuing side-effects from treatment of flight safety importance. Haemoglobin and platelet levels should be satisfactory. Regular follow-up is required.

(j) Splenomegaly

Applicants with splenomegaly should be assessed as unfit and require investigation. A fit assessment may be considered when the enlargement is minimal, stable and no associated pathology is demonstrated, or if the enlargement is minimal and associated with another acceptable condition.

AMC1 MED.B.035 Genitourinary system

(a) Abnormal urinalysis

Investigation is required if there is any abnormal finding on urinalysis.

- (b) Renal disease
 - (1) Applicants presenting with any signs of renal disease should be assessed as unfit. A fit assessment may be considered if blood pressure is satisfactory and renal function is acceptable.
 - (2) The requirement for dialysis is disqualifying.

(c) Urinary calculi

- (1) Applicants with an asymptomatic calculus or a history of renal colic require investigation.
- (2) Applicants presenting with one or more urinary calculi should be assessed as unfit and require investigation.
- (3) A fit assessment with a multi-pilot limitation may be considered whilst awaiting assessment or treatment.
- (4) A fit assessment without multi-pilot limitation may be considered after successful treatment for a calculus.
- (5) With residual calculi, a fit assessment with a multi-pilot limitation may be considered.

(d) Renal/urological surgery

- (1) Applicants who have undergone a major surgical operation on the urinary tract or the urinary apparatus involving a total or partial excision or a diversion of any of its organs should be assessed as unfit for a minimum period of 3 months or until such time as the effects of the operation are no longer likely to cause incapacity in flight. After other urological surgery, a fit assessment may be considered if the applicant is completely asymptomatic and there is minimal risk of secondary complication or recurrence.
- (2) An applicant with compensated nephrectomy without hypertension or uraemia may be considered for a fit assessment.
- (3) Applicants who have undergone renal transplantation may be considered for a fit assessment if it is fully compensated and tolerated with only minimal immuno-suppressive therapy after at least 12 months. Applicants may be assessed as fit with a multi-pilot limitation.
- (4) Applicants who have undergone total cystectomy may be considered for a fit assessment if there is satisfactory urinary function, no infection and no recurrence of primary pathology. Applicants may be assessed as fit with a multi-pilot limitation.

AMC1 MED.B.040 Infectious disease

(a) Infectious disease General

In cases of infectious disease, consideration should be given to a history of, or clinical signs indicating, underlying impairment of the immune system.

(b) Tuberculosis

Applicants with active tuberculosis should be assessed as unfit. A fit assessment may be considered following completion of therapy.

(c) Syphilis

Acute syphilis is disqualifying. A fit assessment may be considered in the case of those fully treated and recovered from the primary and secondary stages.

- (d) HIV infection
 - (1) HIV positivity is disqualifying. A fit assessment with a multi-pilot limitation may be considered for individuals with stable, non-progressive disease. Frequent review is required.
 - (2) The occurrence of AIDS or AIDS-related complex is disqualifying.
- (e) Infectious hepatitis

Infectious hepatitis is disqualifying. A fit assessment may be considered after full recovery.

AMC1 MED.B.045 Obstetrics and gynaecology

(a) Gynaecological surgery

An applicant who has undergone a major gynaecological operation should be assessed as unfit for a period of 3 months or until such time as the effects of the operation are not likely to interfere with the safe exercise of the privileges of the licence(s) if the holder is completely asymptomatic and there is only a minimal risk of secondary complication or recurrence.

(b) Severe menstrual disturbances

An applicant with a history of severe menstrual disturbances unamenable to treatment should be assessed as unfit.

- (c) Pregnancy
 - A pregnant licence holder may be assessed as fit with a multi-pilot limitation during the first 26 weeks of gestation, following review of the obstetric evaluation by the AeMC or AME who should inform MCAA.
 - (2) The AeMC or AME should provide written advice to the applicant and the supervising physician regarding potentially significant complications of pregnancy.

AMC1 MED.B.050 Musculoskeletal system

- (a) An applicant with any significant sequela from disease, injury or congenital abnormality affecting the bones, joints, muscles or tendons with or without surgery requires full evaluation prior to a fit assessment.
- (b) In cases of limb deficiency, a fit assessment may be considered following a satisfactory medical flight test or simulator testing.
- (c) An applicant with inflammatory, infiltrative, traumatic or degenerative disease of the musculoskeletal system may be assessed as fit provided the condition is in remission and the applicant is taking no disqualifying medication and has satisfactorily completed a medical flight or simulator flight test. A limitation to specified aircraft type(s) may be required.
- (d) Abnormal physique, including obesity, or muscular weakness may require medical flight or flight simulator testing. Particular attention should be paid to emergency procedures and evacuation. A limitation to specified aircraft type(s) may be required.

AMC1 MED.B.055 Psychiatry

- (a) Psychotic disorder
 A history, or the occurrence, of a functional psychotic disorder is disqualifying unless a cause can be unequivocally identified as one which is transient, has ceased and will not recur.
- (b) Organic mental disorder An organic mental disorder is disqualifying. Once the cause has been treated, an applicant may be assessed as fit following satisfactory psychiatric review.
- (c) Psychotropic substances Use or abuse of psychotropic substances likely to affect flight safety is disqualifying.
- (d) Schizophrenia, schizotypal or delusional disorder

Applicants with an established schizophrenia, schizotypal or delusional disorder should only be considered for a fit assessment if MCAA concludes that the original diagnosis was inappropriate or inaccurate or, in the case of a single episode of delirium, provided that the applicant has suffered no permanent impairment.

(e) Mood disorder

An established mood disorder is disqualifying. After full recovery and after full consideration of an individual case a fit assessment may be considered, depending on the characteristics and gravity of the mood disorder. If a stable maintenance psychotropic medication is confirmed, a fit assessment should require a multi-pilot limitation.

- (f) Neurotic, stress-related or somatoform disorder Where there is suspicion or established evidence that an applicant has a neurotic, stress-related or somatoform disorder, the applicant should be referred for psychiatric opinion and advice.
- (g) Personality or behavioural disorder Where there is suspicion or established evidence that an applicant has a personality or behavioural disorder, the applicant should be referred for psychiatric opinion and advice.
- (h) Disorders due to alcohol or other substance use
 - (1) Mental or behavioural disorders due to alcohol or other substance use, with or without dependency, are disqualifying.
 - (2) A fit assessment may be considered after a period of two years documented sobriety or freedom from substance use. At revalidation or renewal a fit assessment may be considered earlier with a multi-pilot limitation. Depending on the individual case, treatment and review may include:
 - (i) in-patient treatment of some weeks followed by:
 - (A) review by a psychiatric specialist; and
 - (B) ongoing review including blood testing and peer reports, which may be required indefinitely.

(i) Deliberate self-harm

A single self-destructive action or repeated acts of deliberate self-harm are disqualifying. A fit assessment may be considered after full consideration of an individual case and may require psychiatric or psychological review. Neuropsychological assessment may also be required.

AMC1 MED.B.060 Psychology

- (a) Where there is suspicion or established evidence that an applicant has a psychological disorder, the applicant should be referred for psychological opinion and advice.
- (b) Established evidence should be verifiable information from an identifiable source which evokes doubts concerning the mental fitness or personality of a particular individual. Sources for this information can be accidents or incidents, problems in training or proficiency checks, delinquency or knowledge relevant to the safe exercise of the privileges of the applicable licence.
- (c) The psychological evaluation may include a collection of biographical data, the administration of aptitude as well as personality tests and psychological interview.
- (d) The psychologist should submit a written report to the AME, AeMC or MCAA as appropriate, detailing his/her opinion and recommendation.

AMC1 MED.B.065 Neurology

- (a) Epilepsy
 - (1) A diagnosis of epilepsy is disqualifying, unless there is unequivocal evidence of a syndrome of benign childhood epilepsy associated with a very low risk of recurrence, and unless the applicant has been free of recurrence and off treatment for more than 10 years. One or more convulsive episodes after the age of 5 are disqualifying. In the case of an acute symptomatic seizure, which is considered to have a very low risk of recurrence, a fit assessment may be considered after neurological review.
 - (2) An applicant may be assessed as fit by MCAA with a multi-pilot limitation if:
 - (i) there is a history of a single afebrile epileptiform seizure;
 - (ii) there has been no recurrence after at least 10 years off treatment;
 - (iii) there is no evidence of continuing predisposition to epilepsy.
- (b) Conditions with a high propensity for cerebral dysfunction An applicant with a condition with a high propensity for cerebral dysfunction should be assessed as unfit. A fit assessment may be considered after full evaluation.
- (c) Clinical EEG abnormalities
 - (1) Electroencephalography is required when indicated by the applicant's history or on clinical grounds.
 - (2) Epileptiform paroxysmal EEG abnormalities and focal slow waves should be disqualifying.
- (d) Neurological disease

Any stationary or progressive disease of the nervous system which has caused or is likely to cause a significant disability is disqualifying. However, in case of minor functional losses associated with stationary disease, a fit assessment may be considered after full evaluation.

(e) Episode of disturbance of consciousness

In the case of a single episode of disturbance of consciousness, which can be satisfactorily explained, a fit assessment may be considered, but a recurrence should be disqualifying.

(f) Head injury

An applicant with a head injury which was severe enough to cause loss of consciousness or is associated with penetrating brain injury should be reviewed by a consultant neurologist. A fit assessment may be considered if there has been a full recovery and the risk of epilepsy is sufficiently low.

(g) Spinal or peripheral nerve injury, myopathies

An applicant with a history or diagnosis of spinal or peripheral nerve injury or myopathy should be assessed as unfit. A fit assessment may be considered if neurological review and musculoskeletal assessments are satisfactory.

AMC1 MED.B.070 Visual system

- (a) Eye examination
 - (1) At each aero-medical revalidation examination, an assessment of the visual fitness should be undertaken and the eyes should be examined with regard to possible pathology.
 - (2) All abnormal and doubtful cases should be referred to an ophthalmologist. Conditions which indicate ophthalmological examination include, but are not limited to, a substantial decrease in the uncorrected visual acuity, any decrease in best corrected visual acuity and/or the occurrence of eye disease, eye injury, or eye surgery.
 - (3) Where specialist ophthalmological examinations are required for any significant reason, this should be imposed as a limitation on the medical certificate.
- (b) Comprehensive eye examination

A comprehensive eye examination by an eye specialist is required at the initial examination. All abnormal and doubtful cases should be referred to an ophthalmologist. The examination should include:

- (1) history;
- (2) visual acuities near, intermediate and distant vision (uncorrected and with best optical correction if needed);
- (3) examination of the external eye, anatomy, media (slit lamp) and fundoscopy;
- (4) ocular motility;
- (5) binocular vision;
- (6) colour vision;
- (7) visual fields;
- (8) tonometry on clinical indication; and
- (9) refraction hyperopic initial applicants with a hyperopia of more than +2 dioptres and under the age of 25 should undergo objective refraction in cycloplegia.
- (c) Routine eye examination
 - A routine eye examination may be performed by an AME and should include:
 - (1) history;
 - (2) visual acuities near, intermediate and distant vision (uncorrected and with best optical correction if needed);
 - (3) examination of the external eye, anatomy, media and fundoscopy;
 - (4) further examination on clinical indication.
- (d) Refractive error
 - (1) At initial examination an applicant may be assessed as fit with:
 - (i) hypermetropia not exceeding +5.0 dioptres;
 - (ii) myopia not exceeding -6.0 dioptres;
 - (iii) astigmatism not exceeding 2.0 dioptres;
 - (iv) anisometropia not exceeding 2.0 dioptres
 - provided that optimal correction has been considered and no significant pathology is demonstrated.
 - (2) Initial applicants who do not meet the requirements in (1)(ii), (iii) and (iv) above should be referred to MCAA. A fit assessment may be considered following review by an ophthalmologist.
 - (3) At revalidation an applicant may be assessed as fit with:
 - (i) hypermetropia not exceeding +5.0 dioptres;
 - (ii) myopia exceeding -6.0 dioptres;
 - (iii) astigmatism exceeding 2.0 dioptres;
 - (iv) anisometropia exceeding 2.0 dioptres
 - provided that optimal correction has been considered and no significant pathology is demonstrated.
 - (4) If anisometropia exceeds 3.0 dioptres, contact lenses should be worn.
 - (5) If the refractive error is +3.0 to +5.0 or -3.0 to -6.0 dioptres, there is astigmatism or anisometropia of more than 2 dioptres but less than 3 dioptres, a review should be undertaken 5 yearly by an eye specialist.

- (6) If the refractive error is greater than -6.0 dioptres, there is more than 3.0 dioptres of astigmatism or anisometropia exceeds 3.0 dioptres, a review should be undertaken 2 yearly by an eye specialist.
- (7) In cases (5) and (6) above, the applicant should supply the eye specialist's report to the AME. The report should be forwarded to MCAA as part of the medical examination report. All abnormal and doubtful cases should be referred to an ophthalmologist.
- (e) Uncorrected visual acuity No limits apply to uncorrected visual acuity.
- (f) Substandard vision
 - (1) Applicants with reduced central vision in one eye may be assessed as fit if the binocular visual field is normal and the underlying pathology is acceptable according to ophthalmological assessment. A satisfactory medical flight test and a multi-pilot limitation are required.
 - (2) An applicant with acquired substandard vision in one eye may be assessed as fit with a multi-pilot limitation if:
 - (i) the better eye achieves distant visual acuity of 6/6 (1.0), corrected or uncorrected;
 - (ii) the better eye achieves intermediate visual acuity of N14 and N5 for near;
 - (iii) in the case of acute loss of vision in one eye, a period of adaptation time has passed from the known point of visual loss, during which the applicant should be assessed as unfit;
 - (iv) there is no significant ocular pathology; and
 - (v) a medical flight test is satisfactory.
 - (3) An applicant with a visual field defect may be assessed as fit if the binocular visual field is normal and the underlying pathology is acceptable to MCAA.

(g) Keratoconus

Applicants with keratoconus may be assessed as fit if the visual requirements are met with the use of corrective lenses and periodic review is undertaken by an ophthalmologist.

(h) Heterophoria

Applicants with heterophoria (imbalance of the ocular muscles) exceeding:

- (1) at 6 metres:
 - 2.0 prism dioptres in hyperphoria, 10.0 prism dioptres in esophoria,
 - 8.0 prism dioptres in exophoria
 - and
- (2) at 33 centimetres:
 - 1.0 prism dioptre in hyperphoria,
 - 8.0 prism dioptres in esophoria,
 - 12.0 prism dioptres in exophoria

should be assessed as unfit. The applicant should be reviewed by an ophthalmologist and if the fusional reserves are sufficient to prevent asthenopia and diplopia a fit assessment may be considered.

(i) Eye surgery

The assessment after eye surgery should include an ophthalmological examination.

- (1) After refractive surgery, a fit assessment may be considered, provided that:
 - (i) pre-operative refraction was not greater than +5 dioptres;
 - (ii) post-operative stability of refraction has been achieved (less than 0.75 dioptres variation diurnally);
 - (iii) examination of the eye shows no post-operative complications;
 - (iv) glare sensitivity is within normal standards;
 - (v) mesopic contrast sensitivity is not impaired;
 - (vi) review is undertaken by an eye specialist.
- (2) Cataract surgery entails unfitness. A fit assessment may be considered after 3 months.
- (3) Retinal surgery entails unfitness. A fit assessment may be considered 6 months after successful surgery. A fit assessment may be acceptable earlier after retinal laser therapy. Follow-up may be required.
- (4) Glaucoma surgery entails unfitness. A fit assessment may be considered 6 months after successful surgery. Follow-up may be required.
- (5) For (2), (3) and (4) above, a fit assessment may be considered earlier if recovery is complete.

(j) Correcting lenses

Correcting lenses should permit the licence holder to meet the visual requirements at all distances.

AMC1 MED B.075 Colour vision

- (a) At revalidation, colour vision should be tested on clinical indication.
- (b) The Ishihara test (24 plate version) is considered passed if the first 15 plates, presented in a random order, are identified without error.
- (c) Those failing the Ishihara test should be examined either by:
 - (1) anomaloscopy (Nagel or equivalent). This test is considered passed if the colour match is trichromatic and the matching range is 4 scale units or less; or by
 - (2) lantern testing with a Spectrolux, Beynes or Holmes-Wright lantern. This test is considered passed if the applicant passes without error a test with accepted lanterns.

AMC1 MED.B.080 Otorhino-laryngology

- (a) Hearing
 - (1) The applicant should understand correctly conversational speech when tested with each ear at a distance of 2 metres from and with the applicant's back turned towards the AME.
 - (2) The pure tone audiogram should cover the 500 Hz, 1 000 Hz, 2 000 Hz and 3 000 Hz frequency thresholds.
 - (3) An applicant with hypoacusis should be referred to MCAA. A fit assessment may be considered if a speech discrimination test or functional flight deck hearing test demonstrates satisfactory hearing ability. A vestibular function test may be appropriate.
 - (4) If the hearing requirements can only be met with the use of hearing aids, the hearing aids should provide optimal hearing function, be well tolerated and suitable for aviation purposes.

(b) Comprehensive otorhinolaryngological examination

A comprehensive otorhino-laryngological examination should include:

- (1) history;
- (2) clinical examination including otoscopy, rhinoscopy, and examination of the mouth and throat;
- (3) tympanometry or equivalent;
- (4) clinical assessment of the vestibular system.
- (c) Ear conditions
 - (1) An applicant with an active pathological process, acute or chronic, of the internal or middle ear should be assessed as unfit. A fit assessment may be considered once the condition has stabilised or there has been a full recovery.
 - (2) An applicant with an unhealed perforation or dysfunction of the tympanic membranes should be assessed as unfit. An applicant with a single dry perforation of non-infectious origin and which does not interfere with the normal function of the ear may be considered for a fit assessment.
- (d) Vestibular disturbance

An applicant with disturbance of vestibular function should be assessed as unfit. A fit assessment may be considered after full recovery. The presence of spontaneous or positional nystagmus requires complete vestibular evaluation by an ENT specialist. Significant abnormal caloric or rotational vestibular responses are disqualifying. Abnormal vestibular responses should be assessed in their clinical context.

(e) Sinus dysfunction

An applicant with any dysfunction of the sinuses should be assessed as unfit until there has been full recovery.

(f) Oral/upper respiratory tract infections

A significant, acute or chronic infection of the oral cavity or upper respiratory tract is disqualifying. A fit assessment may be considered after full recovery.

(g) Speech disorder

A significant disorder of speech or voice is disqualifying.

AMC1 MED.B.085 Dermatology

- (a) Referral to MCAA should be made if doubt exists about the fitness of an applicant with eczema (exogenous and endogenous), severe psoriasis, bacterial infections, drug induced, or bullous eruptions or urticaria.
- (b) Systemic effects of radiant or pharmacological treatment for a dermatological condition should be considered before a fit assessment can be considered.
- (c) In cases where a dermatological condition is associated with a systemic illness, full consideration should be given to the underlying illness before a fit assessment may be considered.

AMC1 MED.B.090 Oncology

- (a) Applicants who underwent treatment for malignant disease may be assessed as fit by MCAA if:
 - (1) there is no evidence of residual malignant disease after treatment;
 - (2) time appropriate to the type of tumour has elapsed since the end of treatment;
 - (3) the risk of inflight incapacitation from a recurrence or metastasis is sufficiently low;
 - (4) there is no evidence of short or long-term sequelae from treatment. Special attention should be paid to applicants who have received anthracycline chemotherapy;
 - (5) satisfactory oncology follow-up reports are provided to MCAA.
- (b) A multi-pilot limitation should be applied as appropriate.
- (c) Applicants with pre-malignant conditions of the skin may be assessed as fit if treated or excised as necessary and there is regular follow-up.

Section 3

Specific requirements for class 2 medical certificates

AMC2 MED.B.010 Cardiovascular system

- (a) Examination
 - Exercise electrocardiography

An exercise ECG when required as part of a cardiovascular assessment should be symptom-limited and completed to a minimum of Bruce Stage IV or equivalent.

- (b) General
 - (1) Cardiovascular risk factor assessment
 - An accumulation of risk factors (smoking, family history, lipid abnormalities, hypertension, etc.) requires cardiovascular evaluation.
 - Cardiovascular assessment Reporting of resting and exercise electrocardiograms should be by the AME or an accredited specialist.
- (c) Peripheral arterial disease

A fit assessment may be considered for an applicant with peripheral arterial disease, or after surgery for peripheral arterial disease, provided there is no significant functional impairment, any vascular risk factors have been reduced to an appropriate level, the applicant is receiving acceptable secondary prevention treatment, and there is no evidence of myocardial ischaemia.

- (d) Aortic aneurysm
 - (1) Applicants with an aneurysm of the thoracic or abdominal aorta may be assessed as fit, subject to satisfactory cardiological evaluation and regular follow-up.
 - (2) Applicants may be assessed as fit after surgery for a thoracic or abdominal aortic aneurysm subject to satisfactory cardiological evaluation to exclude the presence of coronary artery disease.
- (e) Cardiac valvular abnormalities
 - (1) Applicants with previously unrecognised cardiac murmurs require further cardiological evaluation.
 - (2) Applicants with minor cardiac valvular abnormalities may be assessed as fit.

(f) Valvular surgery

- (1) Applicants who have undergone cardiac valve replacement or repair may be assessed as fit if postoperative cardiac function and investigations are satisfactory and no anticoagulants are needed.
- (2) Where anticoagulation is needed after valvular surgery, a fit assessment with an OSL or OPL limitation may be considered after cardiological review. The review should show that the anticoagulation is stable. Anticoagulation should be considered stable if, within the last 6 months, at least 5 INR values are documented, of which at least 4 are within the INR target range.
- (g) Thromboembolic disorders

Arterial or venous thrombosis or pulmonary embolism are disqualifying whilst anticoagulation is being used as treatment. After 6 months of stable anticoagulation as prophylaxis, a fit assessment with an OSL or OPL limitation may be considered after review in consultation with MCAA. Anticoagulation should be considered stable if, within the last 6 months, at least 5 INR values are documented, of which at least 4 are within the INR target range. Pulmonary embolus should require full evaluation.

(h) Other cardiac disorders

- (1) Applicants with a primary or secondary abnormality of the pericardium, myocardium or endocardium may be assessed as unfit pending satisfactory cardiological evaluation.
- (2) Applicants with a congenital abnormality of the heart, including those who have undergone surgical correction, may be assessed as fit subject to satisfactory cardiological assessment. Cardiological follow-up may be necessary and should be determined in consultation with MCAA.

(i) Syncope

Applicants with a history of recurrent vasovagal syncope may be assessed as fit after a 6-month period without recurrence, provided that cardiological evaluation is satisfactory. Neurological review may be indicated.

(j) Blood pressure

- (1) When the blood pressure at examination consistently exceeds 160 mmHg systolic and/or 95 mmHg diastolic, with or without treatment, the applicant should be assessed as unfit.
- (2) The diagnosis of hypertension requires review of other potential vascular risk factors.
- (3) Applicants with symptomatic hypotension should be assessed as unfit.
- (4) Anti-hypertensive treatment should be compatible with flight safety.
- (5) Following initiation of medication for the control of blood pressure, applicants should be re-assessed to verify that the treatment is compatible with the safe exercise of the privileges of the licence held.

(k) Coronary artery disease

- (1) Chest pain of uncertain cause requires full investigation.
- (2) In suspected asymptomatic coronary artery disease cardiological evaluation should show no evidence of myocardial ischaemia or significant coronary artery stenosis.
- (3) After an ischaemic cardiac event, or revascularisation, applicants without symptoms should have reduced any vascular risk factors to an appropriate level. Medication, when used to control angina pectoris, is not acceptable. All applicants should be on acceptable secondary prevention treatment.
 - (i) A coronary angiogram obtained around the time of, or during, the ischaemic myocardial event and a complete, detailed clinical report of the ischaemic event and of any operative procedures should be available to the AME.
 - (A) There should be no stenosis more than 50 % in any major untreated vessel, in any vein or artery graft or at the site of an angioplasty/stent, except in a vessel subtending a myocardial infarction. More than two stenoses between 30 % and 50 % within the vascular tree should not be acceptable.
 - (B) The whole coronary vascular tree should be assessed as satisfactory and particular attention should be paid to multiple stenoses and/or multiple revascularisations.
 - (C) An untreated stenosis greater than 30 % in the left main or proximal left anterior descending coronary artery should not be acceptable.
 - (ii) At least 6 months from the ischaemic myocardial event, including revascularisation, the following investigations should be completed (equivalent tests may be substituted):
 - (A) an exercise ECG showing neither evidence of myocardial ischaemia nor rhythm disturbance;
 - (B) an echocardiogram showing satisfactory left ventricular function with no important abnormality of wall motion and a satisfactory left ventricular ejection fraction of 50 % or more;

- (C) in cases of angioplasty/stenting, a myocardial perfusion scan or stress echocardiogram which should show no evidence of reversible myocardial ischaemia. If there is doubt about revascularisation in myocardial infarction or bypass grafting, a perfusion scan should also be required;
- (D) further investigations, such as a 24-hour ECG, may be necessary to assess the risk of any significant rhythm disturbance.
- (iii) Periodic follow-up should include cardiological review.
 - (A) After coronary artery bypass grafting, a myocardial perfusion scan (or satisfactory equivalent test) should be performed if there is any indication, and in all cases within five years from the procedure for a fit assessment without a safety pilot limitation.
 - (B) In all cases, coronary angiography should be considered at any time if symptoms, signs or non-invasive tests indicate myocardial ischaemia.
- (iv) Successful completion of the six month or subsequent review will allow a fit assessment. Applicants may be assessed as fit with a safety pilot limitation having successfully completed only an exercise ECG.
- (4) Angina pectoris is disqualifying, whether or not it is abolished by medication.
- (1) Rhythm and conduction disturbances

Any significant rhythm or conduction disturbance should require cardiological evaluation and an appropriate follow-up before a fit assessment may be considered. An OSL or OPL limitation should be considered as appropriate.

(1) Ablation

A fit assessment may be considered following successful catheter ablation subject to satisfactory cardiological review undertaken at a minimum of 2 months after the ablation.

- (2) Supraventricular arrhythmias
 - (i) Applicants with significant disturbance of supraventricular rhythm, including sinoatrial dysfunction, whether intermittent or established, may be assessed as fit if cardiological evaluation is satisfactory.
 - (ii) Applicants with atrial fibrillation/flutter may be assessed as fit if cardiological evaluation is satisfactory.
 - (iii) Applicants with asymptomatic sinus pauses up to 2.5 seconds on resting electrocardiography may be assessed as fit if cardiological evaluation is satisfactory.
- (3) Heart block
 - (i) Applicants with first degree and Mobitz type 1 AV block may be assessed as fit.
 - (ii) Applicants with Mobitz type 2 AV block may be assessed as fit in the absence of distal conducting tissue disease.
- (4) Complete right bundle branch block Applicants with complete right bundle branch block may be assessed as fit subject to satisfactory cardiological evaluation.
- (5) Complete left bundle branch block Applicants with complete left bundle branch block may be assessed as fit subject to satisfactory cardiological assessment.
- (6) Ventricular pre-excitation Asymptomatic applicants with ventricular pre-excitation may be assessed as fit subject to satisfactory cardiological evaluation.
- (7) Pacemaker

Applicants with a subendocardial pacemaker may be assessed as fit no sooner than 3 months after insertion provided:

- (i) there is no other disqualifying condition;
- (ii) a bipolar lead system is used, programmed in bipolar mode without automatic mode change of the device;
- (iii) the applicant is not pacemaker dependent; and
- (iv) the applicant has a regular follow-up, including a pacemaker check.

AMC2 MED.B.015 Respiratory system

(a) Chest radiography

Posterior/anterior chest radiography may be required if indicated on clinical grounds.

(b) Chronic obstructive airways disease

Applicants with only minor impairment of pulmonary function may be assessed as fit.

(c) Asthma

Applicants with asthma may be assessed as fit if the asthma is considered stable with satisfactory pulmonary function tests and medication is compatible with flight safety. Systemic steroids should be disqualifying.

(d) Inflammatory disease

Applicants with active inflammatory disease of the respiratory system should be assessed as unfit pending resolution of the condition.

- (e) Sarcoidosis
 - (1) Applicants with active sarcoidosis should be assessed as unfit. Investigation should be undertaken with respect to the possibility of systemic involvement. A fit assessment may be considered once the disease is inactive.
 - (2) Applicants with cardiac sarcoid should be assessed as unfit.
- (f) Pneumothorax
 - (1) Applicants with spontaneous pneumothorax should be assessed as unfit. A fit assessment may be considered if respiratory evaluation is satisfactory six weeks following full recovery from a single spontaneous pneumothorax or following recovery from surgical intervention in the case of treatment for a recurrent pneumothorax.
 - (2) A fit assessment following full recovery from a traumatic pneumothorax as a result of an accident or injury may be acceptable once full absorption of the pneumothorax is demonstrated.
- (g) Thoracic surgery

Applicants requiring major thoracic surgery should be assessed as unfit until such time as the effects of the operation are no longer likely to interfere with the safe exercise of the privileges of the applicable licence(s).

(h) Sleep apnoea syndrome

Applicants with unsatisfactorily treated sleep apnoea syndrome should be assessed as unfit.

AMC2 MED.B.020 Digestive system

(a) Oesophageal varices

Applicants with oesophageal varices should be assessed as unfit.

(b) Pancreatitis

Applicants with pancreatitis should be assessed as unfit pending satisfactory recovery.

- (c) Gallstones
 - (1) Applicants with a single asymptomatic large gallstone or asymptomatic multiple gallstones may be assessed as fit.
 - (2) Applicants with symptomatic single or multiple gallstones should be assessed as unfit. A fit assessment may be considered following gallstone removal.
- (d) Inflammatory bowel disease

Applicants with an established diagnosis or history of chronic inflammatory bowel disease may be assessed as fit provided that the disease is stable and not likely to interfere with the safe exercise of the privileges of the applicable licence(s).

(e) Peptic ulceration

Applicants with peptic ulceration should be assessed as unfit pending full recovery.

- (f) Abdominal surgery
 - (1) Abdominal surgery is disqualifying. A fit assessment may be considered if recovery is complete, the applicant is asymptomatic and there is only a minimal risk of secondary complication or recurrence.

(2) Applicants who have undergone a surgical operation on the digestive tract or its adnexa, involving a total or partial excision or a diversion of any of these organs, should be assessed as unfit until such time as the effects of the operation are no longer likely to interfere with the safe exercise of the privileges of the applicable licence(s).

AMC2 MED.B.025 Metabolic and endocrine systems

- (a) Metabolic, nutritional or endocrine dysfunction Metabolic, nutritional or endocrine dysfunction is disqualifying. A fit assessment may be considered if the condition is asymptomatic, clinically compensated and stable.
- (b) Obesity

Obese applicants may be assessed as fit only if the excess weight is not likely to interfere with the safe exercise of the applicable licence(s).

- (c) Addison's disease Applicants with Addison's disease may be assessed as fit provided that cortisone is carried and available for use whilst exercising the privileges of the licence.
- (d) Gout

Applicants with acute gout should be assessed as unfit until asymptomatic.

- (e) Thyroid dysfunction Applicants with thyroid disease may be assessed as fit once a stable euthyroid state is attained.
- (f) Abnormal glucose metabolism

Glycosuria and abnormal blood glucose levels require investigation. A fit assessment may be considered if normal glucose tolerance is demonstrated (low renal threshold) or impaired glucose tolerance is fully controlled by diet and regularly reviewed.

(g) Diabetes mellitus Applicants with diabetes mellitus may be assessed as fit. The use of antidiabetic medications that are not likely to cause hypoglycaemia may be acceptable.

AMC2 MED.B.030 Haematology

- (a) Abnormal haemoglobin Haemoglobin should be tested when clinically indicated.
- (b) Anaemia

Applicants with anaemia demonstrated by a reduced haemoglobin level or low haematocrit may be assessed as fit once the primary cause has been treated and the haemoglobin or haematocrit has stabilised at a satisfactory level.

(c) Polycythaemia

Applicants with polycythaemia may be assessed as fit if the condition is stable and no associated pathology is demonstrated.

(d) Haemoglobinopathy

Applicants with a haemoglobinopathy may be assessed as fit if minor thalassaemia or other haemoglobinopathy is diagnosed without a history of crises and where full functional capability is demonstrated.

- (e) Coagulation and haemorrhagic disorders Applicants with a coagulation or haemorrhagic disorder may be assessed as fit if there is no likelihood of significant bleeding.
- (f) Thrombo-embolic disorders Applicants with a thrombotic disorder may be assessed as fit if there is no likelihood of significant clotting episodes.

(g) Disorders of the lymphatic system

Applicants with significant enlargement of the lymphatic glands or haematological disease may be assessed as fit if the condition is unlikely to interfere with the safe exercise of the privileges of the applicable licence(s). Applicants may be assessed as fit in cases of acute infectious process which is fully recovered or Hodgkin's lymphoma or other lymphoid malignancy which has been treated and is in full remission.

- (h) Leukaemia
 - (1) Applicants with acute leukaemia may be assessed as fit once in established remission.
 - (2) Applicants with chronic leukaemia may be assessed as fit after a period of demonstrated stability.
 - (3) In cases (1) and (2) above there should be no history of central nervous system involvement and no continuing side effects from treatment of flight safety importance. Haemoglobin and platelet levels should be satisfactory. Regular follow-up is required.
- (i) Splenomegaly

Applicants with splenomegaly may be assessed as fit if the enlargement is minimal, stable and no associated pathology is demonstrated, or if the enlargement is minimal and associated with another acceptable condition.

AMC2 MED.B.035 Genitourinary system

(a) Renal disease

Applicants presenting with renal disease may be assessed as fit if blood pressure is satisfactory and renal function is acceptable. The requirement for dialysis is disqualifying.

- (b) Urinary calculi
 - (1) Applicants presenting with one or more urinary calculi should be assessed as unfit.
 - (2) Applicants with an asymptomatic calculus or a history of renal colic require investigation.
 - (3) While awaiting assessment or treatment, a fit assessment with a safety pilot limitation may be considered.
 - (4) After successful treatment the applicant may be assessed as fit.
 - (5) Applicants with parenchymal residual calculi may be assessed as fit.
- (c) Renal/urological surgery
 - (1) Applicants who have undergone a major surgical operation on the urinary tract or the urinary apparatus involving a total or partial excision or a diversion of any of its organs should be assessed as unfit until such time as the effects of the operation are no longer likely to cause incapacity in flight. After other urological surgery, a fit assessment may be considered if the applicant is completely asymptomatic, there is minimal risk of secondary complication or recurrence presenting with renal disease, if blood pressure is satisfactory and renal function is acceptable. The requirement for dialysis is disqualifying.
 - (2) An applicant with compensated nephrectomy without hypertension or uraemia may be assessed as fit.
 - (3) Applicants who have undergone renal transplantation may be considered for a fit assessment if it is fully compensated and with only minimal immuno-suppressive therapy.
 - (4) Applicants who have undergone total cystectomy may be considered for a fit assessment if there is satisfactory urinary function, no infection and no recurrence of primary pathology.

AMC2 MED.B.040 Infectious diseases

(a) Tuberculosis

Applicants with active tuberculosis should be assessed as unfit until completion of therapy.

(b) HIV infection

A fit assessment may be considered for HIV positive individuals with stable, non-progressive disease if full investigation provides no evidence of HIV-associated diseases that might give rise to incapacitating symptoms.

AMC2 MED.B.045 Obstetrics and gynaecology

(a) Gynaecological surgery

An applicant who has undergone a major gynaecological operation should be assessed as unfit until such time as the effects of the operation are not likely to interfere with the safe exercise of the privileges of the licence(s).

- (b) Pregnancy
 - (1) A pregnant licence holder may be assessed as fit during the first 26 weeks of gestation following satisfactory obstetric evaluation.
 - (2) Licence privileges may be resumed upon satisfactory confirmation of full recovery following confinement or termination of pregnancy.

AMC2 MED.B.050 Musculoskeletal system

- (a) An applicant with any significant sequela from disease, injury or congenital abnormality affecting the bones, joints, muscles or tendons with or without surgery should require full evaluation prior to fit assessment.
- (b) In cases of limb deficiency, a fit assessment may be considered following a satisfactory medical flight test.
- (c) An applicant with inflammatory, infiltrative, traumatic or degenerative disease of the musculoskeletal system may be assessed as fit, provided the condition is in remission and the applicant is taking no disqualifying medication and has satisfactorily completed a medical flight test. A limitation to specified aircraft type(s) may be required.
- (d) Abnormal physique or muscular weakness may require a satisfactory medical flight test. A limitation to specified aircraft type(s) may be required.

AMC2 MED.B.055 Psychiatry

(a) Psychotic disorder

A history, or the occurrence, of a functional psychotic disorder is disqualifying unless in certain rare cases a cause can be unequivocally identified as one which is transient, has ceased and will not recur.

- (b) Psychotropic substances Use or abuse of psychotropic substances likely to affect flight safety is disqualifying. If a stable maintenance psychotropic medication is confirmed, a fit assessment with an OSL limitation may be considered.
- (c) Schizophrenia, schizotypal or delusional disorder An applicant with a history of schizophrenia, schizotypal or delusional disorder may only be considered fit if the original diagnosis was inappropriate or inaccurate as confirmed by psychiatric evaluation or, in the case of a single episode of delirium, provided that the applicant has suffered no permanent impairment.
- (d) Disorders due to alcohol or other substance use
 - (1) Mental or behavioural disorders due to alcohol or other substance use, with or without dependency, are disqualifying.
 - (2) A fit assessment may be considered in consultation with MCAA after a period of two years documented sobriety or freedom from substance use. A fit assessment may be considered earlier with an OSL or OPL limitation. Depending on the individual case, treatment and review may include:
 - (i) in-patient treatment of some weeks followed by:
 - (A) review by a psychiatric specialist; and
 - (B) ongoing review, including blood testing and peer reports, which may be required indefinitely.

AMC2 MED.B.060 Psychology

Applicants with a psychological disorder may need to be referred for psychological or neuropsychiatric opinion and advice.

AMC2 MED.B.065 Neurology

- (a) Epilepsy
 - An applicant may be assessed as fit if:
 - (1) there is a history of a single afebrile epileptiform seizure, considered to have a very low risk of recurrence;
 - (2) there has been no recurrence after at least 10 years off treatment;
 - (3) there is no evidence of continuing predisposition to epilepsy.
- (b) Conditions with a high propensity for cerebral dysfunction An applicant with a condition with a high propensity for cerebral dysfunction should be assessed as unfit. A fit assessment may be considered after full evaluation.
- (c) Neurological disease

Any stationary or progressive disease of the nervous system which has caused or is likely to cause a significant disability is disqualifying. In case of minor functional loss associated with stationary disease, a fit assessment may be considered after full evaluation.

(d) Head injury

An applicant with a head injury which was severe enough to cause loss of consciousness or is associated with penetrating brain injury may be assessed as fit if there has been a full recovery and the risk of epilepsy is sufficiently low.

AMC2 MED.B.070 Visual system

- (a) Eye examination
 - (1) At each aero-medical revalidation examination an assessment of the visual fitness of the licence holder should be undertaken and the eyes should be examined with regard to possible pathology. Conditions which indicate further ophthalmological examination include, but are not limited to, a substantial decrease in the uncorrected visual acuity, any decrease in best corrected visual acuity and/or the occurrence of eye disease, eye injury, or eye surgery.
 - (2) At the initial assessment, the examination should include:
 - (i) history;
 - (ii) visual acuities near, intermediate and distant vision (uncorrected and with best optical correction if needed);
 - (iii) examination of the external eye, anatomy, media and fundoscopy;
 - (iv) ocular motility;
 - (v) binocular vision;
 - (vi) colour vision and visual fields;
 - (vii) further examination on clinical indication.
 - (3) At the initial assessment the applicant should submit a copy of the recent spectacle prescription if visual correction is required to meet the visual requirements.

(b) Routine eye examination

- A routine eye examination should include:
- (1) history;
- (2) visual acuities near, intermediate and distant vision (uncorrected and with best optical correction if needed);
- (3) examination of the external eye, anatomy, media and fundoscopy;
- (4) further examination on clinical indication.
- (c) Visual acuity

In an applicant with amblyopia, the visual acuity of the amblyopic eye should be 6/18 (0,3) or better. The applicant may be assessed as fit, provided the visual acuity in the other eye is 6/6 (1,0) or better, with or without correction, and no significant pathology can be demonstrated.

- (d) Substandard vision
 - (1) Reduced stereopsis, abnormal convergence not interfering with near vision and ocular misalignment where the fusional reserves are sufficient to prevent asthenopia and diplopia may be acceptable.

- (2) An applicant with substandard vision in one eye may be assessed as fit subject to a satisfactory flight test if the better eye:
 - (i) achieves distant visual acuity of 6/6 (1,0), corrected or uncorrected;
 - (ii) achieves intermediate visual acuity of N14 and N5 for near;
 - (iii) has no significant pathology.
- (3) An applicant with a visual field defect may be considered as fit if the binocular visual field is normal and the underlying pathology is acceptable.
- (e) Eye surgery
 - (1) The assessment after eye surgery should include an ophthalmological examination.
 - (2) After refractive surgery a fit assessment may be considered provided that there is stability of refraction, there are no postoperative complications and no increase in glare sensitivity.
 - (3) After cataract, retinal or glaucoma surgery a fit assessment may be considered once recovery is complete.
- (f) Correcting lenses

Correcting lenses should permit the licence holder to meet the visual requirements at all distances.

AMC2 MED B.075 Colour vision

- (a) The Ishihara test (24 plate version) is considered passed if the first 15 plates, presented in a random order, are identified without error.
- (b) Those failing the Ishihara test should be examined either by:
 - (1) anomaloscopy (Nagel or equivalent). This test is considered passed if the colour match is trichromatic and the matching range is 4 scale units or less; or by
 - (2) lantern testing with a Spectrolux, Beynes or Holmes-Wright lantern. This test is considered passed if the applicant passes without error a test with accepted lanterns.
- (c) Colour vision should be tested on clinical indication at revalidation or renewal examinations.

AMC2 MED.B.080 Otorhino-laryngology

- (a) Hearing
 - (1) The applicant should understand correctly conversational speech when tested with each ear at a distance of 2 metres from and with the applicant's back turned towards the AME.
 - (2) An applicant with hypoacusis may be assessed as fit if a speech discrimination test or functional cockpit hearing test demonstrates satisfactory hearing ability. An applicant for an instrument rating with hypoacusis should be assessed in consultation with MCAA.
 - (3) If the hearing requirements can be met only with the use of hearing aids, the hearing aids should provide optimal hearing function, be well tolerated and suitable for aviation purposes.
- (b) Examination

An ear, nose and throat (ENT) examination should form part of all initial, revalidation and renewal examinations.

- (c) Ear conditions
 - (1) An applicant with an active pathological process, acute or chronic, of the internal or middle ear should be assessed as unfit until the condition has stabilised or there has been a full recovery.
 - (2) An applicant with an unhealed perforation or dysfunction of the tympanic membranes should be assessed as unfit. An applicant with a single dry perforation of non-infectious origin which does not interfere with the normal function of the ear may be considered for a fit assessment.
- (d) Vestibular disturbance

An applicant with disturbance of vestibular function should be assessed as unfit pending full recovery.

(e) Sinus dysfunction

An applicant with any dysfunction of the sinuses should be assessed as unfit pending full recovery.

(f) Oral/upper respiratory tract infections

A significant acute or chronic infection of the oral cavity or upper respiratory tract is disqualifying until full recovery.

- (g) Speech disorderA significant disorder of speech or voice should be disqualifying.
- (h) Air passage restrictions

An applicant with significant restriction of the nasal air passage on either side, or

significant malformation of the oral cavity or upper respiratory tract may be assessed as fit if ENT evaluation is satisfactory.

(i) Eustachian tube function

An applicant with significant dysfunction of the Eustachian tubes may be assessed as fit in consultation with MCAA.

AMC2 MED.B.085 Dermatology

In cases where a dermatological condition is associated with a systemic illness, full consideration should be given to the underlying illness before a fit assessment can be considered.

AMC MED.B.090 Oncology

- (a) Applicants may be considered for a fit assessment after treatment for malignant disease if:
 - (1) there is no evidence of residual malignant disease after treatment;
 - (2) time appropriate to the type of tumour has elapsed since the end of treatment;
 - (3) the risk of in-flight incapacitation from a recurrence or metastasis is sufficiently low;
 - (4) there is no evidence of short or long-term sequelae from treatment that may adversely affect flight safety;
 - (5) special attention is paid to applicants who have received anthracyline chemotherapy;
 - (6) arrangements for an oncological follow-up have been made for an appropriate period of time.
- (b) Applicants with pre-malignant conditions of the skin may be assessed as fit if treated or excised as necessary and there is a regular follow-up.

Section 4

Specific requirements for LAPL medical certificates

AMC1 MED.B.095 Medical examination and/or assessment of applicants for LAPL medical certificates

When a specialist evaluation is required under this section, the aero-medical assessment of the applicant should be performed by an AeMC, an AME or, in the case of AMC 5(d), by MCAA.

AMC2 MED.B.095 Cardiovascular system

- (a) Examination Pulse and blood pressure should be recorded at each examination.
- (b) General
 - (1) Cardiovascular risk factor assessment

An accumulation of risk factors (smoking, family history, lipid abnormalities, hypertension, etc.) requires cardiovascular evaluation.

(2) Aortic aneurysm Applicants with an aortic aneurysm may be assessed as fit subject to satisfactory cardiological evaluation and a regular follow-up.

- (3) Cardiac valvular abnormalities
 - Applicants with a cardiac murmur may be assessed as fit if the murmur is assessed as being of no pathological significance.
- (4) Valvular surgery After cardiac valve replacement or repair a fit assessment may be considered if post-operative cardiac function and investigations are satisfactory. Anticoagulation, if needed, should be stable.
- (5) Other cardiac disorders:
 - (i) Applicants with other cardiac disorders may be assessed as fit subject to satisfactory cardiological assessment.
 - (ii) Applicants with symptomatic hypertrophic cardiomyopathy should be assessed as unfit.
- (c) Blood pressure
 - (1) When the blood pressure consistently exceeds 160 mmHg systolic and/or 95 mmHg diastolic, with or without treatment, the applicant should be assessed as unfit.
 - (2) The initiation of medication for the control of blood pressure should require a period of temporary suspension of the medical certificate to establish the absence of significant side effects.
- (d) Coronary artery disease
 - (1) Applicants with suspected myocardial ischaemia should be investigated before a fit assessment can be considered.
 - (2) Applicants with angina pectoris requiring medication for cardiac symptoms should be assessed as unfit.
 - (3) After an ischaemic cardiac event, including myocardial infarction or revascularisation, applicants without symptoms should have reduced any vascular risk factors to an appropriate level. Medication, when used to control cardiac symptoms, is not acceptable. All applicants should be on acceptable secondary prevention treatment.
 - (4) In cases under (1), (2) and (3) above, applicants who have had a satisfactory cardiological evaluation to include an exercise test or equivalent that is negative for ischaemia may be assessed as fit.
- (e) Rhythm and conduction disturbances
 - (1) Applicants with a significant disturbance of cardiac rhythm or conduction should be assessed as unfit unless a cardiological evaluation concludes that the disturbance is not likely to interfere with the safe exercise of the privileges of the LAPL.
 - (2) Pre-excitation

Applicants with ventricular pre-excitation may be assessed as fit subject to satisfactory cardiological evaluation. Applicants with ventricular pre-excitation associated with a significant arrhythmia should be assessed as unfit.

(3) PacemakerA fit assessment may be considered subject to satisfactory cardiological evaluation.

AMC3 MED.B.095 Respiratory system

- (a) Asthma and chronic obstructive airways disease Applicants with asthma or minor impairment of pulmonary function may be assessed as fit if the condition is considered stable with satisfactory pulmonary function and medication is compatible with flight safety. Systemic steroids may be disqualifying depending on dosage needed and corresponding side effects.
- (b) Sarcoidosis
 - (1) Applicants with active sarcoidosis should be assessed as unfit. Investigation should be undertaken with respect to the possibility of systemic involvement. A fit assessment may be considered once the disease is inactive.
 - (2) Applicants with cardiac sarcoidosis should be assessed as unfit.
- (c) Pneumothorax
 - (1) Applicants with spontaneous pneumothorax may be assessed as fit subject to satisfactory respiratory evaluation following full recovery from a single spontaneous pneumothorax or following recovery from surgical treatment for a recurrent pneumothorax.
 - (2) Applicants with traumatic pneumothorax may be assessed as fit following full recovery.

(d) Thoracic surgery

Applicants who have undergone major thoracic surgery may be assessed as fit following full recovery.

(e) Sleep apnoea syndrome/sleep disorder Applicants with unsatisfactorily treated sleep apnoea syndrome should be assessed as unfit.

AMC4 MED.B.095 Digestive system

(a) Gallstones

Applicants with symptomatic gallstones should be assessed as unfit. A fit assessment may be considered following gallstone removal.

(b) Inflammatory bowel disease

Applicants with an established diagnosis or history of chronic inflammatory bowel disease may be assessed as fit provided that the disease is stable and not likely to interfere with the safe exercise of the privileges of the licence.

(c) Abdominal surgery

Applicants who have undergone a surgical operation on the digestive tract or its adnexae may be assessed as fit provided recovery is complete, they are asymptomatic and there is only a minimal risk of secondary complication or recurrence.

(d) Pancreatitis Applicants with pancreatitis may be assessed as fit after satisfactory recovery.

AMC5 MED.B.095 Metabolic and endocrine systems

- (a) Metabolic, nutritional or endocrine dysfunction Applicants with metabolic, nutritional or endocrine dysfunction may be assessed as fit subject to demonstrated stability of the condition and satisfactory aero-medical evaluation.
- (b) Obesity

Obese applicants may be assessed as fit if the excess weight is not likely to interfere with the safe exercise of the licence.

(c) Thyroid dysfunction Applicants with thyroid disease may be assessed as fit once a stable euthyroid state is attained.

(d) Diabetes mellitus

- (1) The use of antidiabetic medications that are not likely to cause hypoglycaemia should be acceptable for a fit assessment.
- (2) Applicants with diabetes mellitus Type 1 should be assessed as unfit.
- (3) Applicants with diabetes mellitus Type 2 treated with insulin may be assessed as fit with limitations for revalidation if blood sugar control has been achieved and the process under (e) and (f) below is followed. An OSL limitation is required. A TML limitation for 12 months may be needed to ensure compliance with the follow-up requirements below. Licence privileges should be restricted to aeroplanes and sailplanes only.
- (e) Aero-medical assessment by, or under the guidance of, MCAA:
 - (1) A diabetology review at yearly intervals, including:
 - (i) symptom review;
 - (ii) review of data logging of blood sugar;
 - (iii) cardiovascular status. Exercise ECG at age 40, at 5-yearly intervals thereafter and on clinical indication, including an accumulation of risk factors;
 - (iv) nephropathy/ nephropathy status.
 - (2) Ophthalmological review at yearly intervals, including:
 - (i) visual fields Humphrey-perimeter;
 - (ii) retinas full dilatation slit lamp and documentation;
 - (ii) cataract clinical screening.

The development of retinopathy requires a full ophthalmological review.

- (3) Blood testing at 6-monthly intervals:
 - (i) HbA1c; target is 7.5–8.5 %;
 - (ii) renal profile;
 - (iii) liver profile;
 - (iv) lipid profile.
- (4) Applicants should be assessed as temporarily unfit after:
 - (i) changes of medication/insulin leading to a change to the testing regime until stable blood sugar control can be demonstrated;
 - (ii) a single unexplained episode of severe hypoglycaemia until stable blood sugar control can be demonstrated.
- (5) Applicants should be assessed as unfit in the following cases:
 - (i) loss of hypoglycaemia awareness;
 - (ii) development of retinopathy with any visual field loss;
 - (iii) significant nephropathy;
 - (iv) any other complication of the disease where flight safety may be jeopardised.
- (f) Pilot responsibility

Blood sugar testing is carried out during non-operational and operational periods. A whole blood glucose measuring device with memory should be carried and used. Equipment for continuous glucose monitoring (CGMS) should not be used. Pilots should prove to the AME or AeMC or MCAA that testing has been performed as indicated below and with which results.

- (1) Testing during non-operational periods: normally 3–4 times/day or as recommended by the treating physician, and on any awareness of hypoglycaemia.
- (2) Testing frequency during operational periods:
 - (i) 120 minutes before departure;
 - (ii) <30 minutes before departure;
 - (iii) 60 minutes during flight;
 - (iv) 30 minutes before landing.
- (3) Actions following glucose testing:
 - (i) 120 minutes before departure: if the test result is >15 mmol/l, piloting should not be commenced.
 - (ii) 10–15g of carbohydrate should be ingested and a re-test performed within 30 minutes if:
 (A) any test result is <4,5 mmol/l;
 - (B) the pre-landing test measurement is missed or a subsequent go-around/diversion is performed.

GM1 MED.B.095 Diabetes mellitus Type 2 treated with insulin

- (a) Pilots and their treating physician should be aware that if the HbA1c target level was set to normal (non-diabetic) levels, this will significantly increase the chance of hypoglycaemia. For safety reasons the target level of HbA1c is therefore set to 7.5–8.5 % even though there is evidence that lower HbA1c levels are correlated with fewer diabetic complications.
- (b) The safety pilot should be briefed pre-flight on the potential condition of the pilot. The results of blood sugar testing before and during flight should be shared with the safety pilot for the acceptability of the values obtained.

AMC6 MED.B.095 Haematology

Applicants with a haematological condition, such as:

- (a) abnormal haemoglobin including, but not limited to, anaemia, polycythaemia or haemoglobinopathy;
- (b) coagulation, haemorrhagic or thrombotic disorder;
- (c) significant lymphatic enlargement;
- (d) acute or chronic leukaemia;
- (e) enlargement of the spleen may be assessed as fit subject to satisfactory aero-medical evaluation.

AMC7 MED.B.095 Genitourinary system

- (a) Applicants with a genitourinary disorder, such as:
 - (1) renal disease; or
 - (2) one or more urinary calculi, or a history of renal colic may be assessed as fit subject to satisfactory renal/urological evaluation.
- (b) Applicants who have undergone a major surgical operation in the urinary apparatus may be assessed as fit following full recovery.

AMC8 MED.B.095 Infectious disease

HIV infection: applicants who are HIV positive may be assessed as fit if investigation provides no evidence of clinical disease.

AMC9 MED.B.095 Obstetrics and gynaecology

(a) Pregnancy

Holders of a LAPL medical certificate should only exercise the privileges of their licences until the 26th week of gestation under routine antenatal care.

(b) Applicants who have undergone a major gynaecological operation may be assessed as fit after full recovery.

AMC10 MED.B.095 Musculoskeletal system

Applicants should have satisfactory functional use of the musculoskeletal system to enable the safe exercise of the privileges of the licence.

AMC11 MED.B.095 Psychiatry

- (a) Applicants with a mental or behavioural disorder due to alcohol or other substance use should be assessed as unfit pending recovery and freedom from substance use and subject to satisfactory psychiatric evaluation after treatment.
- (b) Applicants with an established history or clinical diagnosis of schizophrenia, schizotypal or delusional disorder should be assessed as unfit.
- (c) Psychotropic substances

Use or abuse of psychotropic substances likely to affect flight safety should be disqualifying. If a stable maintenance psychotropic medication is confirmed, a fit assessment with an appropriate limitation may be considered.

- (d) Applicants with a psychiatric condition, such as:
 - (1) mood disorder;
 - (2) neurotic disorder;
 - (3) personality disorder;
 - (4) mental or behavioural disorder should undergo satisfactory psychiatric evaluation before a fit assessment may be considered.
- (e) Applicants with a history of significant or repeated acts of deliberate self-harm should undergo satisfactory psychiatric and/or psychological evaluation before a fit assessment can be considered.

AMC12 MED.B.095 Psychology

Applicants with a psychological disorder may need to be referred for psychological opinion and advice.

AMC13 MED.B.095 Neurology

- (a) Epilepsy and seizures
 - (1) Applicants with an established diagnosis of and under treatment for epilepsy should be assessed as unfit. A re-assessment after all treatment has been stopped for at least 5 years should include a neurological evaluation.
 - (2) Applicants may be assessed as fit if:
 - (i) there is a history of a single afebrile epileptiform seizure considered to have a very low risk of recurrence; and
 - (ii) there has been no recurrence after at least 5 years off treatment; or
 - (iii) a cause has been identified and treated and there is no evidence of continuing predisposition to epilepsy.
- (b) Neurological disease
 - (1) Applicants with any stationary or progressive disease of the nervous system which has caused or is likely to cause a significant disability should be assessed as unfit. The AME or AeMC should assess these applicants taking into account the privileges of the licence held and the risk involved. An OPL limitation may be appropriate if a fit assessment is made.
 - (2) In case of minor functional loss associated with stationary disease, a fit assessment may be considered after full evaluation.
- (c) Head injury

Applicants with a head injury which was severe enough to cause loss of consciousness or is associated with penetrating brain injury may be assessed as fit if there has been a full recovery and the risk of epilepsy is sufficiently low.

(d) Spinal or peripheral nerve injury

Applicants with a history or diagnosis of spinal or peripheral nerve injury may be assessed as fit if neurological review and musculoskeletal assessments are satisfactory.

AMC14 MED.B.095 Visual system

- (a) Applicants should not possess any abnormality of the function of the eyes or their adnexa or any active pathological condition, congenital or acquired, acute or chronic, or any sequelae of eye surgery or trauma, which is likely to interfere with the safe exercise of the privileges of the applicable licence(s).
- (b) Eye examination The examination should include visual acuities (near, intermediate and distant vision) and visual field.
- (c) Visual acuity
 - (1) Visual acuity with or without corrective lenses should be 6/9 (0.7) binocularly and 6/12 (0.5) in each eye.
 - (2) Applicants who do not meet the required visual acuity should be assessed by an AME or AeMC, taking into account the privileges of the licence held and the risk involved.
 - (3) Applicants should be able to read an N5 chart (or equivalent) at 30–50cms and an N14 chart (or equivalent) at 100cms, with correction if prescribed.
- (c) Substandard vision
 - Applicants with substandard vision in one eye may be assessed as fit if the better eye:
 - (1) achieves distant visual acuity of 6/6 (1,0), corrected or uncorrected;
 - (2) achieves distant visual acuity less than 6/6 (1,0) but not less than 6/9 (0,7), after ophthalmological evaluation.
- (d) Visual field defects

Applicants with a visual field defect may be assessed as fit if the binocular visual field or monocular visual field is normal.

- (e) Eye surgery
 - (1) After refractive surgery, a fit assessment may be considered, provided that there is stability of refraction, there are no post-operative complications and no significant increase in glare sensitivity.

- (2) After cataract, retinal or glaucoma surgery a fit assessment may be considered once recovery is complete.
- (f) Correcting lenses

Correcting lenses should permit the licence holder to meet the visual requirements at all distances.

AMC15 MED.B.095 Colour vision

Applicants for a night rating should correctly identify 9 of the first 15 plates of the 24-plate edition of Ishihara pseudoisochromatic plates or should be colour safe.

AMC16 MED.B.095 Otorhino-laryngology

- (a) Hearing
 - (1) Applicants should understand correctly conversational speech when tested at a distance of 2 metres from and with the applicant's back turned towards the examiner.
 - (2) Applicants with hypoacusis should demonstrate satisfactory functional hearing ability.

(b) Ear conditions

Applicants for a LAPL medical certificate with:

- (1) an active pathological process, acute or chronic, of the internal or middle ear;
- (2) unhealed perforation or dysfunction of the tympanic membrane(s);
- (3) disturbance of vestibular function;
- (4) significant restriction of the nasal passages;
- (5) sinus dysfunction;
- (6) significant malformation or significant, acute or chronic infection of the oral cavity or upper respiratory tract; or
- (7) significant disorder of speech or voice should undergo further medical examination and assessment to establish that the condition does not interfere with the safe exercise of the privileges of the licence.

AMC17 MED.B.095 Dermatology

In cases where a dermatological condition is associated with a systemic disease, full consideration should be given to the underlying illness before a fit assessment may be considered.

AMC18 MED.B.095 Oncology

(a) In the case of malignant disease, applicants may be considered for a fit assessment if:

- (1) there is no evidence of residual malignant disease likely to jeopardise flight safety;
- (2) time appropriate to the type of tumour has elapsed since the end of primary treatment;
- (3) the risk of in-flight incapacitation from a recurrence or metastasis is sufficiently low;
- (4) there is no evidence of short or long-term sequelae from treatment that may adversely affect flight safety.
- (b) Arrangements for an oncological follow-up should be made for an appropriate period of time.

Subpart C

Requirements for medical fitness of cabin crew

Section 1 General requirements

AMC1 MED.C.005 Aero-medical assessments

- (a) When conducting aero-medical examination and/or assessments of cabin crew, their medical fitness should be assessed with particular regard to their physical and mental ability to:
 - (1) undergo the training required for cabin crew to acquire and maintain competence, e.g. actual firefighting, slide descending, using Protective Breathing Equipment (PBE) in a simulated smoke-filled environment, providing first aid;
 - (2) manipulate the aircraft systems and emergency equipment to be used by cabin crew, e.g. cabin management systems, doors/exits, escape devices, fire extinguishers, taking also into account the type of aircraft operated e.g. narrow-bodied or wide-bodied, single/multi-deck, single/multi-crew operation;
 - (3) continuously sustain the aircraft environment whilst performing duties, e.g. altitude, pressure, recirculated air, noise; and the type of operations such as short/medium/long/ultralong haul; and
 - (4) perform the required duties and responsibilities efficiently during normal and abnormal operations, and in emergency situations and psychologically demanding circumstances e.g. assistance to crew members and passengers in case of decompression; stress management, decision-making, crowd control and effective crew coordination, management of disruptive passengers and of security threats. When relevant, operating as single cabin crew should also be taken into account when assessing the medical fitness of cabin crew.

Section 2

Requirements for aero-medical assessment of cabin crew

AMC1 MED.C.025 Content of aero-medical assessments

Aero-medical examinations and/or assessments of cabin crew members should be conducted according to the specific medical requirements in AMC2 to AMC18 MED.C.025.

AMC2 MED.C.025 Cardiovascular system

- (a) Examination
 - (1) A standard 12-lead resting electrocardiogram (ECG) and report should be completed on clinical indication, at the first examination after the age of 40 and then at least every five years after the age of 50. If cardiovascular risk factors such as smoking, abnormal cholesterol levels or obesity are present, the intervals of resting ECGs should be reduced to two years.
 - (2) Extended cardiovascular assessment should be required when clinically indicated.
- (b) Cardiovascular system general
 - (1) Cabin crew members with any of the following conditions:
 - (i) aneurysm of the thoracic or supra-renal abdominal aorta, before surgery;
 - (ii) significant functional abnormality of any of the heart valves; or
 - (iii) heart or heart/lung transplantation
 - should be assessed as unfit.
 - (2) Cabin crew members with an established diagnosis of one of the following conditions:
 - (i) peripheral arterial disease before or after surgery;
 - (ii) aneurysm of the abdominal aorta, before or after surgery;
 - (iii) minor cardiac valvular abnormalities;
 - (iv) after cardiac valve surgery;
 - (v) abnormality of the pericardium, myocardium or endocardium;
 - (vi) congenital abnormality of the heart, before or after corrective surgery;
 - (vii) a cardiovascular condition requiring systemic anticoagulant therapy;

- (viii) recurrent vasovagal syncope;
- (ix) arterial or venous thrombosis; or
- (x) pulmonary embolism

should be evaluated by a cardiologist before a fit assessment can be considered.

(c) Blood pressure

Blood pressure should be recorded at each examination.

- (1) The blood pressure should be within normal limits.
- (2) The initiation of medication for the control of blood pressure should require a period of temporary suspension of fitness to establish the absence of any significant side effects.
- (d) Coronary artery disease
 - (1) Cabin crew members with:
 - (i) cardiac ischaemia;
 - (ii) symptomatic coronary artery disease; or
 - (iii) symptoms of coronary artery disease controlled by medication should be assessed as unfit.
 - (2) Cabin crew members who are asymptomatic after myocardial infarction or surgery for coronary artery disease should have fully recovered before a fit assessment can be considered.
- (e) Rhythm/conduction disturbances
 - (1) Cabin crew members with any significant disturbance of cardiac conduction or rhythm should undergo cardiological evaluation before a fit assessment can be considered.
 - (2) Cabin crew members with a history of:
 - (i) ablation therapy; or
 - (ii) pacemaker implantation
 - should undergo satisfactory cardiovascular evaluation before a fit assessment can be made.
 - (3) Cabin crew members with:
 - (i) symptomatic sinoatrial disease;
 - (ii) complete atrioventricular block;
 - (iii) symptomatic QT prolongation;
 - (iv) an automatic implantable defibrillating system; or
 - (v) a ventricular anti-tachycardia pacemaker

should be assessed as unfit.

AMC3 MED.C.025 Respiratory system

- (a) Cabin crew members with significant impairment of pulmonary function should be assessed as unfit. A fit assessment may be considered once pulmonary function has recovered and is satisfactory.
- (b) Cabin crew members should be required to undergo pulmonary function tests on clinical indication.
- (c) Cabin crew members with a history or established diagnosis of:
 - (1) asthma;
 - (2) active inflammatory disease of the respiratory system;
 - (3) active sarcoidosis;
 - (3) pneumothorax;
 - (4) sleep apnoea syndrome/sleep disorder; or
 - (5) major thoracic surgery

should undergo respiratory evaluation with a satisfactory result before a fit assessment can be considered.

(d) Cabin crew members who have undergone a pneumonectomy should be assessed as unfit.

AMC4 MED.C.025 Digestive system

(a) Cabin crew members with any sequelae of disease or surgical intervention in any part of the digestive tract or its adnexa likely to cause incapacitation in flight, in particular any obstruction due to stricture or compression, should be assessed as unfit.

- (b) Cabin crew members should be free from herniae that might give rise to incapacitating symptoms.
- (c) Cabin crew members with disorders of the gastro-intestinal system, including:
 - (1) recurrent dyspeptic disorder requiring medication;
 - (2) pancreatitis;
 - (3) symptomatic gallstones;
 - (4) an established diagnosis or history of chronic inflammatory bowel disease; or
 - (5) after surgical operation on the digestive tract or its adnexa, including surgery involving total or partial excision or a diversion of any of these organs

may be assessed as fit subject to satisfactory evaluation after successful treatment and full recovery after surgery.

AMC5 MED.C.025 Metabolic and endocrine systems

- (a) Cabin crew members should not possess any functional or structural metabolic, nutritional or endocrine disorder which is likely to interfere with the safe exercise of their duties and responsibilities.
- (b) Cabin crew members with metabolic, nutritional or endocrine dysfunction may be assessed as fit, subject to demonstrated stability of the condition and satisfactory aero-medical evaluation.
- (c) Diabetes mellitus
 - (1) Cabin crew members with diabetes mellitus requiring insulin may be assessed as fit if it can be demonstrated that adequate blood sugar control has been achieved and hypoglycaemia awareness is established and maintained. Limitations should be imposed as appropriate. A requirement to undergo specific regular medical examinations (SIC) and a restriction to operate only in multicabin crew operations should be placed as a minimum.
 - (2) Cabin crew members with diabetes mellitus not requiring insulin may be assessed as fit if it can be demonstrated that adequate blood sugar control has been achieved and hypoglycaemia awareness, if applicable considering the medication, is achieved.

AMC6 MED.C.025 Haematology

Cabin crew members with a haematological condition, such as:

- (a) abnormal haemoglobin including, but not limited to, anaemia, polycythaemia or haemoglobinopathy;
- (b) coagulation, haemorrhagic or thrombotic disorder;
- (c) significant lymphatic enlargement;
- (d) acute or chronic leukaemia; or
- (e) enlargement of the spleen may be assessed as fit subject to satisfactory aero-medical evaluation.

AMC7 MED.C.025 Genitourinary system

- (a) Urine analysis should form part of every aero-medical examination and/or assessment. The urine should not contain any abnormal element(s) considered to be of pathological significance.
- (b) Cabin crew members with any sequela of disease or surgical procedures on the kidneys or the urinary tract, in particular any obstruction due to stricture or compression likely to cause incapacitation should be assessed as unfit.
- (c) Cabin crew members with a genitourinary disorder, such as:(1) renal disease; or

- (2) a history of renal colic due to one or more urinary calculi may be assessed as fit subject to satisfactory renal/urological evaluation.
- (d) Cabin crew members who have undergone a major surgical operation in the urinary apparatus involving a total or partial excision or a diversion of its organs should be assessed as unfit and be re-assessed after full recovery before a fit assessment can be made.

AMC8 MED.C.025 Infectious disease

Cabin crew members who are HIV positive may be assessed as fit if investigation provides no evidence of clinical disease and subject to satisfactory aero-medical evaluation.

AMC9 MED.C.025 Obstetrics and gynaecology

- (a) Cabin crew members who have undergone a major gynaecological operation should be assessed as unfit until full recovery.
- (b) Pregnancy
 - (1) A pregnant cabin crew member may be assessed as fit only during the first 16 weeks of gestation following review of the obstetric evaluation by the AME or OHMP.
 - (2) A limitation not to perform duties as single cabin crew member should be considered.
 - (3) The AME or OHMP should provide written advice to the cabin crew member and supervising physician regarding potentially significant complications of pregnancy resulting from flying duties.

AMC10 MED.C.025 Musculoskeletal system

- (a) A cabin crew member should have sufficient standing height, arm and leg length and muscular strength for the safe exercise of their duties and responsibilities.
- (b) A cabin crew member should have satisfactory functional use of the musculoskeletal system.

AMC11 MED.C.025 Psychiatry

- (a) Cabin crew members with a mental or behavioural disorder due to alcohol or other problematic substance use should be assessed as unfit pending recovery and freedom from problematic substance use and subject to satisfactory psychiatric evaluation.
- (b) Cabin crew members with an established history or clinical diagnosis of schizophrenia, schizotypal or delusional disorder should be assessed as unfit.
- (c) Cabin crew members with a psychiatric condition such as:
 - (1) mood disorder;
 - (2) neurotic disorder;
 - (3) personality disorder; or
 - (4) mental or behavioural disorder

should undergo satisfactory psychiatric evaluation before a fit assessment can be made.

(d) Cabin crew members with a history of a single or repeated acts of deliberate self-harm should be assessed as unfit. Cabin crew members should undergo satisfactory psychiatric evaluation before a fit assessment can be considered.

AMC12 MED.C.025 Psychology

(a) Where there is established evidence that a cabin crew member has a psychological disorder, he/she should be referred for psychological opinion and advice.

- (b) The psychological evaluation may include a collection of biographical data, the review of aptitudes, and personality tests and psychological interview.
- (c) The psychologist should submit a report to the AME or OHMP, detailing the results and recommendation.
- (d) The cabin crew member may be assessed as fit to perform cabin crew duties, with limitation if and as appropriate.

AMC13 MED.C.025 Neurology

- (a) Cabin crew members with an established history or clinical diagnosis of:
 - (1) epilepsy; or
 - (2) recurring episodes of disturbance of consciousness of uncertain cause
 - should be assessed as unfit.
- (b) Cabin crew members with an established history or clinical diagnosis of:
 - (1) epilepsy without recurrence after five years of age and without treatment for more than ten years;
 - (2) epileptiform EEG abnormalities and focal slow waves;
 - (3) progressive or non-progressive disease of the nervous system;
 - (4) a single episode of disturbance of consciousness of uncertain cause;
 - (5) loss of consciousness after head injury;
 - (6) penetrating brain injury; or
 - (7) spinal or peripheral nerve injury

should undergo further evaluation before a fit assessment can be considered.

AMC14 MED.C.025 Visual system

- (a) Examination
 - (1) a routine eye examination should form part of the initial and all further assessments and/or examinations; and
 - (2) an extended eye examination should be undertaken when clinically indicated.
- (b) Distant visual acuity, with or without correction, should be with both eyes 6/9 or better.
- (c) A cabin crew member should be able to read an N5 chart (or equivalent) at 30–50 cm, with correction if prescribed.
- (d) Cabin crew members should be required to have normal fields of vision and normal binocular function.
- (e) Cabin crew members who have undergone refractive surgery may be assessed as fit subject to satisfactory ophthalmic evaluation.
- (f) Cabin crew members with diplopia should be assessed as unfit.
- (g) Spectacles and contact lenses:
 - If satisfactory visual function is achieved only with the use of correction:
 - (1) in the case of myopia, spectacles or contact lenses should be worn whilst on duty;
 - (2) in the case of hyperopia, spectacles or contact lenses should be readily available for immediate use;
 - (3) the correction should provide optimal visual function and be well tolerated;
 - (4) orthokeratologic lenses should not be used.

AMC15 MED.C.025 Colour vision

Cabin crew members should be able to correctly identify 9 of the first 15 plates of the 24-plate edition of Ishihara pseudoisochromatic plates. Alternatively, cabin crew members should demonstrate that they are colour safe.

AMC16 MED.C.025 Otorhino-laryngology

(a) Hearing should be satisfactory for the safe exercise of cabin crew duties and responsibilities. Cabin crew with hypoacusis should demonstrate satisfactory functional hearing abilities.

(b) Examination

- (1) An ear, nose and throat (ENT) examination should form part of all examinations and/or assessments.
- (2) Hearing should be tested at all assessments and/or examinations:
- (i) the cabin crew member should understand correctly conversational speech when tested with each ear at a distance of 2 meters from and with the cabin crew member's back turned towards the examiner;
 - (ii) notwithstanding (i) above, hearing should be tested with pure tone audiometry at the initial examination and when clinically indicated;
 - (iii) at initial examination the cabin crew member should not have a hearing loss of more than 35 dB at any of the frequencies 500 Hz, 1 000 Hz or 2 000 Hz, or more than 50 dB at 3 000 Hz, in either ear separately.
- (c) Cabin crew members with:
 - (1) an active pathological process, acute or chronic, of the internal or middle ear;
 - (2) unhealed perforation or dysfunction of the tympanic membrane(s);
 - (3) disturbance of vestibular function;
 - (4) significant restriction of the nasal passages;
 - (5) sinus dysfunction;
 - (6) significant malformation or significant, acute or chronic infection of the oral cavity or upper respiratory tract;
 - (7) significant disorder of speech or voice

should undergo further medical examination and assessment to establish that the condition does not interfere with the safe exercise of their duties and responsibilities.

AMC17 MED.C.025 Dermatology

In cases where a dermatological condition is associated with a systemic illness, full consideration should be given to the underlying illness before a fit assessment may be made.

AMC18 MED.C.025 Oncology

- (a) After treatment for malignant disease, cabin crew members should undergo satisfactory oncological and aero-medical evaluation before a fit assessment may be considered.
- (b) Cabin crew members with an established history or clinical diagnosis of intracerebral malignant tumour should be assessed as unfit. Considering the histology of the tumour, a fit assessment may be considered after successful treatment and full recovery.

GM1 MED.C.025 Content of aero-medical assessments

- (a) When conducting aero-medical examinations and/or assessments, typical cabin crew duties as listed in (b) and (c), particularly those to be performed during abnormal operations and emergency situations, and cabin crew responsibilities to the travelling public should be considered in order to identify:
 - (1) any physical and/or mental conditions that could be detrimental to the performance of the duties required from cabin crew; and
 - (2) which examination(s), test(s) or investigation(s) should be undergone to complete an appropriate aeromedical assessment.
- (b) Main cabin crew duties and responsibilities during day-to-day normal operations
 - (1) During pre/post-flight ground operations with/without passengers on board:
 - (i) monitoring of situation inside the aircraft cabin and awareness of conditions outside the aircraft including observation of visible aircraft surfaces and information to flight crew of any surface contamination such as ice or snow;

- (ii) assistance to special categories of passengers (SCPs) such as infants and children (accompanied or unaccompanied), persons with disabilities or reduced mobility, medical cases with or without medical escort, and inadmissible, deportees and passengers in custody;
- (iii) observation of passengers (any suspicious behaviour, passengers under the influence of alcohol and/or drugs, mentally disturbed), observation of potential able-bodied persons, crowd control during boarding and disembarkation;
- (iv) safe stowage of cabin luggage, safety demonstrations and cabin secured checks, management of passengers and ground services during re-fuelling, observation of use of portable electronic devices;
- (v) preparedness to carry out safety and emergency duties at any time, and security alertness.
- (2) During flight:
 - (i) operation and monitoring of aircraft systems, surveillance of the cabin, lavatories, galleys, crew areas and flight crew compartment;
 - (ii) coordination with flight crew on situation in the cabin and turbulence events/effects;
 - (iii) management and observation of passengers (consumption of alcohol, behaviour, potential medical issues), observation of use of portable electronic devices;
 - (iv) safety and security awareness and preparedness to carry out safety and emergency duties at any time, and cabin secured checks prior to landing.
- (c) Main cabin crew duties and responsibilities during abnormal and emergency operations
 - (1) In case of planned or unplanned emergency evacuation: briefing and/or commands to passengers including SCPs and selection and briefing to able-bodied persons; crowd control monitoring and evacuation conduct including in the absence of command from the flight crew; post-evacuation duties including assistance, first aid and management of survivors and survival in particular environment; activation of applicable communication means towards search and rescue services.
 - (2) In case of decompression: checking of crew members, passengers, cabin, lavatories, galleys, crew rest areas and flight crew compartment, and administering oxygen to crew members and passengers as necessary.
 - (3) In case of pilot incapacitation: secure pilot in his/her seat or remove from flight crew compartment; administer first aid and assist operating pilot as required.
 - (4) In case of fire or smoke: identify source/cause/type of fire/smoke to perform the necessary required actions; coordinate with other cabin crew members and flight crew; select appropriate extinguisher/agent and fight the fire using portable breathing equipment (PBE), gloves, and protective clothing as required; management of necessary passengers movement if possible; instructions to passengers to prevent smoke inhalation/suffocation; give first aid as necessary; monitor the affected area until landing; preparation for possible emergency landing.
 - (5) In case of first aid and medical emergencies: assistance to crew members and/or passengers; correct assessment and correct use of therapeutic oxygen, defibrillator, first-aid kits/emergency medical kit contents as required; management of events, of incapacitated person(s) and of other passengers; coordination and effective communication with other crew members, in particular when medical advice is transmitted by frequency to flight crew or by a telecommunication connection.
 - (6) In case of disruptive passenger behaviour: passenger management as appropriate including use of restraint technique as considered required.
 - (7) In case of security threats (bomb threat on ground or in-flight and/or hijack): control of cabin areas and passengers' management as required by the type of threat, management of suspicious device, and protection of flight crew compartment door.
 - (8) In case of handling of dangerous goods: observing safety procedures when handling the affected device, in particular when handling chemical substances that are leaking; protection and management of self and passengers and effective coordination and communication with other crew members.

Section 3

Additional requirements for applicants for, and holders of, a cabin crew licence

AMC1 MED.C.030 Cabin crew medical report

The cabin crew medical report to be provided in writing to the applicants for, and holders of, a cabin crew l after completion of each aero-medical assessment should be issued:

(a) in the national language(s) and/or in English; and

(b) according to the format below, or another format if all, and only, the elements specified below are provided.

	CABIN CREW MEDICAL REPORT FOR CABIN CREW LICENCE (CCL) APPLICANT OR HOLDER					
(1)	State where the aero-medical assessment of the CCL applicant/holder was conducted:					
(2)	Name of CCL applicant/holder:					
(3)	Nationality of CCL applicant/holder:					
(4)	Date and place of birth of CCL applicant/holder: (dd/mm/yyyy)					
(5)	Expiry date of the previous aero-medical assessment: (dd/mm/yyyy)					
(6)	Date of the aero-medical assessment: (dd/mm/yyyy)					
(7)	Aero-medical assessment: (fit or unfit)					
(8)	Limitation(s) if applicable:					
(9)	Date of the next required aero-medical assessment: (dd/mm/yyyy)					
(10)	Date of issue and signature of the AME, or OHMP, who issued the cabin crew medical report:					
(11)	Seal or stamp:					
(12)	Signature of CCL applicant/holder:					

AMC1 MED.C.035 Limitations

When assessing whether the holder of a cabin crew licence may be able to perform cabin crew duties safely if complying with one or more limitations, the following possible limitations should be considered:

- (a) a restriction to operate only in multi-cabin crew operations (MCL);
- (b) a restriction to specified aircraft type(s) (OAL) or to a specified type of operation (OOL);
- (c) a requirement to undergo the next aero-medical examination and/or assessment at an earlier date than required by MED.C.005(b) (TML);
- (d) a requirement to undergo specific regular medical examination(s) (SIC);
- (e) a requirement for visual correction (CVL), or by means of corrective lenses only (CCL);
- (f) a requirement to use hearing aids (HAL); and
- (g) special restriction as specified (SSL).

SUBPART D Aero-medical examiners (AMEs)

AMC1 MED.D.010 Requirements for the issue of an AME certificate

(a) Basic training course for AMEs

The basic training course for AMEs should consist of 60 hours theoretical and practical training, including specific examination techniques.

- (b) The syllabus for the basic training course should cover at least the following subjects:
 - troduction to aviation medicine;
 - > pysics of atmosphere and space;
 - basic aeronautical knowledge;
 - ➤ aviation physiology;
 - > ophthalmology, including demonstration and practical;
 - > otorhinolaryngology, including demonstration and practical;
 - cardiology and general medicine;
 - ➤ neurology;
 - psychiatry in aviation medicine;
 - psychology;
 - dentistry;
 - accidents, escape and survival;
 - Legislation, rules and regulations;
 - > Air evacuation, including demonstration and practical;
 - Medication and flying.

AMC1 MED.D.015 Requirements for the extension of privileges

(a) Advanced training course for AMEs

The advanced training course for AMEs should consist of another 60 hours of theoretical and practical training, including specific examination techniques.

- (b) The syllabus for the advanced training course should cover at least the following subjects:
 - Pilot working environment;
 - Aerospace physiology, including demonstration and practical;
 - > Ophthalmology, including demonstration and practical;
 - > Otorhinolaryngology, including demonstration and practical;
 - > Cardiology and general medicine, including demonstration and practical;
 - Neurology/psychiatry, including demonstration and practical;
 - Human factors in aviation, including demonstration and practical;
 - ➢ Tropical medicine;
 - > Hygiene, including demonstration and practical;
 - ➢ Space medicine.
- (c) Practical training in an AeMC should be under the guidance and supervision of the head of the AeMC.
- (d) After the successful completion of the practical training, a report of demonstrated competency should be issued.

GM1 MED.D.030 Refresher training in aviation medicine

- (a) During the period of authorisation, an AME should attend 20 hours of refresher training.
- (b) A proportionate number of refresher training hours should be provided by, or conducted under the direct supervision of MCAA or the Medical Assessor.
- (c) Attendance at scientific meetings, congresses and flight deck experience may be approved by MCAA for a specified number of hours against the training obligations of the AME.

- (d) Scientific meetings that should be accredited by MCAA are:
 - (1) International Academy of Aviation and Space Medicine Annual Congresses;
 - (2) Aerospace Medical Association Annual Scientific Meetings; and
 - (3) other scientific meetings, as organised or approved by the Medical Assessor.
- (e) Other refresher training may consist of:
 - (1) flight deck experience;
 - (2) jump seat experience;
 - (3) simulator experience; and
 - (4) aircraft piloting.

GUIDANCE MATERIAL (GM) TO ANNEX V (PART-CC)

GM to Part-Cabin Crew (Part-CC)

Subpart TRA — TRAINING REQUIREMENTS FOR CABIN CREW LICENCE APPLICANTS AND HOLDERS

GM1 Appendix 1 to Part-CC (3) Initial training course and examination CREW RESOURCE MANAGEMENT TRAINING TABLE

The CRM training table recapitulates all elements relevant to CRM training for cabin crew, indicating: (a) those elements to be covered during the initial training course and the level to be attained; and

(b) for information those elements, identified as 'not required' for the initial training, which should be covered during other training in accordance with the applicable requirements of Part-ORO (organisation requirements for air operations).

CRM TRAINING TABLE	Introductory course on						
Training elements	CRM						
General Principles							
Human factors in aviation;							
General instructions on CRM principles and objectives;	In depth						
Human performance and limitations.							
Relevant to the individual cabin crew member							
Personality awareness, human error and reliability, attitudes and behaviours, self-							
assessment;							
Stress and stress management;	In depth						
Fatigue and vigilance;							
Assertiveness; situation awareness, information acquisition and processing.							
Relevant to the entire aircraft crew							
Error prevention and detection;							
Shared situation awareness, information acquisition & processing;							
Workload management;							
Effective communication and coordination between all crew members including the							
flight crew as well as inexperienced cabin crew members, cultural differences;							
Leadership, cooperation, synergy, decision-making, delegation;	Not required						
Individual and team responsibilities, decision making, and actions;							
Identification and management of passenger human factors: crowd control,							
passenger stress, conflict management, medical factors.							
Specifics related to aircraft types (narrow/wide bodies, single/multi deck), flight							
crew and cabin crew composition and number of passengers							
Relevant to the operator and the organisation (principles)							
Company safety culture, standard operating procedures (SOPs), organisational							
factors, factors linked to the type of operations;							
Effective communication and coordination with other operational personnel and	Not required						
ground services;							
Participation in cabin safety incident and accident reporting.							
Case studies							

ACCEPTABLE MEANS OF COMPLIANCE (AMC) AND GUIDANCE MATERIAL (GM) TO ANNEX VI (PART-ARA)

TABLE OF CONTENTS

SUBPART GEN – GENERAL REQUIREMENTS

SECTION I - GENERAL

GM1 ARA.GEN.105 Definitions
AMC1 ARA.GEN.120 (d)(3) Means of compliance GENERAL
GM1 ARA.GEN.120 Means of compliance GENERAL

SECTION II - MANAGEMENT

AMC1 ARA.GEN.200 (a) Management system **GENERAL** GM1 ARA.GEN.200 (a) Management system **GENERAL** AMC1 ARA.GEN.200 (a)(1) Management system DOCUMENTED POLICIES AND PROCEDURES AMC1 ARA.GEN.200 (a)(2) Management system **QUALIFICATION AND TRAINING - GENERAL** AMC2 ARA.GEN.200 (a)(2) Management system **QUALIFICATION AND TRAINING - INSPECTORS** GM1 ARA.GEN.200 (a)(2) Management system SUFFICIENT PERSONNEL AMC1 ARA.GEN.210 (d) Management system RESERVED GM1 ARA.GEN.205 Allocation of tasks to qualified entities CERTIFICATION TASKS AMC1 ARA.GEN.220 (a) Record-keeping GENERAL AMC1 ARA.GEN.220 (a)(1);(2);(3) Record-keeping MCAA MANAGEMENT SYSTEM AMC1 ARA.GEN.220 (a)(4) Record-keeping ORGANISATIONS GM1 ARA.GEN.220 (a)(4) Record-keeping **ORGANISATIONS - DOCUMENTATION** AMC1 ARA.GEN.220 (a)(5) Record-keeping PERSONS AMC1 ARA.GEN.220 (a)(7) Record-keeping ACTIVITIES PERFORMED IN THE TERRITORY OF MALDIVES BY PERSONS OR ORGANISATIONS ESTABLISHED OR RESIDING IN ANOTHER STATE GM1 ARA.GEN.220 Record-keeping GENERAL SECTION III - OVERSIGHT, CERTIFICATION AND ENFORCEMENT

AMC1 ARA.GEN.300 (a);(b);(c) Oversight EVALUATION OF APPROVED TRAINING ORGANISATIONS' OPERATIONAL SAFETY RISK ASSESSMENT GM1 ARA.GEN.300 (a);(b);(c) Oversight VOLCANIC ASH SAFETY RISK ASSESSMENT - ADDITIONAL GUIDANCE GM1 ARA.GEN.300 (d) Oversight ACTIVITIES WITHIN THE TERRITORY OF MALDIVES AMC1 ARA.GEN.305 (b) Oversight programme SPECIFIC NATURE AND COMPLEXITY OF THE ORGANISATION, RESULTS OF PAST **OVERSIGHT** AMC1 ARA.GEN.305 (b)(1) Oversight programme AUDIT AMC2 ARA.GEN.305 (b)(1) Oversight programme **RAMP INSPECTIONS** AMC1 ARA.GEN.305 (b);(c) Oversight programme **INDUSTRY STANDARDS** AMC1 ARA.GEN.305(c) Oversight programme **OVERSIGHT PLANNING CYCLE** AMC2 ARA.GEN.305(c) Oversight programme OVERSIGHT PLANNING CYCLE AMC1 ARA.GEN.305 (d) Oversight programme PERSONS HOLDING A LICENCE, CERTIFICATE, OR RATING AMC1 ARA.GEN.310 (a) Initial certification procedure organisations VERIFICATION OF COMPLIANCE AMC1 ARA.GEN.315 (a) Procedure for issue, revalidation, renewal or change of licences, ratings or certificates persons VERIFICATION OF COMPLIANCE AMC1 ARA.GEN.330 Changes - organisations GENERAL GM1 ARA.GEN.330 Changes organisations CHANGE OF NAME OF THE ORGANISATION GM1 ARA.GEN.350 Findings and corrective actions organisations TRAINING

SUBPART FCL - SPECIFIC REQUIREMENTS RELATING TO FLIGHT CREW LICENSING

SECTION II - LICENCES, RATINGS AND CERTIFICATES

AMC1 ARA.FCL.205 Monitoring of examiners QUALIFICATION OF INSPECTORS

MODULAR TRAINING COURSE

SECTION III - THEORETICAL KNOWLEDGE EXAMINATIONS

AMC1 ARA.FCL.300 Examination procedures GENERAL
AMC1 ARA.FCL.300 (b) Examination procedures THEORETICAL KNOWLEDGE EXAMINATIONS FOR PROFESSIONAL LICENCES AND INSTRUMENT RATINGS
AMC2 ARA.FCL.300 (b) Examination procedures THEORETICAL KNOWLEGDE EXAMINATIONS FOR THE EN-ROUTE INSTRUMENT RATING (EIR) AND THE INSTRUMENT RATING (IR) OBTAINED THROUGH THE COMPETENCY-BASED

SUBPART CC – SPECIFIC REQUIREMENTS RELATING TO CABIN CREW

SECTION II – ORGANISATIONS PROVIDING CABIN CREW TRAINING

AMC1 ARA.CC.200 (b)(2) Approval of organisations to provide cabin crew training PERSONNEL CONDUCTING EXAMINATIONS

SUBPART ATO – SPECIFIC REQUIREMENTS RELATED TO APPROVED TRAINING ORGANISATIONS (ATOs)

SECTION I - GENERAL

AMC1 ARA.ATO.105 Oversight programme GENERAL AMC1 ARA.ATO.120 Record-keeping FSTDs

SUBPART FSTD – SPECIFIC REQUIREMENTS RELATED TO THE QUALIFICATION OF FLIGHT SIMULATION TRAINING DEVICES (FSTDs)

AMC1 ARA.FSTD.100 (a)(1) Initial evaluation procedure ASSESSMENT PROCESS LEADING TO THE ISSUE OF AN FSTD QUALIFICATION AMC2 ARA.FSTD.100 (a)(1) Initial evaluation procedure GENERAL AMC3 ARA.FSTD.100 (a)(1) Initial evaluation procedure INITIAL EVALUATION AMC4 ARA.FSTD.100 (a)(1) Initial evaluation procedure COMPOSITION OF THE EVALUATION TEAM AMC5 ARA.FSTD.100 (a)(1) Initial evaluation procedure FSTD EVALUATION REPORT FOR INITIAL AND RECURRENT EVALUATION GM1 ARA.FSTD.100 (a)(1) Initial evaluation procedure INITIAL EVALUATION AMC1 ARA.FSTD.100 (a)(3) Initial evaluation procedure FUNCTIONS AND SUBJECTIVE TESTS - SUGGESTED TEST ROUTINE GM1 ARA.FSTD.100 (a)(3) Initial evaluation procedure GENERAL AMC1 ARA.FSTD.110 Issue of an FSTD qualification certificate BASIC INSTRUMENT TRAINING DEVICE (BITD) AMC1 ARA.FSTD.115 Interim FSTD qualification NEW AIRCRAFT FFS / FTD QUALIFICATION - ADDITIONAL INFORMATION GM1 ARA.FSTD.115 Interim FSTD qualification NEW AIRCRAFT FFS/FTD QUALIFICATION - ADDITIONAL INFORMATION AMC1 ARA.FSTD.120 Continuation of an FSTD qualification **GENERAL** AMC2 ARA.FSTD.120 Continuation of an FSTD qualification COMPOSITION OF THE EVALUATION TEAM AMC1 ARA.FSTD.130 Changes **GENERAL** GM1 ARA.FSTD.130 Changes QUALIFICATION OF NEW TECHNOLOGY OR SYSTEMS AMC1 ARA.FSTD.135 Findings and corrective actions - FSTD qualification certificate **GENERAL** AMC2 ARA.FSTD.135 Findings and corrective actions - FSTD qualification certificate SUSPENSION AND LIMITATION AMC3 ARA.FSTD.135 Findings and corrective actions - FSTD qualification certificate REVOCATION

SUBPART MED - SPECIFIC REQUIREMENTS RELATING TO AERO-MEDICAL CERTIFICATION

SECTION I - GENERAL

AMC1 ARA.MED.120 Medical assessors EXPERIENCE AND KNOWLEDGE AMC2 ARA.MED.120 Medical assessors TASKS
AMC1 ARA.MED.125 Referral to MCAA REFERRAL TO MCAA
AMC1 ARA.MED.130 Medical certificate format STANDARD MCAA MEDICAL CERTIFICATE FORMAT
AMC1 ARA.MED.135 (a) Aero-medical forms APPLICATION FORM FOR A MEDICAL CERTIFICATE
AMC1 ARA.MED.135 (b);(c) Aero-medical forms MEDICAL EXAMINATION REPORT FORMS
GM1 ARA.MED.135 (b);(c) Aero-medical forms OPHTHALMOLOGY AND OTORHINOLARYNGOLOGY EXAMINATION REPORT FORMS
AMC1 ARA.MED.150 Record-keeping RELEASE OF AERO-MEDICAL RECORDS

SECTION II – AERO-MEDICAL EXAMINERS (AMEs)

AMC1 ARA.MED.200 Procedure for the issue, revalidation, renewal or change of an AME certificate INSPECTION OF THE AME PRACTICE

SECTION III – MEDICAL CERTIFICATION

AMC1 ARA.MED.315 (a) Review of examination reports GENERAL

AMC and GM to Annex VI AUTHORITY REQUIREMENTS FOR AIRCREW (PART-ARA)

SUBPART GEN – GENERAL REQUIREMENTS

SECTION I - GENERAL

GM1 ARA.GEN.105 Definitions

The following provides a list of acronyms used throughout this Annex:

(•)	1
(A)	aeroplane
(H)	helicopter
A/C	aircraft
ACAS	airborne collision avoidance system
AeMC	aero-medical centre
ALARP	as low as reasonably practicable
AMC	Acceptable Means of Compliance
AME	aero-medical examiner
APU	auxiliary power unit
ARA	authority requirements for aircrew
ATO	approved training organisation
ATPL	airline transport pilot licence
BITD	basic instrument training device
bpm	beats per minute
ĊAT	category
CC	cabin crew
cm	centimetres
CPL	commercial pilot licence
CS	Certification Specification
CS-FSTD (A)	Certification Specifications for aeroplane flight simulation training devices
CS-FSTD (H)	Certification Specifications for helicopter flight simulation training devices
dB	decibel
DH	decision height
DPATO	defined point after take-off
DPBL	decision point before landing
EC	European Community
ECG	electrocardiogram
ECU ENT	-
	ear, nose and throat
EOG	electro-oculography
ETOPS	extended range operations with twin-engined aeroplanes
FANS	future air navigation system
FD FEV1	flight director
FEV1	forced expiratory volume in 1 second
FFS	full flight simulator
FMECA	failure mode, effects and criticality analysis
FMGC	flight management and guidance computer
FMS	flight management system
FNPT	flight navigation and procedures trainer
FSTD	flight simulation training device
FTD	flight training device
FTE	full time equivalent
ft	feet
FVC	forced vital capacity
GM	Guidance Material
GPS	global positioning system
HF	human factors
Hg	mercury
HUD/HUGS	head-up display / head-up guidance system
Hz	Herz

IATA	International Air Transport Association
ICAO	International Civil Aviation Organisation
IGE	in ground effect
ILS	instrument landing system
IOS	instructor operating station
IR	Implementing Rule
IR	instrument rating
kg	kilogram
LDP	landing decision point
LVTO	low visibility take-off
m	metre
mm	millimetre
OGE	out of ground effect
ORA	organisation requirements for aircrew
ORO	organisation requirements for air operations
OSD	operational suitability data
QTG	qualification test guide
POM	proof of match
ROD	rate of descent
RVR	runway visual range
TDP	take-off decision point
VDR	validation data roadmap

AMC1 ARA.GEN.120 (d)(3) Means of compliance GENERAL

The information to be provided to other States following approval of an alternative means of compliance should contain a reference to the Acceptable Means of Compliance (AMC) to which such means of compliance provides an alternative, as well as a reference to the corresponding Implementing Rule, indicating as applicable the subparagraph(s) covered by the alternative means of compliance.

GM1 ARA.GEN.120 Means of compliance

GENERAL

Alternative means of compliance used by MCAA or by organisations under its oversight may be used by other competent authorities or organisations only if processed again in accordance with ARA.GEN.120 (d) and (e).

SECTION II - MANAGEMENT

AMC1 ARA.GEN.200 (a) Management system GENERAL

- (a) All of the following should be considered when deciding upon the required organisational structure:
 - (1) the number of certificates, licences, authorisations and approvals to be issued;
 - (2) the number of certified persons and organisations exercising an activity, including persons or organisations certified by other competent authorities;
 - (3) the possible use of qualified entities and of resources of other competent authorities to fulfil the continuing oversight obligations;
 - (4) the level of civil aviation activity in terms of:
 (i) number and complexity of aircraft operated;
 (ii) size and complexity of the State's aviation industry;
 - (5) the potential growth of activities in the field of civil aviation.
- (b) The set-up of the organisational structure should ensure that the various tasks and obligations of MCAA do not rely solely on individuals. A continuous and undisturbed fulfilment of these tasks and obligations of MCAA would also be guaranteed in case of illness, accident or leave of individual employees.

GM1 ARA.GEN.200 (a) Management system GENERAL

(a) MCAA would be organised in such a way that:

- (1) there is specific and effective management authority in the conduct of all relevant activities;
- (2) the functions and processes described in the applicable requirements of this Regulation and its Implementing Rules and AMCs, Certification Specifications (CSs) and Guidance Material (GM) may be properly implemented;
- (3) MCAA's organisation and operating procedures for the implementation of the applicable requirements of this Regulation and its Implementing Rules are properly documented and applied;
- (4) all MCAA personnel involved in the related activities are provided with training where necessary;
- (5) specific and effective provision is made for the communication and interface as necessary with the competent authorities of other States; and
- (6) all functions related to implementing the applicable requirements are adequately described.
- (b) A general policy in respect of activities related to the applicable requirements of this Regulation and its Implementing Rules should be developed, promoted and implemented by the manager at the highest appropriate level; for example the manager at the top of the functional area of MCAA that is responsible for such activities.
- (c) Appropriate steps should be taken to ensure that the policy is known and understood by all personnel involved, and all necessary steps should be taken to implement and maintain the policy.
- (d) The general policy, whilst also satisfying additional national regulatory responsibilities, would in particular take into account:
 - (1) the provisions of applicable Laws and Regulations;
 - (2) the provisions of the applicable Implementing Rules and their AMCs, CSs and GM;
 - (3) the needs of industry; and
 - (4) the needs of MCAA.
- (e) The policy would define specific objectives for key elements of the organisation and processes for implementing related activities, including the corresponding control procedures and the measurement of the achieved standard.

AMC1 ARA.GEN.200 (a)(1) Management system DOCUMENTED POLICIES AND PROCEDURES

- (a) The various elements of the organisation involved with the activities related to Regulation (EC) No 216/2008 and its Implementing Rules should be documented in order to establish a reference source for the establishment and maintenance of this organisation.
- (b) The documented procedures should be established in a way that facilitates their use. They should be clearly identified, kept up-to-date and made readily available to all personnel involved in the related activities.
- (c) The documented procedures should cover, as a minimum, all of the following aspects:
 - (1) policy and objectives;
 - (2) organisational structure;
 - (3) responsibilities and associated authority;
 - (4) procedures and processes;
 - (5) internal and external interfaces;
 - (6) internal control procedures;
 - (7) training of personnel;
 - (8) cross-references to associated documents;
 - (9) assistance from other competent authorities (where required).
- (d) It is likely that the information is held in more than one document or series of documents, and suitable cross-referencing should be provided. For example, organisational structure and job descriptions are not usually in the same documentation as the detailed working procedures. In such cases it is recommended that the documented procedures include an index of cross-references to all such other related information, and the related documentation should be readily available when required.

AMC1 ARA.GEN.200 (a)(2) Management system QUALIFICATION AND TRAINING - GENERAL

- (a) MCAA would ensure appropriate and adequate training of its personnel to meet the standard that is considered necessary to perform the work. To ensure personnel remain qualified, arrangements should be made for initial and recurrent training as required.
- (b) The basic capability of MCAA's personnel is a matter of recruitment and normal management functions in selection of personnel for particular duties. Moreover, MCAA would provide training in the basic skills as required for those duties. However, to avoid differences in understanding and interpretation, all personnel should be provided with further training specifically related to this Regulation, its Implementing Rules and related AMCs, CSs and GM, as well as related to the assessment of alternative means of compliance.
- (c) MCAA may provide training through its own training organisation with qualified trainers or through another qualified training source.
- (d) When training is not provided through an internal training organisation, adequately experienced and qualified persons may act as trainers, provided their training skills have been assessed. If required, an individual training plan should be established covering specific training skills. Records should be kept of such training and of the assessment, as appropriate.

AMC2 ARA.GEN.200 (a)(2) Management system

QUALIFICATION AND TRAINING - INSPECTORS

(a) Initial training programme:

The initial training programme for inspectors should include, as appropriate to their role, current knowledge, experience and skills in at least all of the following:

- (1) aviation legislation organisation and structure;
- (2) the Chicago Convention, relevant ICAO annexes and documents;
- (3) the applicable requirements and procedures;
- (4) management systems, including auditing, risk assessment and reporting techniques;
- (5) human factors principles;
- (6) rights and obligations of inspecting personnel of MCAA;
- (7) 'on-the-job' training;
- (8) suitable technical training appropriate to the role and tasks of the inspector, in particular for those areas requiring approvals.
- (b) Recurrent training programme:

The recurrent training programme should reflect, at least, changes in aviation legislation and industry. The programme should also cover the specific needs of the inspectors and MCAA.

GM1 ARA.GEN.200 (a)(2) Management system

- SUFFICIENT PERSONNEL
- (a) This GM on the determination of the required personnel is limited to the performance of certification and oversight tasks, excluding personnel required to perform tasks subject to any national regulatory requirements.
- (b) The elements to be considered when determining required personnel and planning their availability may be divided into quantitative and qualitative elements:
 - (1) Quantitative elements:
 - (i) the estimated number of initial certificates to be issued;
 - (ii) the number of organisations certified by MCAA;
 - (iii) the number of persons to whom MCAA has issued a licence, certificate, rating, or authorisation;
 - (iv) the estimated number of persons and organisations exercising their activity within Maldives and established or residing in another State.
 - (2) Qualitative elements:
 - (i) the size, nature and complexity of activities of certified organisations and FSTD qualification certificate holders (cf. AMC1 ORA.GEN.200(b)), taking into account:
 (A) privileges of the organisation;

- (B) type of approval, scope of approval, multiple certification;
- (C) possible certification to industry standards;
- (D) types of aircraft / flight simulation training devices (FSTDs) operated;
- (E) number of personnel; and
- (F) organisational structure, existence of subsidiaries;
- (ii) the safety priorities identified;
- (iii) the results of past oversight activities, including audits, inspections and reviews, in terms of risks and regulatory compliance, taking into account:
 - (A) number and level of findings;
 - (B) timeframe for implementation of corrective actions; and
 - (C) maturity of management systems implemented by organisations and their ability to effectively manage safety risks, taking into account also information provided by other competent authorities related to activities in the Maldives; and
- (iv) the size and complexity of the State's aviation industry and the potential growth of activities in the field of civil aviation, which may be an indication of the number of new applications and changes to existing certificates to be expected.
- (c) Based on existing data from previous oversight planning cycles and taking into account the situation within the State's aviation industry, MCAA may estimate:
 - (1) the standard working time required for processing applications for new certificates (for persons, organisations and FSTD qualification);
 - (2) the number of new certificates to be issued for each planning period; and
 - (3) the number of changes to existing certificates to be processed for each planning period.
- (d) In line with MCAA's oversight policy, the following planning data should be determined specifically for each type of organisation certified by MCAA (approved training organisation (ATO) and aero-medical centres (AeMC)) and for FSTD qualification certificate holders:
 - (1) standard number of audits to be performed per oversight planning cycle;
 - (2) standard duration of each audit;
 - (3) standard working time for audit preparation, on-site audit, reporting and follow-up, per inspector;
 - (4) standard number of ramp and unannounced inspections to be performed;
 - (5) standard duration of inspections, including preparation, reporting and follow-up, per inspector;
 - (6) minimum number and required qualification of inspectors for each audit/inspection.
- (e) Standard working time could be expressed either in working hours per inspector or in working days per inspector. All planning calculations should then be based on the same unit (hours or working days).
- (f) It is recommended to use a spreadsheet application to process data defined under (c) and (d), to assist in determining the total number of working hours / days per oversight planning cycle required for certification, oversight and enforcement activities. This application could also serve as a basis for implementing a system for planning the availability of personnel.
- (g) For each type of organisation certified by MCAA and for FSTD qualification certificate holders the number of working hours / days per planning period for each qualified inspector that may be allocated for certification, oversight and enforcement activities should be determined, taking into account:
 - (1) purely administrative tasks not directly related to oversight and certification;
 - (2) training;
 - (3) participation in other projects;
 - (4) planned absence; and
 - (5) the need to include a reserve for unplanned tasks or unforeseeable events.
- (h) The determination of working time available for certification, oversight and enforcement activities should also consider:
 - (1) the possible use of qualified entities; and
 - (2) possible cooperation with other competent authorities for approvals involving more than one State.
- (i) Based on the elements listed above, MCAA would be able to:
 - (1) monitor dates when audits and inspections are due and when they have been carried out;
 - (2) implement a system to plan the availability of personnel; and

(3) identify possible gaps between the number and qualification of personnel and the required volume of certification and oversight.

Care should be taken to keep planning data up-to-date in line with changes in the underlying planning assumptions, with particular focus on risk-based oversight principles.

AMC1 ARA.GEN.210 (d) Management system

RESERVED

GM1 ARA.GEN.205 Allocation of tasks to qualified entities CERTIFICATION TASKS

The tasks that may be performed by a qualified entity on behalf of MCAA include those related to the initial certification and continuing oversight of persons and organisations as defined in this Regulation, with the exclusion of the issuance of certificates, licences, ratings or approvals.

AMC1 ARA.GEN.220 (a) Record-keeping

GENERAL

- (a) The record-keeping system should ensure that all records are accessible whenever needed within a reasonable time. These records should be organised in a way that ensures traceability and retrievability throughout the required retention period.
- (b) Records should be kept in paper form or in electronic format or a combination of both media. Records stored on microfilm or optical disc form are also acceptable. The records should remain legible and accessible throughout the required retention period. The retention period starts when the record has been created.
- (c) Paper systems should use robust material, which can withstand normal handling and filing. Computer systems should have at least one backup system, which should be updated within 24 hours of any new entry. Computer systems should include safeguards against unauthorised alteration of data.
- (d) All computer hardware used to ensure data backup should be stored in a different location from that containing the working data and in an environment that ensures they remain in good condition. When hardware- or software-changes take place, special care should be taken that all necessary data continue to be accessible at least through the full period specified in the relevant Subpart or by default in ARA.GEN.220 (c).

AMC1 ARA.GEN.220 (a)(1);(2);(3) Record-keeping MCAA MANAGEMENT SYSTEM

Records related to MCAA's management system would include, as a minimum and as applicable:

- (a) the documented policies and procedures;
- (b) the personnel files of MCAA personnel, with supporting documents related to training and qualifications;
- (c) the results of MCAA's internal audit and safety risk management processes, including audit findings and corrective actions; and
- (d) the contract(s) established with qualified entities performing certification or oversight tasks on behalf of MCAA.

AMC1 ARA.GEN.220 (a)(4) Record-keeping ORGANISATIONS

Records related to an organisation certified by MCAA would include, as appropriate to the type of organisation:

(a) the application for an organisation approval;

- (b) the documentation based on which the approval has been granted and any amendments to that documentation;
- (c) the organisation approval certificate including any changes;
- (d) a copy of the continuing oversight programme listing the dates when audits are due and when such audits were carried out;
- (e) continuing oversight records including all audit and inspection records;
- (f) copies of all relevant correspondence;
- (g) details of any exemption and enforcement actions;
- (h) any report from other competent authorities relating to the oversight of the organisation; and
- (i) a copy of any other document approved by MCAA.

GM1 ARA.GEN.220 (a)(4) Record-keeping ORGANISATIONS - DOCUMENTATION

Documentation to be kept as records in support of the approval include the management system documentation, including any technical manuals, such as the operations manual, and training manual, that have been submitted with the initial application, and any amendments to these documents.

AMC1 ARA.GEN.220 (a)(5) Record-keeping PERSONS

Records related to personnel licences, certificates, ratings, or authorisations issued by MCAA would include, as a minimum:

- (a) the application for a licence, certificate, rating, or authorisation or change to a licence, certificate, rating, or authorisation;
- (b) documentation in support of the application for a licence, certificate, rating, or authorisation or change to a licence, certificate, rating, or authorisation, covering as applicable:
 - (1) theoretical examination(s);
 - (2) skill test(s);
 - (3) proficiency check(s); and
 - (4) certificates attesting required experience;
- (c) a copy of the licence or certificate including any changes;
- (d) all relevant correspondence or copies thereof;
- (e) details of any exemption;
- (f) details of any enforcement action(s); and
- (g) any report from other competent authorities relating to personnel licences, certificates, ratings, or authorisations issued by MCAA.

AMC1 ARA.GEN.220 (a)(7) Record-keeping

ACTIVITIES PERFORMED IN THE MALDIVES BY PERSONS OR ORGANISATIONS ESTABLISHED OR RESIDING IN ANOTHER STATE

- (a) Records related to the oversight of activities performed in the territory of the Maldives by persons or organisations established or residing in another State should include, as a minimum:
 - (1) oversight records including all audit and inspection records and related correspondence;

- (2) copies of all relevant correspondence to exchange information with other competent authorities relating to the oversight of such persons/organisations;
- (3) details of any enforcement measures and penalties; and
- (4) any report from other competent authorities relating to the oversight of these persons/organisations, including any notification of evidence showing non-compliance with the applicable requirements.
- (b) Records should be kept by MCAA having performed the audit or inspection and should be made available to other competent authorities at least in the following cases:
 - (1) serious incidents or accidents;
 - (2) findings through the oversight programme where organisations certified by another competent authority are involved, to determine the root cause;
 - (3) an organisation being certified or having approvals in several States.
- (c) When records are requested by another competent authority, the reason for the request should be clearly stated.
- (d) The records can be made available by sending a copy or by allowing access to them for consultation.

GM1 ARA.GEN.220 Record-keeping

GENERAL

Records are required to document results achieved or to provide evidence of activities performed. Records become factual when recorded. Therefore, they are not subject to version control. Even when a new record is produced covering the same issue, the previous record remains valid.

SECTION III - OVERSIGHT, CERTIFICATION AND ENFORCEMENT

AMC1 ARA.GEN.300 (a);(b);(c) Oversight

EVALUATION OF APPROVED TRAINING ORGANISATIONS' OPERATIONAL SAFETY RISK ASSESSMENT

As part of the initial certification or the continuing oversight of an ATO, the competent authority should normally evaluate its safety risk assessment processes related to hazards identified by the ATO as having an interface with its operations. These safety risk assessments should be identifiable processes of the ATO's management system.

As part of its continuing oversight, the competent authority should also remain satisfied as to the effectiveness of these safety risk assessments.

(a) General methodology for operational hazards

The competent authority should establish a methodology for evaluating the safety risk assessment processes of the ATO's management system.

When related to operational hazards, the competent authority's evaluation under its normal oversight process should be considered satisfactory if the ATO demonstrates its competence and capability to:

- (1) understand the hazards identified and their consequences on its operations;
- (2) be clear on where these hazards may exceed acceptable safety risk limits;
- (3) identify and implement mitigations including suspension of operations where mitigation cannot reduce the risk to within safety risk limits;
- (4) develop and execute effectively, robust procedures for the preparation and the safe operation of the flights subject to the hazards identified;
- (5) assess the competence and currency of its staff in relation to the duties for the intended operations and implement any necessary training; and
- (6) ensure sufficient numbers of qualified and competent staff for such duties.

The competent authority should take into account:

- (1) the ATO's recorded mitigations for each unacceptable risk identified are in place;
- (2) the operational procedures specified by the ATO with the most significance to safety appear to be robust; and

(3) that the staff on which the ATO depends in respect of those duties necessary for the intended operations are trained and assessed as competent in the relevant procedures.

EVALUATION OF APPROVED TRAINING ORGANISATIONS' VOLCANIC ASH SAFETY RISK ASSESSMENT

In addition to the general methodology for operational hazards, the competent authority's evaluation under its normal oversight process should also assess the ATO's competence and capability to:

- (1) choose the correct information sources to use to interpret the information related to volcanic ash contamination forecast and to resolve correctly any conflicts among such sources; and
- (2) take account of all information from its type certificate holders (TCHs) concerning volcanic ash-related airworthiness aspects of the aircraft it operates, and the related pre-flight, in-flight and post flight precautions to be observed;

GM1 ARA.GEN.300 (a);(b);(c) Oversight

VOLCANIC ASH SAFETY RISK ASSESSMENT - ADDITIONAL GUIDANCE

Further guidance on the assessment of an ATO volcanic ash safety risk assessment is given in ICAO Doc. 9974 (Flight safety and volcanic ash – Risk management of flight operations with known or forecast volcanic ash contamination).

GM1 ARA.GEN.300 (d) Oversight ACTIVITIES WITHIN THE MALDIVES

- (a) Activities performed in the Maldives by persons or organisations established or residing in another State include:
 - (1) activities of organisations certified by competent authority of any other State;
 - (2) activities of persons holding a licence, certificate, or rating, issued by a competent authority of any other State; and
 - (3) activities of persons making declarations to competent authority of any other State.
- (b) Audits and inspections of such activities, including ramp and unannounced inspections, should be prioritised towards those areas of greater safety concern, as identified through the analysis of data on safety hazards and their consequences in operations.

AMC1 ARA.GEN.305(b) Oversight programme

SPECIFIC NATURE AND COMPLEXITY OF THE ORGANISATION, RESULTS OF PAST OVERSIGHT

- (a) When determining the oversight programme for an organisation MCAA would consider in particular the following elements, as applicable:
 - (1) the implementation by the organisation of industry standards, directly relevant to the organisation's activity subject to this Regulation;
 - (2) the procedure applied for and scope of changes not requiring prior approval;
 - (3) specific approvals held by the organisation;
 - (4) specific procedures implemented by the organisation related to any alternative means of compliance used.
- (b) For the purpose of assessing the complexity of an organisation's management system, AMC1 ORA.GEN.200 (b) should be used.
- (c) Regarding results of past oversight, MCAA would also take into account relevant results of ramp inspections of organisations it has certified that were performed in other States in accordance with ARO.RAMP.

AMC1 ARA.GEN.305 (b)(1) Oversight programme AUDIT

- (a) The oversight programme should indicate which aspects of the approval will be covered with each audit.
- (b) Part of an audit should concentrate on the organisation's compliance monitoring reports produced by the compliance monitoring personnel to determine if the organisation is identifying and correcting its problems.
- (c) At the conclusion of the audit, an audit report should be completed by the auditing inspector, including all findings raised.

AMC2 ARA.GEN.305 (b)(1) Oversight programme RAMP INSPECTIONS

When conducting a ramp inspection of aircraft used by organisations under its regulatory oversight MCAA would, in as far as possible, comply with the requirements defined in ARO.RAMP

AMC1 ARA.GEN.305 (b);(c) Oversight programme

INDUSTRY STANDARDS

- (a) For organisations having demonstrated compliance with industry standards, MCAA may adapt its oversight programme, in order to avoid duplication of specific audit items.
- (b) Demonstrated compliance with industry standards should not be considered in isolation from the other elements to be considered for MCAA's risk-based oversight.
- (c) In order to be able to credit any audits performed as part of certification in accordance with industry standards, the following should be considered:
 - (1) the demonstration of compliance is based on certification auditing schemes providing for independent and systematic verification;
 - (2) the existence of an accreditation scheme and accreditation body for certification in accordance with the industry standards has been verified;
 - (3) certification audits are relevant to the requirements defined in Annex VII (Part-ORA) and other Annexes to this Regulation as applicable;
 - (4) the scope of such certification audits can easily be mapped against the scope of oversight in accordance with Part-ORA;
 - (5) audit results are accessible to MCAA and open to exchange of information in accordance with Article 15(1) of Regulation (EC) No 216/2008; and
 - (6) the audit planning intervals of certification audits i.a.w. industry standards are compatible with the oversight planning cycle.

AMC1 ARA.GEN.305(c) Oversight programme

OVERSIGHT PLANNING CYCLE

- (a) When determining the oversight planning cycle and defining the oversight programme, MCAA would assess the risks related to the activity of each organisation and adapt the oversight to the level of risk identified and to the organisation's ability to effectively manage safety risks.
- (b) MCAA would establish a schedule of audits and inspections appropriate to each organisation. The planning of audits and inspections should take into account the results of the hazard identification and risk assessment conducted and maintained by the organisation as part of the organisation's management system. Inspectors should work in accordance with the schedule provided to them.
- (c) When MCAA, having regard to an organisation's safety performance, varies the frequency of an audit or inspection it should ensure that all aspects of the organisation's activity are audited and inspected within the applicable oversight planning cycle.
- (d) The section(s) of the oversight programme dealing with ramp inspections should be developed based on geographical locations, taking into account aerodrome activity, and focusing on key issues that can be inspected in the time available without unnecessarily delaying the operations.

AMC2 ARA.GEN.305(c) Oversight programme OVERSIGHT PLANNING CYCLE

- (a) For each organisation certified by MCAA and each FSTD qualification certificate holder all processes should be completely audited at periods not exceeding the applicable oversight planning cycle. The beginning of the first oversight planning cycle is normally determined by the date of issue of the first certificate. If MCAA wishes to align the oversight planning cycle with the calendar year, it should shorten the first oversight planning cycle accordingly.
- (b) The interval between two audits for a particular process should not exceed the interval of the applicable oversight planning cycle.
- (c) Audits should include at least one on-site audit within each oversight planning cycle. For organisations exercising their regular activity at more than one site, the determination of the sites to be audited should consider the results of past oversight, the volume of activity at each site, as well as main risk areas identified.
- (d) For organisations holding more than one certificate, MCAA may define an integrated oversight schedule to include all applicable audit items. In order to avoid duplication of audits, credit may be granted for specific audit items already completed during the current oversight planning cycle, subject to four conditions:
 - (1) the specific audit item should be the same for all certificates under consideration;
 - (2) there should be satisfactory evidence on record that such specific audit items were carried out and that all corrective actions have been implemented to the satisfaction of MCAA;
 - (3) MCAA would be satisfied that there is no reason to believe standards have deteriorated in respect of those specific audit items being granted a credit;
 - (4) the interval between two audits for the specific item being granted a credit should not exceed the applicable oversight planning cycle.

AMC1 ARA.GEN.305 (d) Oversight programme

PERSONS HOLDING A LICENCE, CERTIFICATE, RATING

The oversight of persons holding a licence, certificate, or rating should normally be ensured as part of the oversight of organisations. Additionally, MCAA would verify compliance with applicable requirements when endorsing or renewing ratings.

To properly discharge its oversight responsibilities, MCAA would perform a certain number of unannounced verifications.

AMC1 ARA.GEN.310 (a) Initial certification procedure organisations VERIFICATION OF COMPLIANCE

- (a) In order to verify the organisation's compliance with the applicable requirements, MCAA would conduct an audit of the organisation, including interviews of personnel and inspections carried out at the organisation's facilities.
- (b) MCAA would only conduct such audit after being satisfied that the application shows compliance with the applicable requirements.
- (c) The audit should focus on the following areas:
 - (1) detailed management structure, including names and qualifications of personnel required by ORA.GEN.210 and adequacy of the organisation and management structure;
 - (2) personnel:
 - (i) adequacy of number and qualifications with regard to the intended terms of approval and associated privileges;
 - (ii) validity of licences, ratings, or certificates as applicable;
 - (3) processes for safety risk management and compliance monitoring;
 - (4) facilities adequacy with regard to the organisation's scope of work;
 - (5) documentation based on which the certificate should be granted (organisation documentation as required by Part-ORA, including technical manuals, such as operations manual or training manual).

- (d) In case of non-compliance, the applicant should be informed in writing of the corrections that are required.
- (e) In cases where an application for an organisation certificate is refused, the applicant should be informed of the right of appeal as exists under national law.

AMC1 ARA.GEN.315 (a) Procedure for issue, revalidation, renewal or change of licences, ratings or certificates persons VERIFICATION OF COMPLIANCE

- (a) In order to verify that the applicant meets the requirements, MCAA would review the application and any supporting documents submitted, for completeness and compliance with applicable requirements.
- (b) As part of the verification that the applicant meets the requirements, MCAA would check that he/she:
 - (1) was not holding any personnel licence, certificate, rating, or authorisation with the same scope and in the same category issued in another State;
 - (2) has not applied for any personnel licence, certificate, rating, or authorisation with the same scope and in the same category in another State; and
 - (3) has never held any personnel licence, certificate, rating, or authorisation with the same scope and in the same category issued in another State which was revoked or suspended in any other State.
- (c) MCAA would request the applicant to make a declaration covering items (b)(1) to (b)(3). Such declaration should include a statement that any incorrect information could disqualify the applicant from being granted a personnel licence, certificate, rating, or authorisation. In case of doubts, MCAA would contact the competent authority of the State where the applicant may have previously held any personnel licence, certificate, rating, or authorisation.

AMC1 ARA.GEN.330 Changes – organisations GENERAL

(a) Changes in nominated persons:

MCAA should be informed of any changes to personnel specified in Part-ORA that may affect the certificate or terms of approval/approval schedule attached to it. When an organisation submits the name of a new nominee for any of the persons nominated as per ORA.GEN.210 (b), MCAA would require the organisation to produce a written résumé of the proposed person's qualifications. MCAA reserves the right to interview the nominee or call for additional evidence of his/her suitability before deciding upon his/her acceptability.

- (b) A simple management system documentation status sheet should be maintained, which contains information on when an amendment was received by MCAA and when it was approved.
- (c) The organisation should provide each management system documentation amendment to MCAA, including for the amendments that do not require prior approval by MCAA. Where the amendment requires MCAA approval, MCAA when satisfied, would indicate its approval in writing. Where the amendment does not require prior approval, MCAA would acknowledge receipt in writing within 10 working days.
- (d) For changes requiring prior approval, in order to verify the organisation's compliance with the applicable requirements, MCAA would conduct an audit of the organisation, limited to the extent of the changes. If required for verification, the audit should include interviews and inspections carried out at the organisation's facilities.

GM1 ARA.GEN.330 Changes organisations CHANGE OF NAME OF THE ORGANISATION

- (a) On receipt of the application and the relevant parts of the organisation's documentation as required by Part-ORA, MCAA would re-issue the certificate.
- (b) A name change alone does not require MCAA to audit the organisation, unless there is evidence that other aspects of the organisation have changed.

GM1 ARA.GEN.350 Findings and corrective actions organisations TRAINING

For a level 1 finding it may be necessary for MCAA to ensure that further training by the organisation is carried out and audited by MCAA before the activity is resumed, dependent upon the nature of the finding.

GM1 AMC1-ARA.GEN.355 (e) Findings and enforcement measures – persons

This provision is necessary to ensure that enforcement measures will be taken also in cases where MCAA may not act on the licence, or certificate. The type of enforcement measure will depend on the applicable national law and may include for example the payment of a fine or the prohibition from exercising. It covers two cases:

- (a) persons subject to the requirements laid down in this Regulation and its Implementing Rules who are not required to hold a licence, or certificate for example general medical practitioners (GMPs); and
- (b) persons who are required to hold a licence, rating, or certificate, but who do not hold the appropriate licence, rating, or certificate as required for the activity they perform.

SUBPART FCL - SPECIFIC REQUIREMENTS RELATING TO FLIGHT CREW LICENSING

SECTION II - LICENCES, RATINGS AND CERTIFICATES

AMC1 ARA.FCL.205 Monitoring of examiners QUALIFICATION OF INSPECTORS

Inspectors of MCAA supervising examiners should ideally meet the same requirements as the examiners being supervised. However, it is unlikely that they could be so qualified on the large variety of types and tasks for which they have a responsibility and, since they normally only observe training and testing, it is acceptable if they are qualified for the role of an inspector.

SECTION III - THEORETICAL KNOWLEDGE EXAMINATIONS

AMC1 ARA.FCL.300 Examination procedures GENERAL

- (a) MCAA would provide suitable facilities for the conduct of examinations.
- (b) The content of the examination papers should retain a confidential status until the end of the examination session.
- (c) The identity of the applicant should be confirmed before an examination is taken.
- (d) Examination applicants should be seated in a way so that they cannot read each other's examination papers. They should not speak to any person other than the invigilators.
- (e) All examination papers, associated documents and additional papers handed out to the applicants for the examination should be handed back to the invigilator at the end of the examination.
- (f) Only the examination paper, specific documentation and tools needed for the examination should be available to the applicant during the examination.
- (g) Applicants may use the following equipment during an examination:
 - (1) a scientific, non-programmable, non-alphanumeric calculator without specific aviation functions;
 - (2) mechanical navigation slide-rule (DR calculator);
 - (3) protractor;
 - (4) compasses and dividers;
 - (5) ruler.

AND

- (h) Applicants may use a translation dictionary at the discretion of MCAA.
- (i) Except equipment specified above, applicant(s) should not use any electronic equipment during the examination(s).

AMC1 ARA.FCL.300 (b) Examination procedures THEORETICAL KNOWLEDGE EXAMINATIONS FOR PROFESSIONAL LICENCES INSTRUMENT RATINGS

With regard to the IR (A), this table applies to theoretical knowledge examinations for applicants who have completed a modular training course for the IR (A) according to Appendix 6 section A.

Theoretical knowledge examin						
Exam length, total number of c	questions and di	stribution of o				1
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)
Time allowed (hours)	1:00	0:45	1:00	0:45	0:45	0:45
Distribution of questions with	regard to the top	pics of the syl	labus			
010 01	3	2	3	3	2	XX
010 02	2	2	2	2	2	XX
010 03	1	1	1	1	1	XX
010 04	2	2	2	2	2	1
010 05	8	8	8	8	8	8
010 06	7	4	7	3	4	7
010 07	5	3	5	3	3	5
010 08	2	2	2	2	2	2
010 09	6	4	6	4	4	6
010 10	2	1	2	1	1	XX
010 11	2	2	2	2	2	XX
010 12	2	1	2	1	1	XX
010 13	2	1	2	1	1	XX
Total questions	44	33	44	33	33	29
Subject: 021 - AIRCRAFT GE	ENERAL KNOV	WLEDGE - A	IRFRAME/S	YSTEMS/PO	WER PLANT	Γ
Theoretical knowledge examin	nation					
Exam length, total number of c	questions and di	stribution of a	nuestions			
		Surfourion of v	Jucations			
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)
Time allowed (hours)			ATPL(H)/	ATPL(H) 2:00	CPL(H) 1:30	IR(A) & (H) XX
Time allowed (hours) Distribution of questions with	ATPL(A) 2:00	CPL(A) 1:30	ATPL(H)/ IR 2:00			(H)
	ATPL(A) 2:00	CPL(A) 1:30	ATPL(H)/ IR 2:00			(H)
Distribution of questions with	ATPL(A) 2:00 regard to the top	CPL(A) 1:30 pics of the syl	ATPL(H)/ IR 2:00 labus	2:00	1:30	(H) XX
Distribution of questions with 021 01	ATPL(A) 2:00 regard to the top 04	CPL(A) 1:30 pics of the syl 02	ATPL(H)/ IR 2:00 labus 04	2:00	1:30 02	(H) XX XX
Distribution of questions with 021 01 021 02	ATPL(A) 2:00 regard to the top 04 04	CPL(A) 1:30 pics of the syl 02 04	ATPL(H)/ IR 2:00 labus 04 04	2:00 04 04	1:30 02 02	(H) XX XX XX XX
Distribution of questions with 021 01 021 02 021 03	ATPL(A) 2:00 regard to the top 04 04 05	CPL(A) 1:30 pics of the syl 02 04 02	ATPL(H)/ IR 2:00 labus 04 04 04	2:00 04 04 04	1:30 02 02 03	(H) XX XX XX XX XX
Distribution of questions with 021 01 021 02 021 03 021 04	ATPL(A) 2:00 regard to the top 04 04 05 05	CPL(A) 1:30 pics of the syl 02 04 02 06	ATPL(H)/ IR 2:00 labus 04 04 04 04 04	2:00 04 04 04 04 04	1:30 02 02 03 02	(H) XX XX XX XX XX XX XX
Distribution of questions with 021 01 021 02 021 03 021 04 021 05	ATPL(A) 2:00 regard to the top 04 04 04 05 05 05 07	CPL(A) 1:30 pics of the syl 02 04 02 06 04	ATPL(H)/ IR 2:00 labus 04 04 04 04 04 04 06	2:00 04 04 04 04 04 06	1:30 02 02 03 02 03 02 03	(H) XX XX XX XX XX XX XX XX
Distribution of questions with 021 01 021 02 021 03 021 04 021 05 021 06	ATPL(A) 2:00 regard to the top 04 04 05 05 07 05 05	CPL(A) 1:30 pics of the syl 02 04 02 06 04 04 04	ATPL(H)/ IR 2:00 labus 04 04 04 04 04 06 04	2:00 04 04 04 04 06 06 04	1:30 02 02 03 02 03 02 03 02	(H) XX XX XX XX XX XX XX XX XX
Distribution of questions with 021 01 021 02 021 03 021 04 021 05 021 06 021 07	ATPL(A) 2:00 regard to the top 04 04 05 05 07 05 04	CPL(A) 1:30 pics of the syl 02 04 02 06 04 04 04 04 04	ATPL(H)/ IR 2:00 labus 04 04 04 04 04 06 04 04 02	2:00 04 04 04 04 06 04 02	1:30 02 02 03 02 03 02 02 02 02	(H) XX XX XX XX XX XX XX XX XX XX XX
Distribution of questions with 021 01 021 02 021 03 021 04 021 05 021 06 021 07 021 08	ATPL(A) 2:00 regard to the top 04 04 05 05 07 05 04 04 06	CPL(A) 1:30 pics of the syl 02 04 02 06 04 04 04 04 04 04	ATPL(H)/ IR 2:00 labus 04 04 04 04 04 06 04 02 02 04	2:00 04 04 04 04 06 04 02 04	1:30 02 02 03 02 03 02 02 02 02 04	(H) XX XX XX XX XX XX XX XX XX XX XX XX XX
Distribution of questions with 021 01 021 02 021 03 021 04 021 05 021 06 021 07 021 08 021 09	ATPL(A) 2:00 regard to the top 04 04 05 05 07 05 04 06 06	CPL(A) 1:30 pics of the syl 02 04 02 06 04 04 04 04 04 04 06	ATPL(H)/ IR 2:00 labus 04 04 04 04 04 06 04 02 04 04 06	2:00 04 04 04 04 04 06 04 02 04 06	1:30 02 02 03 02 03 02 02 02 02 04 04	(H) XX XX XX XX XX XX XX XX XX XX XX XX XX
Distribution of questions with 021 01 021 02 021 03 021 04 021 05 021 06 021 07 021 08 021 09 021 10	ATPL(A) 2:00 regard to the top 04 04 04 05 05 07 07 05 07 05 06 06 06 06	CPL(A) 1:30 pics of the syl 02 04 02 06 04 04 04 04 04 04 06 14	ATPL(H)/ IR 2:00 labus 04 04 04 04 04 06 04 02 04 06 06 06	2:00 04 04 04 04 06 04 02 04 06 06 06	1:30 02 02 03 02 03 02 03 02 02 04 04 04 08	(H) XX XX XX XX XX XX XX XX XX XX XX XX XX
Distribution of questions with 021 01 021 02 021 03 021 04 021 05 021 06 021 07 021 08 021 09 021 10 021 11	ATPL(A) 2:00 regard to the top 04 05 05 07 05 07 05 07 05 07 05 07 05 06 06 20	CPL(A) 1:30 pics of the syl 02 04 02 06 04 04 04 04 04 04 04 04 04 04	ATPL(H)/ IR 2:00 labus 04 04 04 04 04 06 04 02 04 04 06 06 06 20	2:00 04 04 04 04 06 04 02 04 06 06 06 20	1:30 02 02 03 02 03 02 03 02 02 04 04 04 08 13	(H) XX XX XX XX XX XX XX XX XX XX XX XX XX
Distribution of questions with 021 01 021 02 021 03 021 04 021 05 021 06 021 07 021 08 021 09 021 10 021 11 021 12	ATPL(A) 2:00 regard to the top 04 05 05 07 05 07 05 07 05 07 05 07 05 04 05 07 05 04 06 06 20 04	CPL(A) 1:30 pics of the syl 02 04 02 06 04 04 04 04 04 04 04 04 06 02	ATPL(H)/ IR 2:00 labus 04 04 04 04 04 06 04 02 04 04 06 06 06 20 02	$\begin{array}{c} 2:00\\ \hline 04\\ 04\\ 04\\ 04\\ 06\\ 04\\ 02\\ 04\\ 02\\ 04\\ 06\\ 06\\ 20\\ 02\\ 02\\ \end{array}$	1:30 02 02 03 02 03 02 02 02 04 04 04 04 08 13 02	(H) XX XX XX XX XX XX XX XX XX XX XX XX XX
Distribution of questions with 021 01 021 02 021 03 021 04 021 05 021 06 021 07 021 08 021 09 021 10 021 11 021 12 021 13	ATPL(A) 2:00 regard to the top 04 05 05 07 05 07 05 07 05 04 05 07 05 04 06 06 06 06 06 06 06 04	CPL(A) 1:30 pics of the syl 02 04 02 06 04 04 04 04 04 04 04 04 06 14 06 02 02 02 02	ATPL(H)/ IR 2:00 labus 04 04 04 04 04 04 06 04 02 04 06 06 06 20 02 XX	2:00 04 04 04 04 06 04 02 04 06 06 06 06 20 02 XX	1:30 02 02 03 02 03 02 02 02 04 04 04 04 08 13 02 XX	(H) XX XX XX XX XX XX XX XX XX XX XX XX XX
Distribution of questions with 021 01 021 02 021 03 021 04 021 05 021 06 021 07 021 08 021 09 021 10 021 11 021 12 021 13 021 14	ATPL(A) 2:00 regard to the top 04 04 05 05 05 07 05 04 06 06 06 06 06 06 06 06 06 04 04 XX	CPL(A) 1:30 pics of the syl 02 04 02 06 04 04 04 04 04 04 04 06 14 06 02 02 02 XX	ATPL(H)/ IR 2:00 labus 04 04 04 04 04 04 06 04 02 04 06 06 20 02 XX 01	2:00 04 04 04 04 06 04 02 04 06 06 06 20 02 XX 01	1:30 02 02 03 02 03 02 02 02 04 04 04 04 04 08 13 02 XX 01	(H) XX XX XX XX XX XX XX XX XX XX XX XX XX
Distribution of questions with 021 01 021 02 021 03 021 04 021 05 021 06 021 07 021 08 021 09 021 11 021 12 021 13 021 14 021 15	ATPL(A) 2:00 regard to the top 04 04 05 05 07 05 04 06 06 06 06 20 04 04 XX XX	CPL(A) 1:30 pics of the syl 02 04 02 06 04 04 04 04 04 04 06 14 06 02 02 02 XX XX XX	ATPL(H)/ IR 2:00 labus 04 04 04 04 04 04 06 04 06 06 06 20 02 XX 01 04	2:00 04 04 04 04 06 04 06 06 06 06 20 02 XX 01 04	1:30 02 02 03 02 03 02 03 02 02 04 04 04 04 04 08 13 02 XX 01 03	(H) XX XX

Subject: 022 - AIRCRAFT GENERAL KNOWLEDGE - INSTRUMENTATION Theoretical knowledge examination Exam length, total number of questions and distribution of questions ATPL(H)/ IR(A) & ATPL(A) CPL(A) ATPL(H) CPL(H) IR (H) Time allowed (hours) 1:30 1:00 1:30 1:30 1:00 0:30 Distribution of questions with regard to the topics of the syllabus 022 01 08 08 08 08 08 XX 08 022 02 06 08 08 06 06 022 03 04 04 04 04 04 04 022 04 04 05 06 06 05 04 022 05 05 XX 03 03 XX XX 022 06 08 06 XX XX XX XX 022 07 XX XX 14 14 08 XX 022 08 02 XX XX XX XX 03 02 XX XX XX XX XX 022 09 022 10 02 XX XX XX XX XX 022 11 04 XX 04 04 XX XX 022 12 06 06 04 04 06 03 022 13 04 04 05 05 04 03 022 14 01 XX 01 01 XX XX 022 15 01 XX 01 01 XX XX 39 Total questions 60 39 60 20 60

Subject: 031 - FLIGHT PERFORMANCE AND PLANNING - MASS AND BALANCE								
Theoretical knowledge examination								
Exam length, total number of questions and distribution of questions								
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)		
Time allowed (hours)	1:00	1:00	1:00	1:00	1:00	XX		
Distribution of questions with re	gard to the top	pics of the syl	labus					
031 01	03	03	03	03	03	XX		
031 02	05	05	05	05	05	XX		
031 03	05	05	05	05	05	XX		
031 04	05	05	05	05	05	XX		
031 05	05	05	05	05	05	XX		
031 06	02	02	02	02	02	XX		
Total questions	25	25	25	25	25	XX		

Subject: 032 - FLIGHT PERFORMANCE AND PLANNING - PERFORMANCE (AEROPLANES)								
Theoretical knowledge examination								
Exam length, total number of qu	estions and di	stribution of c	questions					
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)		
Time allowed (hours)	1:00	0:45	XX	XX	XX	XX		
Distribution of questions with re	gard to the top	pics of the syl	labus					
032 01	05	05	XX	XX	XX	XX		
032 02	10	10	XX	XX	XX	XX		
032 03	10	10	XX	XX	XX	XX		
032 04	10	XX	XX	XX	XX	XX		
Total questions	35	25	XX	XX	XX	XX		

Subject: 033 - FLIGHT PERFORMANCE AND PLANNING - FLIGHT PLANNING AND MONITORING								
Theoretical knowledge examination								
Exam length, total number of qu	estions and di	stribution of c	questions					
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)		
Time allowed (hours)	2:00	1:30	2:00	1:30	1:30	1:30		
Distribution of questions with re	Distribution of questions with regard to the topics of the syllabus							
033 01	05	05	05	05	05	XX		
033 02	10	XX	10	XX	XX	10		
033 03	10	10	10	10	10	05		
033 04	08	08	08	08	08	08		
033 05	05	05	05	05	05	05		
033 06	05	05	05	05	05	05		
Total questions	43	33	43	33	33	33		

Subject: 034 - FLIGHT PERFORMANCE AND PLANNING - PERFORMANCE (HELICOPTERS									
Theoretical knowledge examination									
Exam length, total number of qu	Exam length, total number of questions and distribution of questions								
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)			
Time allowed (hours)	XX	XX	1:00	1:00	0:45	XX			
Distribution of questions with re	gard to the top	pics of the syl	labus						
034 01	XX	XX	15	15	15	XX			
034 02	XX	XX	05	05	05	XX			
034 03	XX	XX	05	05	XX	XX			
034 04	XX	XX	10	10	XX	XX			
Total questions	XX	XX	35	35	20	XX			

Subject: 040 - HUMAN PERFORMANCE								
Theoretical knowledge examination								
Exam length, total number of qu	estions and di	stribution of c	questions					
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)		
Time allowed (hours)	1:00	0:45	1:00	1:00	0:45	0:45		
Distribution of questions with re	gard to the top	pics of the syl	labus					
040 01	02	01	02	02	01	01		
040 02	33	26	33	33	26	26		
040 03	13	09	13	13	09	09		
Total questions	48	36	48	48	36	36		

Subject: 050 - METEOROLOGY								
Theoretical knowledge examination								
Exam length, total number of questions and distribution of questions								
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)		
Time allowed (hours)	2:00	1:30	2:00	2:00	1:30	1:30		
Distribution of questions with re	gard to the top	pics of the syl	labus					
050 01	11	09	11	11	09	09		
050 02	11	06	11	11	06	06		
050 03	04	04	04	04	04	04		
050 04	07	06	07	07	06	06		
050 05	03	03	03	03	03	03		
050 06	07	07	07	07	07	07		
050 07	06	02	06	06	02	02		
050 08	08	03	08	08	03	03		
050 09	11	09	11	11	09	09		
050 10	16	14	16	16	14	14		
Total questions	84	63	84	84	63	63		

Subject: 061 - GENERAL NAVIGATION								
Theoretical knowledge examination								
Exam length, total number of qu	estions and di	stribution of c	questions					
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)		
Time allowed (hours)	2:00	1:30	2:00	2:00	1:30	XX		
Distribution of questions with re	gard to the top	pics of the syl	labus					
061 01	12	07	12	12	07	XX		
061 02	04	04	04	04	04	XX		
061 03	14	12	14	14	12	XX		
061 04	16	11	16	16	11	XX		
061 05	14	11	14	14	11	XX		
Total questions	60	45	60	60	45	XX		

Subject: 062 - RADIO NAVIGATION						
Theoretical knowledge examinat	tion					
Exam length, total number of qu	estions and di	stribution of c	questions			
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)
Time allowed (hours)	1:30	0:30	1:30	1:00	0:30	1:00
Distribution of questions with regard to the topics of the syllabus						
062 01	07	04	07	05	04	02
062 02	21	12	21	15	12	23
062 03	12	02	12	08	02	05
062 04	XX	XX	XX	XX	XX	XX
062 05	15	XX	15	XX	XX	10
062 06	11	04	11	06	04	04
Total questions	66	22	66	34	22	44

Subject: 070 - OPERATIONAL PROCEDURES						
Theoretical knowledge examinat	tion					
Exam length, total number of qu	estions and di	stribution of c	questions			
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)
Time allowed (hours)	1:15	0:45	1:00	1:00	0:45	XX
Distribution of questions with re	gard to the top	pics of the syl	labus			
071 01	25	18	18	18	14	XX
071 02	20	12	14	14	12	XX
071 03	XX	XX	06	06	04	XX
Total questions	45	30	38	38	30	XX

Subject: 081 - PRINCIPLES OF FLIGHT (AEROPLANES)						
Theoretical knowledge examinat	tion					
Exam length, total number of qu	estions and di	stribution of c	questions			
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)
Time allowed (hours)	1:00	0:45	XX	XX	XX	XX
Distribution of questions with re	Distribution of questions with regard to the topics of the syllabus					
081 01	17	14	XX	XX	XX	XX
081 02	06	XX	XX	XX	XX	XX
081 03	XX	XX	XX	XX	XX	XX
081 04	06	06	XX	XX	XX	XX
081 05	04	03	XX	XX	XX	XX
081 06	03	03	XX	XX	XX	XX
081 07	04	03	XX	XX	XX	XX
081 08	04	04	XX	XX	XX	XX
Total questions	44	33	XX	XX	XX	XX

Subject: 082 - PRINCIPLES OF FLIGHT (HELICOPTERS)
Subject. 062 - I KINCH LES OF TEIOTH (HELICOF TEKS)

Subject 002 Thirten EES	or reconn (in	DLICOI I LIG	•)			
Theoretical knowledge examination						
Exam length, total number of	questions and di	stribution of a	questions			
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)
Time allowed (hours)	XX	XX	1:00	1:00	1:00	XX
Distribution of questions with regard to the topics of the syllabus						
082 01	XX	XX	05	05	05	XX
082 02	XX	XX	03	03	03	XX
082 03	XX	XX	01	01	01	XX
082 04	XX	XX	12	12	12	XX
082 05	XX	XX	10	10	10	XX
082 06	XX	XX	05	05	05	XX
082 07	XX	XX	05	05	05	XX
082 08	XX	XX	03	03	03	XX
Total questions	XX	XX	44	44	44	XX

Subject: 091 - VFR COMMUNICATION						
Theoretical knowledge examinat	tion					
Exam length, total number of qu	estions and di	stribution of c	questions			
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)
Time allowed (hours)	00:30	00:30	00:30	00:30	00:30	XX
Distribution of questions with re	Distribution of questions with regard to the topics of the syllabus					
091 01	05	05	05	05	05	XX
091 02	11	11	11	11	11	XX
091 03	02	02	02	02	02	XX
091 04	02	02	02	02	02	XX
091 05	02	02	02	02	02	XX
091 06	02	02	02	02	02	XX
Total questions	24	24	24	24	24	XX

Subject: 092 - IFR COMMUNICATION						
Theoretical knowledge examinat	tion					
Exam length, total number of qu	estions and di	stribution of c	questions			
	ATPL(A)	CPL(A)	ATPL(H)/ IR	ATPL(H)	CPL(H)	IR(A) & (H)
Time allowed (hours)	00:30	XX	00:30	XX	XX	00:30
Distribution of questions with regard to the topics of the syllabus						
092 01	05	XX	05	XX	XX	05
092 02	11	XX	11	XX	XX	11
092 03	02	XX	02	XX	XX	02
092 04	02	XX	02	XX	XX	02
092 05	02	XX	02	XX	XX	02
092 06	02	XX	02	XX	XX	02
092 07	XX	XX	XX	XX	XX	XX
Total questions	24	XX	24	XX	XX	24

AMC2 ARA.FCL.300 (b) Examination procedures

THEORETICAL KNOWLEGDE EXAMINATIONS FOR THE EN-ROUTE INSTRUMENT RATING (EIR) AND THE INSTRUMENT RATING (IR) OBTAINED THROUGH THE COMPETENCY-BASED MODULAR TRAINING COURSE

The following tables contain the number of questions, the distribution of questions related to the different syllabus topics and the time allowed for the theoretical knowledge examination.

Subject: 010 - AIR LAW				
Theoretical knowledge examination				
Exam length, total number of questions				
	EIR FCL.825 & IR(A) Appendix 6 Aa			
Time allowed (hours)	00:30			
Distribution of questions with regard to the topics of the syllabus				
010 04	01			
010 05	05			
010 06	06			
010 07	03			
010 08	01			
010 09	02			
Total questions	18			

Subject: 022 - AIRCRAFT GENERAL KNOWLEDGE — INSTRUMENTATION				
Theoretical knowledge examine	Theoretical knowledge examination			
Exam length, total number of	questions			
	EIR FCL.825 & IR(A) Appendix 6 Aa			
Time allowed (hours)	00:20			
Distribution of questions with regard to the topics of the syllabus				
022 02	05			
022 04	04			
022 13	03			
Total questions	12			

Subject: 033 - FLIGHT PERFORMANCE AND PLANNING — FLIGHT PLANNING AND MONITORING				
Theoretical knowledge examination				
Exam length, total number of qu	estions			
	EIR FCL.825 & IR(A) Appendix 6 Aa			
Time allowed (hours)	00:40			
Distribution of questions with regard to the topics of the syllabus				
033 02	10			
033 03	04			
033 04	07			
033 05	05			
Total questions	26			

Subject: 040 - AIR LAW	Subject: 040 - AIR LAW			
Theoretical knowledge examination				
Exam length, total number of questions				
	EIR FCL.825 & IR(A) Appendix 6 Aa			
Time allowed (hours)	00:20			
Distribution of questions with regard to the topics of the syllabus				
040 01	01			
040 02	07			
040 03	04			
Total questions	12			

Subject: 050 - METEOROLOGY	ľ				
Theoretical knowledge examination					
Exam length, total number of questions					
	EIR FCL.825 & IR(A) Appendix 6 Aa				
Time allowed (hours)	00:50				
Distribution of questions with re	gard to the topics of the syllabus				
050 01	05				
050 02	03				
050 03	01				
050 04	05				
050 05	03				
050 06	05				
050 08	01				
050 09	07				
050 10	05				
Total questions	35				

Subject: 062 – RADIO NAVIGATION		
Theoretical knowledge examination		
Exam length, total number of questions		
	EIR FCL.825 & IR(A) Appendix 6 Aa	
Time allowed (hours)	00:40	
Distribution of questions with regard to the topics of the syllabus		
062 02	15	
062 03	03	
062 05	05	
062 06	01	
Total questions	24	

Subject: 092 – IFR COMMUNICATION	
Theoretical knowledge examination	
Exam length, total number of questions	
	EIR FCL.825 & IR(A) Appendix 6 Aa
Time allowed (hours)	00:30
Distribution of questions with regard to the topics of the syllabus	
092 01	05
092 02	10
092 03	02
092 04	02
092 05	02
092 06	02
Total questions	23

SUBPART CC – SPECIFIC REQUIREMENTS RELATING TO CABIN CREW

SECTION II – ORGANISATIONS PROVIDING CABIN CREW TRAINING

AMC1 ARA.CC.200 (b)(2) Approval of organisations to provide cabin crew training PERSONNEL CONDUCTING EXAMINATIONS

For any element being examined for the issue of a cabin crew licence as required in Part-CC, the person who delivered the associated training or instruction should not also conduct the examination. However, if the organisation has appropriate procedures in place to avoid conflict of interest regarding the conduct of the examination and/or the results, this restriction need not apply.

SUBPART ATO – SPECIFIC REQUIREMENTS RELATED TO APPROVED TRAINING ORGANISATIONS (ATOs)

SECTION I – GENERAL

AMC1 ARA.ATO.105 Oversight programme GENERAL

- (a) The audit or inspection of an ATO should be conducted on the basis of checking the facility for compliance, interviewing personnel and sampling any relevant training course for its conduct and standard.
- (b) In addition to the items required in AMC1 ARA.GEN.310 (a), such an audit or inspection should focus on:
 - (1) information on flight instructors, validity of licences, certificates, ratings and log books;
 - (2) evidence of sufficient funding;
 - (3) training aircraft in use, including their registration, associated documents and maintenance records;
 - (4) aerodromes, operating sites and associated facilities;
 - (5) facilities with regard to their adequacy to the courses being conducted and number of students;
 - (6) FSTDs, including their qualification certificates, associated documents and maintenance records;
 - (7) documentation, in particular documents related to courses, information on the updating system, and training and operations manual(s);
 - (8) training records and checking forms; and
 - (9) flight instruction, including pre-briefing, actual flight and debriefing.

AMC1 ARA.ATO.120 Record-keeping FSTDs

Records relating to FSTDs should include, as a minimum:

- (a) the application for an FSTD qualification;
- (b) the FSTD qualification certificate including any changes;
- (c) a copy of the evaluation programme listing the dates when evaluations are due and when evaluations were carried out;
- (d) initial and recurrent evaluation records;
- (e) copies of all relevant correspondence;
- (f) details of any exemption and enforcement actions; and
- (g) any report from other competent authorities relating to initial and recurrent evaluations.

SUBPART FSTD – SPECIFIC REQUIREMENTS RELATED TO THE QUALIFICATION OF FLIGHT SIMULATION TRAINING DEVICES (FSTDs)

AMC1 ARA.FSTD.100 (a)(1) Initial evaluation procedure

ASSESSMENT PROCESS LEADING TO THE ISSUE OF AN FSTD QUALIFICATION

- (a) FSTDs require evaluation leading to qualification. The required process should be accomplished in two distinct steps. First, a check should be made to determine whether or not the FSTD complies with the applicable requirements. When making this check, MCAA would ensure that accountability for the issue of an FSTD qualification is clearly defined. In all cases an individual department manager of MCAA would be appointed under whose personal responsibility the issue of an FSTD qualification is to be considered. The second step should be the grant (or refusal) of an FSTD qualification.
- (b) When checking compliance with the applicable requirements, MCAA would ensure that the following steps are taken:
 - (1) Once an FSTD is contracted to be built, the organisation that is to operate the FSTD should ensure that the regulatory standard upon which the FSTD will eventually be qualified against is acceptable to MCAA. This should be the current applicable version of CS-FSTD(A) or CS-FSTD(H) at the time of application.
 - (2) A written application for an FSTD qualification should be submitted, in a format according to ORA.FSTD.200, at least 3 months before the date of intended operation. However, the qualification test guide (QTG) may be submitted later, but not less than 30 days before the date of intended evaluation. The application form should be printed in English and any other language(s) of MCAA's choosing.
 - (3) An individual should be nominated by the department manager of MCAA to oversee, and become the focal point for, all aspects of the FSTD qualification process, and to coordinate all necessary activity. The nominated person should be responsible to the department manager for confirming that all appropriate evaluations/inspections are made.
 - (4) The ability of the applicant to secure, in compliance with the applicable requirements and certification specifications, the safe and reliable operation and proper maintenance of the FSTD should be assessed.
 - (5) The applicant's proposed compliance monitoring system should be scrutinised with particular regard to the allocated resources. Care should be taken to verify that the system is comprehensive and likely to be effective.
 - (6) MCAA would inform the applicant of its final decision concerning the qualification within 14 days of completion of the evaluation process irrespective of any temporary qualification issued.
 - (7) On completion of the evaluation process, the application, together with a written recommendation and evidence of the result of all evaluations or assessments, should be presented to the nominated person responsible for FSTD qualification. The presentation should be made by the person with overall responsibility, nominated in accordance with (b)(3).
 - (8) The department manager of MCAA would only issue an FSTD qualification certificate if he/she is completely satisfied that all requirements have been met. If he/she is not satisfied, the applicant should be informed in writing of the improvements that are required in order to satisfy MCAA.
 - (9) If an application for an FSTD qualification is refused, the applicant should be informed of such rights of appeal as exist under national regulations.

AMC2 ARA.FSTD.100 (a)(1) Initial evaluation procedure GENERAL

- (a) During initial and recurrent FSTD evaluations it should be necessary for MCAA to conduct an appropriate sample of the objective and subjective tests described in Part-ORA and detailed in CS-FSTD(A) and CS-FSTD(H), as applicable. There may be occasions when all tests cannot be completed for example during recurrent evaluations on a convertible FSTD but arrangements should be made for all tests to be completed within a reasonable time.
- (b) Following an evaluation, it is possible that a number of defects are identified. Generally, these defects should be rectified and MCAA notified of such action within 30 days. Serious defects, which affect flight crew training, testing and checking, could result in an immediate downgrading of the qualification level I. If any defect remains unattended without good reason for a period greater than 30 days, subsequent downgrading may occur or the FSTD qualification could be revoked.

(c) For the evaluation of an FSTD the standard form as mentioned in AMC5 ARA.FSTD.100 (a)(1) should be used.

AMC3 ARA.FSTD.100 (a)(1) **Initial evaluation procedure** INITIAL EVALUATION

- (a) The main focus of objective testing is the QTG. Well in advance of the evaluation date, the aircraft manufacturer and MCAA would agree on the content and acceptability of the validation tests contained in the QTG data package. This will ensure that the content of the QTG is acceptable to MCAA and avoid time being wasted during the initial qualification. The acceptability of all tests depends upon their content, accuracy, completeness and recency of the results.
- (b) Much of the time allocated to objective tests depends upon the speed of the automatic and manual systems set up to run each test and whether or not special equipment is required. MCAA would not necessarily warn the organisation operating an FSTD of the sample validations tests which should be run on the day of the evaluation, unless special equipment is required.
- (c) The FSTD cannot be used for subjective tests while part of the QTG is being run. Therefore, sufficient time (at least 8 consecutive hours) should be set aside for the examination and running of the QTG.
- (d) The subjective tests for the evaluation can be found in CS-FSTD(A) or CS-FSTD(H), and a suggested subjective test profile is described in AMC1 ARA.FSTD.100(a)(3). Essentially, 1 working day should be required for the subjective test routine, which effectively denies use of the FSTD for any other purpose.
- (e) To ensure adequate coverage of subjective and objective tests and to allow for cost effective rectification and re-test before departure of the inspection team, adequate time (up to 3 consecutive days) should be dedicated to an initial evaluation of an FSTD.

AMC4 ARA.FSTD.100 (a)(1) **Initial evaluation procedure** COMPOSITION OF THE EVALUATION TEAM

- (a) MCAA would appoint a technical team to evaluate an FSTD in accordance with a structured routine to gain a qualification level. The team should normally consist of at least the following personnel:
 - (1) A technical FSTD inspector of MCAA, or an accredited inspector from another competent authority, qualified in all aspects of flight simulation hardware, software and computer modelling or, exceptionally, a person designated by MCAA with equivalent qualifications; and
 - (2) One of the following:
 - (i) a flight inspector of MCAA, or an accredited inspector from another competent authority, who is qualified in flight crew training procedures and holds a valid type rating on the aeroplane/helicopter (or for flight navigation procedures trainer (FNPT) and basic instrument training device (BITD), class rated on the class of aeroplane/type of helicopter) being simulated; or
 - (ii) a flight inspector of MCAA who is qualified in flight crew training procedures, assisted by a type rating instructor holding a valid type rating on the aeroplane/helicopter (or for FNPT and BITD, class rated on the class of aeroplane/type of helicopter) being simulated; or, exceptionally,
 - (iii) a person designated by MCAA who is qualified in flight crew training procedures and holds a valid type rating on the aeroplane/helicopter (or for FNPT and BITD, class rated on the class of aeroplane/type of helicopter) being simulated and sufficiently experienced to assist the technical team. This person should fly out at least part of the functions and subjective test profiles.
 - (3) Where a designee is used as a substitute for one of MCAA's inspectors, the other person shall be a properly qualified inspector of MCAA or an accredited inspector from another State's competent authority.
- (b) For a flight training device (FTD) level 1 and FNPT Type I, one suitably qualified inspector may combine the functions in (a)(1) and (a)(2).
- (c) For a BITD this team should consist of an inspector from MCAA and one from another competent authority, including the manufacturer's competent authority, if applicable.

- (d) Additionally, the following persons should be present:
 - (1) for a full flight simulator (FFS), FTD and FNPT a type or class rated instructor from the ATO operating an FSTD or from the main FSTD user;
 - (2) for all types, sufficient FSTD support staff to assist with the running of tests and operation of the instructor's station.

AMC5 ARA.FSTD.100 (a)(1) Initial evaluation procedure

FSTD EVALUATION REPORT FOR INITIAL AND RECURRENT EVALUATION FSTD Evaluation Report

Date:	
-------	--

[Maldives Civil Aviation Authority] FSTD EVALUATION REPORT

[State] FSTD code (if applicable): EASA FSTD code (if applicable): Aircraft type and variant: Class of aeroplane / type of helicopter: Engine fit(s) simulated: Contents

- 1. Flight simulation training device (FSTD) characteristics
- 2. Evaluation details
- 3. Supplementary information
- 4. Training, testing and checking considerations
- 5. Classification of items
- 6. Results
- 7. Evaluation team

The conclusions presented are those of the evaluation team. MCAA reserves the right to change these after internal review.

1. Flight simulation training device (FSTD)				
(a) Organisation operating the FSTD:				
(b) FSTD Location:				
(c) FSTD Identification (State FSTD code / EASA FSTD Code):				
(d) FSTD Manufacturer and FSTD Identification serial number:				
(e) First entry into service (month/year):				
(f) Visual system (manufacturer and type):				
(g) Motion system (manufacturer and type) :				
(h) Aircraft type and variant:				
(i) Engine fit(s):				
(k) Engine instrumentation:				
Flight instrumentation:				
2. Evaluation details				
(a) Date of evaluation (b) Date of previous evaluation:				
(c) Type of evaluation: initial recurrent special				
(d) FSTD Qualification Level recommended:				
$FFS \Box \ A \ \Box \ B \ \Box \ C \ \Box \ D \ \Box \ AG \ \Box \ BG \ \Box \ CG \ \Box \ DG \ \Box \ SC$				
$FTD \Box \ 1 \Box \ 2 \ \Box \ 3$				
$FNPT \square I \square II \square III \square MCC$				
BITD				
Technical criteria primary reference document:				
Validation data roadmap (VDR) ID-No.:				
3. Supplementary information				
Company representative(s)				
(FSTD operator, Main FSTD user)				

FSTD seats available					
Visual databases used during evaluation					
Other					
4. Training, testing and checking considerations					
CAT I RVR m DH ft					
CAT II RVR m DH ft					
CAT III RVR m DH ft (lowest minimum)					
LVTO RVR m					
Recency					
IFR-training/check					
Type rating					
Proficiency checks					
Autocoupled approach					
Autoland/Roll out guidance					
ACAS I / II					
Windshear warning system/predictive windshear					
WX-Radar					
HUD/HUGS					
FANS					
GPWS/EGPWS					
ETOPS capability					
GPS					
Other					

5. Classification of items

UNACCEPTABLE

An item that fails to comply with the required standard and, therefore, affects the level of qualification or the qualification itself. If these items will not be corrected or clarified within a given time limit, the *MCAA* will have to vary, limit, suspend or revoke the FSTD qualification.

RESERVATION

An item where compliance with the required standard is not clearly proven and the issue will be reserved for a later decision. Resolution of these items will require either:

- 1. a competent authority policy ruling; or
- 2. additional substantiation.

UNSERVICEABILITY

A device that is temporarily inoperative or performing below its nominal level.

LIMITATION

An item that prevents the full usage of the FSTD according to the training, testing and checking considerations due to the unusable devices, systems or parts thereof.

RECOMMENDATION FOR IMPROVEMENT

An item that meets the required standard, but where considerable improvement is strongly recommended.

COMMENT

Self-explanatory

Period of Rectification

As set out in AMC2 ARA.FSTD.100 (a)(1) point (b):

Following an evaluation, it is possible that a number of defects are identified. Generally, these defects should be rectified and MCAA notified of such action within 30 days. Serious defects, which affect flight crew training, testing and checking, could result in an immediate downgrading of the qualification level, or if any defect remains unattended without good reason for a period greater than 30 days, subsequent downgrading may occur or the FSTD qualification could be revoked.

6. Results

6.1 Subjective/Functional

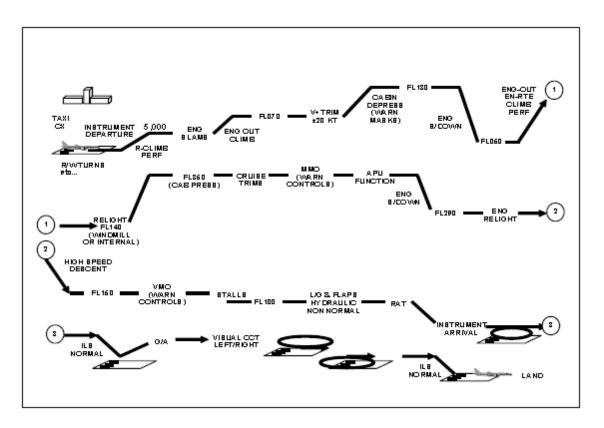
A Unacceptable				
1				
B Reservation				
1				
C Unserviceability				
1				
D Restriction				
1				
E Recommendation for improvement				
1				
F Comment				
1				

6.2 Objective

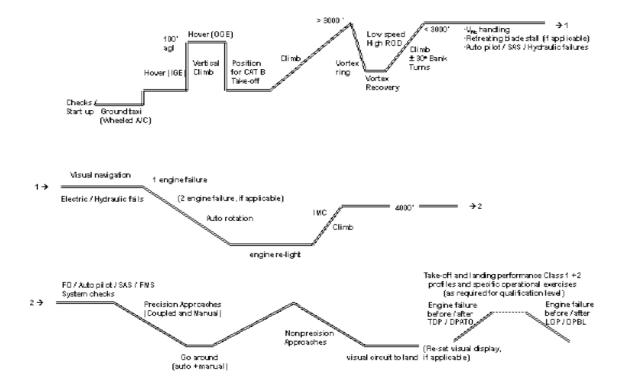
A Una	A Unacceptable				
1					
B Reservation					
1					
E Recommendation for improvement					
1					
F Comment					
1					

7. Evaluation Team

Name	Position	Organisation	Signature
	Technical Inspector or person designated by MCAA		
	Flight Inspector or person designated by MCAA		
		[FSTD User]	
		[Organisation operating the FSTD]	


Signed:For MCAA

GM1 ARA.FSTD.100 (a)(1) **Initial evaluation procedure** INITIAL EVALUATION


A useful explanation of how the validation tests should be run is contained in the 'RAeS Aeroplane Flight Simulator Evaluation Handbook' (February 1995 or as amended) produced in support of the ICAO Doc 9625, 'Manual of Criteria for the Qualification of Flight Simulators'.

AMC1 ARA.FSTD.100 (a)(3) Initial evaluation procedure FUNCTIONS AND SUBJECTIVE TESTS – SUGGESTED TEST ROUTINE

- (a) During initial and recurrent evaluations of an FSTD, MCAA would conduct a series of functions and subjective tests that together with the objective tests complete the comparison of the FSTD with the aircraft, the class of aeroplane or type of helicopter.
- (b) Functions tests verify the acceptability of the simulated aircraft systems and their integration. Subjective tests verify the fitness of the FSTD in relation to training, checking and testing tasks.
- (c) The FSTD should provide adequate flexibility to permit the accomplishment of the desired and required tasks while maintaining an adequate perception by the flight crew that they are operating in a real aircraft environment. Additionally, the instructor operating station (IOS) should not present an unnecessary distraction from observing the activities of the flight crew whilst providing adequate facilities for the tasks.
- (d) It is important that both MCAA and the organisation operating an FSTD understand what to expect from the routine of FSTD functions and subjective tests. Part of the subjective tests routine for an FSTD should involve an uninterrupted fly-out (except for FTD level 1) comparable with the duration of typical training sessions in addition to assessment of flight freeze and repositioning. An example of such a profile is to be found under points (f) and (g) (for BITD point (h)).
- (e) Organisations operating FSTD, who are unfamiliar with the evaluation process should contact MCAA or competent authority of a State with adequate expertise in this field.
- (f) Typical test profile for an FSTD aeroplane:

(g) Typical test profile for an FSTD helicopter:

- (h) Typical subjective test profile for BITDs (approximately 2 hours) items and altitudes, as applicable:
 - (1) instrument departure, climb performance,
 - (2) level-off at 4 000 ft,
 - (3) fail engine (if applicable),
 - (4) engine out climb to 6 000 ft (if applicable),
 - (5) engine out cruise performance (if applicable), restart engine,
 - (6) all engine cruise performance with different power settings,
 - (7) descent to 2 000 ft,
 - (8) all engine performance with different configurations, followed by instrument landing system (ILS) approach,
 - (9) all engine go-around,
 - (10) non-precision approach,
 - (11) go-around with engine failure (if applicable),
 - (12) engine out ILS approach (if applicable),
 - (13) go-around engine out (if applicable),
 - (14) non-precision approach engine out (if applicable), followed by go-around,
 - (15) restart engine (if applicable),
 - (16) climb to 4 000 ft,
 - (17) manoeuvring,
 - (18) normal turns left and right,
 - (19) steep turns left and right,
 - (20) acceleration and deceleration within operational range,
 - (21) approaching to stall in different configurations,
 - (22) recovery from spiral dive,
 - (23) auto flight performance (if applicable),
 - (24) system malfunctions,
 - (25) approach.

GM1 ARA.FSTD.100(a)(3) Initial evaluation procedure GENERAL

A useful explanation of functions and subjective tests and an example of subjective test routine checklist may be found in the 'RAeS Airplane Flight Simulator Evaluation Handbook' Volume II (February 1995 or as amended) produced in support of ICAO Doc 9625, 'Manual of Criteria for the Qualification of Flight Simulators'.

AMC1 ARA.FSTD.110 Issue of an FSTD qualification certificate

BASIC INSTRUMENT TRAINING DEVICE (BITD)

- (a) MCAA would only grant a BITD qualification for the BITD model to a BITD manufacturer following satisfactory completion of an evaluation.
- (b) This qualification should be valid for all serial numbers of this model without further technical evaluation.
- (c) The BITD model should be clearly identified by a BITD model number. A running serial number should follow the BITD model identification number.
- (d) MCAA would establish and maintain a list of all BITD qualifications it has issued, containing the number of the BITD model with a reference to the hardware and software configuration.

AMC1 ARA.FSTD.115 Interim FSTD qualification

NEW AIRCRAFT FFS / FTD QUALIFICATION – ADDITIONAL INFORMATION

(a) Aircraft manufacturers' final data for performance, handling qualities, systems or avionics are seldom available until well after a new or derivative aircraft has entered service. Because it is often necessary to begin flight crew training and certification several months prior to the entry of the first aircraft into service, it may be necessary to use aircraft manufacturer-provided preliminary data for interim qualification of FSTDs. This is consistent with the possible interim approval of operational suitability data (OSD) relative to FFS in the type certification process under Part-21.

- (b) In recognition of the sequence of events that should occur and the time required for final data to become available, MCAA may accept the use of certain partially validated preliminary aircraft and systems data and early release ('red label') avionics in order to permit the necessary programme schedule for training, certification and service introduction.
- (c) Organisations seeking qualification based on preliminary data should, however, consult MCAA as soon as it is known that special arrangements will be necessary, or as soon as it is clear that preliminary data will need to be used for FSTD qualification. Aircraft and FSTD manufacturers should also be made aware of the needs and agree on the data plan and FSTD qualification plan. There should be periodic meetings to keep the interested parties informed of the project's status.
- (d) The precise procedure to be followed to gain MCAA acceptance to use preliminary data should vary from case to case and between aircraft manufacturers. Each aircraft manufacturer's new aircraft development and test programme is designed to suit the needs of the particular project and may not contain the same events or sequence of events as another manufacturer's programme or even the same manufacturer's programme for a different aircraft. Hence, there cannot be a prescribed invariable procedure for acceptance to use preliminary data. Instead there should be a statement describing the final sequence of events, data sources, and validation procedures agreed by the FSTD operator, the aircraft manufacturer, the FSTD manufacturer and MCAA. The approval by MCAA of the definition of scope of the aircraft validation source data to support the objective qualification as part of the OSD can also be an interim approval in case of preliminary data. The preliminary data to be used should be based on this interim approval.
- (e) There should be assurance that the preliminary data are the manufacturer's best representation of the aircraft and reasonable certainty that final data will not deviate to a large degree from these preliminary, but refined, estimates. First of all there should be an interim approval of OSD relative to flight simulators in the type certification process under Part-21. Furthermore, the data derived from these predictive or preliminary techniques should be validated by available sources including, at least, the following:
 - (1) *Manufacturer's engineering report*. Such reports explain the predictive method used and illustrate past successes of the method on similar projects. For example, the manufacturer could show the application of the method to an earlier aircraft model or predict the characteristics of an earlier model and compare the results to final data for that model.
 - (2) Early flight tests results. Such data will often be derived from aircraft certification tests, and should be used to maximum advantage for early FSTD validation. Certain critical tests, which would normally be done early in the aircraft certification programme, should be included to validate essential pilot training and certification manoeuvres. These include cases in which a pilot is expected to cope with an aircraft failure mode, including engine failures. The early data available will, however, depend on the aircraft manufacturer's flight test programme design and may not be the same in each case. However it is expected that the flight test programme of the aircraft manufacturer includes provisions for generation of very early flight tests results for FSTD validation.
- (f) The use of preliminary data is not indefinite. The aircraft manufacturer's final data should be available within 6 months after the aircraft's first 'service entry' or as agreed by MCAA, the organisation and the aircraft manufacturer, but usually not later than 1 year. When an organisation applies for an interim qualification using preliminary data, the organisation and MCAA would agree upon the update programme. This should normally specify that the final data update will be installed in the FSTD within a period of 6 months following the final data release unless special conditions exist and a different schedule agreed. The FSTD performance and handling validation would then be based on data derived from flight tests. Initial aircraft systems data should be updated after engineering tests. Final aircraft systems data should also be used for FSTD programming and validation.
- (g) FSTD avionics should stay essentially in step with aircraft avionics (hardware and software) updates. The permitted time lapse between aircraft and FSTD updates is not a fixed time but should be minimal. It may depend on the magnitude of the update and whether the QTG and pilot training and certification are affected. Permitted differences in aircraft and FSTD avionics versions and the resulting effects on FSTD qualification should be agreed between the organisation and MCAA. Consultation with the FSTD manufacturer is desirable throughout the agreement of the qualification process.
- (h) The following describes an example of the design data and sources which might be used in the development of an interim qualification plan:

- (1) The plan should consist of the development of a QTG based upon a mix of flight test and engineering simulation data. For data collected from specific aircraft flight tests or other flights, the required designed model and data changes necessary to support an acceptable proof of match (POM) should be generated by the aircraft manufacturer.
- (2) In order that the two sets of data are properly validated, the aircraft manufacturer should compare their simulation model responses against the flight test data, when driven by the same control inputs and subjected to the same atmospheric conditions as were recorded in the flight test. The model responses should result from a simulation where the following systems are run in an integrated fashion and are consistent with the design data released to the FSTD manufacturer:
 - (i) propulsion,
 - (ii) aerodynamics,
 - (iii) mass properties,
 - (iv) flight controls,
 - (v) stability augmentation,
 - (vi) brakes and landing gear.
- (i) For the qualification of FSTD of new aircraft types, it may be beneficial that the services of a suitably qualified test pilot are used for the purpose of assessing handling qualities and performance evaluation.

GM1 ARA.FSTD.115 Interim FSTD qualification

NEW AIRCRAFT FFS/FTD QUALIFICATION - ADDITIONAL INFORMATION

- (a) A description of aircraft manufacturer-provided data needed for flight simulator modelling and validation is to be found in the IATA Document *Flight Simulator Design and Performance Data Requirements* (Edition 6 2000 or as amended).
- (b) The proof of match should meet the relevant tolerances in AMC1 CS-FSTD(A).300 respectively AMC1 CS-FSTD(H).300.

AMC1 ARA.FSTD.120 Continuation of an FSTD qualification GENERAL

- (a) *Objective Testing*. During recurrent evaluations, MCAA would wish to see evidence of the successful running of the QTG between evaluations. MCAA would select a number of tests to be run during the evaluation, including those that may be cause for concern. Again adequate notification would be given when special equipment is required for the test.
- (b) Essentially the time taken to run the objective tests depends upon the need for special equipment, if any, and the test system, and the FSTD cannot be used for subjective tests or other functions whilst testing is in progress.
- (c) For a modern FSTD incorporating an automatic test system, four hours would normally be required. FSTDs that rely upon manual testing may require a longer period of time.
- (d) *Subjective Testing*. Essentially the same subjective test routine should be flown as per the profile described in AMC1 ARA.FSTD.100(a)(3) with a selection of the subjective tests taken from CS-FSTD(A) or CS-FSTD(H), as appropriate.
- (e) Normally, the time taken for recurrent subjective testing is about 4 hours, and the FSTD should not perform other functions during this time.
- (f) To ensure adequate coverage of subjective and objective tests during a recurrent evaluation, a total of 8 hours should be allocated, (4 hours for a BITD). However, it should be remembered that any FSTD deficiency that arises during the evaluation could necessitate the extension of the evaluation period.

AMC2 ARA.FSTD.120 Continuation of an FSTD qualification COMPOSITION OF THE EVALUATION TEAM

(a) The composition of the evaluation team for a recurrent evaluation should be the same as for the initial evaluation (see AMC4 ARA.FSTD.100 (a)(1).

On a case-by-case basis (except for BITD), when a specific FSTD in operation by a specific organisation is being evaluated, MCAA may reduce the evaluation team to:

- (1) MCAA's flight inspector; and
- (2) a type rated instructor (or class rated instructor for FNPT) from a main FSTD user.
- (b) Evaluations with a reduced evaluation team in line with (a) may only take place if:
 - (1) this composition is not being used prior to the second recurrent evaluation;
 - (2) such an evaluation is followed by an evaluation with a full MCAA evaluation team;
 - (3) MCAA's flight inspector performs some spot checks in the area of objective testing;
 - (4) no major change or upgrading has been applied since the directly preceding evaluation;
 - (5) no relocation of the FSTD has taken place since the last evaluation;
 - (6) a system is established enabling MCAA to monitor and analyse the status of the FSTD on a continuous basis; and
 - (7) the FSTD hardware and software has been working reliably for the previous years. This should be reflected in the number and kind of discrepancies (technical log entries) and the results of the compliance monitoring system audits.
- (c) In the case of a BITD, the recurrent evaluation may be conducted by one suitably qualified flight inspector only, in conjunction with the inspection of any ATO, using the BITD.

AMC1 ARA.FSTD.130 Changes GENERAL

- (a) The organisation operating an FSTD who wishes to modify, upgrade, de-activate or re-locate its FSTD should notify MCAA. When considering applications for a change of the existing FSTD qualification level, MCAA would ensure that accountability for the change is clearly defined.
- (b) An individual department manager of MCAA would be appointed under whose personal authority an FSTD qualification may be changed.
- (c) The written application for a change, including appropriate extracts from the qualification test guide indicating proposed amendments should be submitted in a format and manner as specified by MCAA. This application should be submitted no later than 30 days before the date of intended change, unless otherwise agreed with MCAA.
- (d) On receipt of an application for a change of the existing FSTD qualification level, MCAA would conduct such evaluations and inspections as are necessary to ensure that the full implications of the request have been addressed by the organisation operating the FSTD.
- (e) During the processing of a change request, the continued adequacy of the compliance monitoring should be reviewed.
- (f) When the request has been considered and examined, MCAA would decide on the depth of inspection of the FSTD that is required.
- (g) The department manager, if satisfied that the organisation operating the FSTD remains competent and the qualification level of the FSTD can be maintained, should issue revised FSTD qualification documentation, as appropriate.
- (h) MCAA would inform the organisation operating the FSTD of its decision within 30 days of receipt of all documentation where no evaluation is required, or within 14 days of any subsequent evaluation.
- (i) Such documentation includes the appropriate extracts from the QTG amended, when necessary, to MCAA's satisfaction.

GM1 ARA.FSTD.130 Changes

QUALIFICATION OF NEW TECHNOLOGY OR SYSTEMS

Where an update to an FSTD involves a change of technology or the addition of a new system or equipment that is not covered by the qualification basis used for the existing qualification, an evaluation of such changes may not be possible using this original qualification basis. For these cases, the specific changes can be qualified by using newer Certification Specifications, new AMCs or alternative means of compliance, that apply to these changes, without affecting the overall qualification of the FSTD. This approach should be documented.

AMC1 ARA.FSTD.135 Findings and corrective actions - FSTD qualification certificate GENERAL

- (a) MCAA's inspection and monitoring process should confirm MCAA's continued confidence in the effectiveness of the compliance monitoring system of the organisation operating an FSTD, and its ability to maintain an adequate standard.
- (b) If MCAA is not satisfied, the organisation operating an FSTD should be informed in writing of the details of the conduct of its operation which are causing MCAA concern. MCAA would require corrective action to be taken within a specified period (see AMC2 ARA.FSTD.100 (a)(1) point (b)).
- (c) In the event that an organisation operating an FSTD fails, in spite of warning and advice, to satisfy MCAA's concerns, a final written warning should, whenever possible, be given to the organisation together with a firm date by which specified action to satisfy MCAA would be taken. It should be made clear that failure to comply may result in enforced limitation or suspension of the FSTD's qualification.
- (d) Circumstances may, however, preclude recourse to the process described under (a) to (c). In such cases MCAA's duty to preserve quality of training, testing and checking is of paramount importance and therefore MCAA may immediately limit or suspend any FSTD qualification which it has issued.

AMC2 ARA.FSTD.135 Findings and corrective actions - FSTD qualification certificate SUSPENSION AND LIMITATION

- (a) When a decision has been taken to suspend, or limit, an FSTD qualification certificate, the organisation operating an FSTD should be informed immediately by the quickest available means.
- (b) In the event of full suspension of an FSTD qualification certificate, the organisation operating an FSTD should be instructed that the FSTD concerned cannot be used for any credited training, testing or checking. The "quickest available means" will in most situations mean the use of a facsimile or email message.
- (c) This should be followed by a formal letter giving notice of suspension, or limitation, restating the requirement to cease operations as applicable, and also setting out the conditions on which suspension may be lifted.
- (d) If it becomes apparent to MCAA that all operations have ceased over a period in excess of 6 months, MCAA would consider opening the warning process described in AMC1 ARA.FSTD.135, points (a) to (d).
- (e) The FSTD qualification certificate should not remain suspended indefinitely. Further steps may be taken by the organisation operating an FSTD to reinstate the FSTD qualification or, in default, should be taken by MCAA to revoke the FSTD qualification certificate. Should an organisation operating an FSTD wish to dispute the suspension of its FSTD's qualification certificate, it should be informed of such rights of appeal as exist under national regulations. If an appeal is lodged, the FSTD qualification may remain suspended until the appeal process is complete.
- (f) Suspension of an FSTD qualification certificate may be lifted on appeal or if the organisation operating an FSTD restores the FSTD to its previously acceptable standard.
- (g) In neither case should operations be permitted to restart until it has been demonstrated that the cause of the suspension or limitation has been rectified. MCAA may require a special evaluation depending on the severity of the problem.

(h) MCAA would issue a formal notice of the lifting of suspension before the organisation operating an FSTD is permitted to resume use of an FSTD.

AMC3 ARA.FSTD.135 Findings and corrective actions - FSTD qualification certificate REVOCATION

- (a) MCAA would give the organisation operating an FSTD notice that it intends to revoke the FSTD qualification followed by a formal letter of revocation.
- (b) Should an organisation operating an FSTD wish to dispute this revocation, it should be informed of such rights of appeal as exist under applicable regulations. Once revoked, there can be no further activities under the terms of the FSTD qualification.

SUBPART MED - SPECIFIC REQUIREMENTS RELATING TO AERO-MEDICAL CERTIFICATION

SECTION I - GENERAL

AMC1 ARA.MED.120 Medical assessors EXPERIENCE AND KNOWLEDGE

Medical assessors should:

- (a) have considerable experience of aero-medical practice and have undertaken a minimum of 200 class 1 medical examinations or equivalent; and
- (b) maintain their medical professional competence in aviation medicine. The following should count towards maintaining medical professional competence:
 - (1) undertaking regular refresher training;
 - (2) participating in international aviation medicine conferences;
 - (3) undertaking research activities, including publication of results of the research.

AMC2 ARA.MED.120 Medical assessors TASKS

Medical assessors should:

- (a) provide lectures in basic, advanced and refresher training courses for aero-medical examiners (AMEs) and aero-medical centres (AeMCs);
- (b) carry out supervision and audits of AeMCs, AMEs and AME training facilities; and
- (c) perform the aero-medical assessment of applicants for, or holders of, medical certificates after referral to MCAA.

AMC1 ARA.MED.125 Referral to MCAA REFERRAL TO MCAA

- (a) MCAA would supply the AeMC or AME with all necessary information that led to the decision on aeromedical fitness.
- (b) MCAA would ensure that unusual or borderline cases are evaluated on a common basis.

AMC1 ARA.MED.130 Medical certificate format STANDARD MCAA MEDICAL CERTIFICATE FORMAT

The format of the medical certificate should be as shown below.

AMC1 ARA.MED.135 (a) Aero-medical forms APPLICATION FORM FOR A MEDICAL CERTIFICATE

The form referred to in ARA.MED.135 (a) should reflect the information indicated in the following form and corresponding instructions for completion.

Application for a Medical Certificate - MCAA OPS MED 160

AMC1 ARA.MED.135 (b);(c) Aero-medical forms MEDICAL EXAMINATION REPORT FORMS

The forms referred to in ARA.MED.135 (b) and (c) should reflect the information indicated in the following forms and corresponding instructions for completion.

Medical Examination Report – MCAA OPS MED 160B

GM1 ARA.MED.135 (b);(c) Aero-medical forms

OPHTHALMOLOGY AND OTORHINOLARYNGOLOGY EXAMINATION REPORT FORMS

The ophthalmology and otorhinolaryngology examination report forms may be used as indicated in the following forms and corresponding instructions for completion.

Ophthalmology Examination Report – MCAA OPS MED 160C Otorhinolaryngology Examination Report – MCAA OPS MED 160D

AMC1 ARA.MED.150 Record-keeping RELEASE OF AERO-MEDICAL RECORDS

In accordance with the national law, aero-medical records may also be released:

- (a) upon written request of the applicant, to management of MCAA, for review in response to a complaint;
- (b) to research institutes for the purpose of scientific research, with assurance of de-identification prior to publication;
- (c) to any investigation body (accident, security, police), when required under national law; and
- (d) for any other circumstances, as required under national law.

SECTION II – AERO-MEDICAL EXAMINERS (AMEs)

AMC1 ARA.MED.200 Procedure for the issue, revalidation, renewal or change of an AME certificate INSPECTION OF THE AME PRACTICE

Before issuing the AME certificate, MCAA would conduct an inspection of the AME practice to verify compliance with ARA.MED.200 (a).

SECTION III – MEDICAL CERTIFICATION

AMC1 ARA.MED.315 (a) Review of examination reports GENERAL

- (a) The process to review examination and assessment reports received from AeMCs, AMEs and GMPs should aim to check all reports received.
- (b) MCAA would take account of the proportion of inconsistencies or errors found in the assessment process and adapt the sample size accordingly and to review all reports if necessary.

ACCEPTABLE MEANS OF COMPLIANCE (AMC) AND GUIDANCE MATERIAL (GM) TO ANNEX VII (PART-ORA)

TABLE OF CONTENT

SUBPART GEN – GENERAL REQUIREMENTS

SECTION I - GENERAL

GM1 ORA.GEN.005 AMC1 ORA.GEN.120 (a) Means of compliance DEMONSTRATION OF COMPLIANCE AMC1 ORA.GEN.125 Terms of approval and privileges of an organisation MANAGEMENT SYSTEM DOCUMENTATION AMC1 ORA.GEN.130 Changes to organisations APPLICATION TIME FRAMES GM1 ORA.GEN.130 (a) Changes to organisations **GENERAL** GM2 ORA.GEN.130 (a) Changes to organisations CHANGE OF NAME OF THE ORGANISATION AMC1 ORA.GEN.150 (b) Findings GENERAL GM1 ORA.GEN.150 Findings GENERAL AMC1 ORA.GEN.160 Occurrence reporting GENERAL

SECTION II -MANAGEMENT

AMC1 ORA.GEN.200 (a)(1);(2);(3);(5) Management system NON-COMPLEX ORGANISATIONS - GENERAL AMC1 ORA.GEN.200 (a)(1) Management system COMPLEX ORGANISATIONS - ORGANISATION AND ACCOUNTABILITIES GM1 ORA.GEN.200 (a)(1) Management system SAFETY MANAGER GM2 ORA.GEN.200 (a)(1) Management system COMPLEX ORGANISATIONS - SAFETY ACTION GROUP AMC1 ORA.GEN.200 (a)(2) Management system **COMPLEX ORGANISATIONS - SAFETY POLICY** GM1 ORA.GEN.200 (a)(2) Management system SAFETY POLICY AMC1 ORA.GEN.200 (a)(3) Management system **COMPLEX ORGANISATIONS - SAFETY RISK MANAGEMENT** GM1 ORA.GEN.200 (a)(3) Management system INTERNAL OCCURRENCE REPORTING SCHEME GM3 ORA.GEN.200 (a)(3) Management system APPROVED TRAINING ORGANISATIONS - RISK MANAGEMENT OF FLIGHT OPERATIONS WITH KNOWN OR FORECAST VOLCANIC ASH CONTAMINATION GM4 ORA.GEN.200 (a)(3) Management system SAFETY RISK ASSESSMENT – RISK REGISTER AMC1 ORA.GEN.200 (a)(4) Management system TRAINING AND COMMUNICATION ON SAFETY GM1 ORA.GEN.200 (a)(4) Management system TRAINING AND COMMUNICATION ON SAFETY AMC1 ORA.GEN.200 (a)(5) Management system ORGANISATION'S MANAGEMENT SYSTEM DOCUMENTATION

GM1 ORA.GEN.200 (a)(5) Management system ORGANISATION'S MANAGEMENT SYSTEM DOCUMENTATION AMC1 ORA.GEN.200 (a)(5) Management system COMPLEX ORGANISATIONS - ORGANISATION'S SAFETY MANAGEMENT MANUAL AMC1 ORA.GEN.200 (a)(6) Management system **COMPLIANCE MONITORING - GENERAL** GM1 ORA.GEN.200 (a)(6) Management system **COMPLIANCE MONITORING - GENERAL** GM2 ORA.GEN.200 (a)(6) Management system COMPLEX ORGANISATIONS - COMPLIANCE MONITORING PROGRAMME FOR ATOS GM3 ORA.GEN.200 (a)(6) Management system AUDIT AND inspection AMC1 ORA.GEN.200 (b) Management system SIZE, NATURE AND COMPLEXITY OF THE ACTIVITY AMC1 ORA.GEN.205 Contracted activities **RESPONSIBILITY WHEN CONTRACTING ACTIVITIES** GM1 ORA.GEN.205 Contracted activities RESPONSIBILITY WHEN CONTRACTING ACTIVITIES AMC1 ORA.GEN.215 Facility requirements ATOS PROVIDING TRAINING FOR the CPL, MPL AND ATPL AND THE ASSOCIATED RATINGS AND CERTIFICATES AMC2 ORA.GEN.215 Facility requirements ATOS PROVIDING TRAINING FOR THE LAPL, PPL, SPL OR BPL AND THE ASSOCIATED RATINGS AND CERTIFICATES AMC1 ORA.GEN.220 (b) Record-keeping GENERAL GM1 ORA.GEN.220 (b) Record-keeping RECORDS

Subpart ATO - Approved Training Organisations

SECTION I – GENERAL

GM1 ORA.ATO.100 Scope AMC1 ORA.ATO.105 Application APPLICATION FORM AMC1 ORA.ATO.110 (b) Personnel requirements HEAD OF TRAINING AMC1 ORA.ATO.110(c) Personnel requirements THEORETICAL KNOWLEDGE INSTRUCTORS AMC1 ORA.ATO.120 (a);(b) Record-keeping ATOS PROVIDING TRAINING ONLY FOR THE LAPL, PPL, SPL OR BPL AND THE ASSOCIATED **RATINGS AND CERTIFICATES** AMC1 ORA.ATO.125 Training programme **GENERAL** AMC2 ORA.ATO.125 Training programme TYPE RATING COURSES - AEROPLANES AMC3 ORA.ATO.125 Training programme **TYPE RATING COURSES - HELICOPTERS** AMC4 ORA.ATO.125 Training programme FLIGHT TEST TRAINING COURSES - AEROPLANES AND HELICOPTERS AMC1 ORA.ATO.135 Training aircraft and FSTDs ALL ATOS, EXCEPT THOSE PROVIDING FLIGHT TEST TRAINING AMC1 ORA.ATO.140 Aerodromes and operating sites **GENERAL** AMC1 ORA.ATO.145 Pre-requisites for training ENTRANCE REQUIREMENTS

SECTION II - ADDITIONAL REQUIREMENTS FOR ATOS PROVIDING TRAINING FOR CPL, MPL AND ATPL AND THE ASSOCIATED RATINGS AND CERTIFICATES

AMC1 ORA.ATO.210 Personnel requirements GENERAL
AMC2 ORA.ATO.210 Personnel requirements QUALIFICATION OF HEAD OF TRAINING AND CHIEF FLIGHT INSTRUCTOR
AMC1 ORA.ATO.230 (a) Training manual and operations manual TRAINING MANUAL
AMC1 ORA.ATO.230 (b) Training manual and operations manual ALL ATOS, EXCEPT THOSE PROVIDING FLIGHT TEST TRAINING OPERATIONS MANUAL

SECTION III - ADDITIONAL REQUIREMENTS FOR ATOS PROVIDING SPECIFIC TYPES OF TRAINING

Chapter 1 – Distance Learning Course

AMC1 ORA.ATO.300 General DISTANCE LEARNING

Chapter 2 - Zero Flight-Time Training (ZFTT)

AMC1 ORA.ATO.330 General INITIAL APPROVAL

SUBPART FSTD –REQUIREMENTS FOR ORGANISATIONS OPERATING FLIGHT SIMULATION TRAINING DEVICES (FSTDs) AND THE QUALIFICATION OF FSTDs

SECTION I - REQUIREMENTS FOR ORGANISATIONS OPERATING FSTDs

AMC1 ORA.FSTD.100 General COMPLIANCE MONITORING PROGRAMME - ORGANISATIONs OPERATING FSTDs AMC2 ORA.FSTD.100 General COMPLIANCE MONITORING PROGRAMME -ORGANISATIONs OPERATING FSTDs AMC3 ORA.FSTD.100 General COMPLIANCE MONITORING PROGRAMME - ORGANISATIONS OPERATING BASIC **INSTRUMENT TRAINING DEVICES (BITDs)** GM1 ORA.FSTD.100 General COMPLIANCE MONITORING - ORGANISATIONS OPERATING FSTDs - GENERAL GM2 ORA.FSTD.100 General COMPLIANCE MONITORING - ASSESSMENT FOR ORGANISATIONS OPERATING FSTDs GM3 ORA.FSTD.100 General COMPLIANCE MONITORING SYSTEM – GUIDANCE FOR ORGANISATIONS OPERATING FSTDs TO PREPARE FOR AN MCAA EVALUATION AMC1 ORA.FSTD.110 Modifications GENERAL GM1 ORA.FSTD.110 Modifications EXAMPLES OF MAJOR MODIFICATIONS AMC1 ORA.FSTD.115 Installations MINIMUM ELEMENTS FOR SAFE OPERATION GM1 ORA.FSTD.115 Installations GENERAL

SECTION II – REQUIREMENTS FOR THE QUALIFICATION OF FSTDs

AMC1 ORA.FSTD.200 Application for FSTD qualification LETTER OF APPLICATION FOR INITIAL QUALIFICATION OF AN FSTD; EXCEPT BASIC INSTRUMENT TRAINING DEVICE (BITD) GM1 ORA.FSTD.200 Application for FSTD qualification USE OF FOOTPRINT TESTS IN QUALIFICATION TEST SUBMISSION
AMC1 ORA.FSTD.225 (b)(4) Duration and continued validity
AMC1 ORA.FSTD.230 (b) Changes to the qualified FSTD UPDATING AND UPGRADING EXISTING FSTDs
AMC1 ORA.FSTD.240 Record-keeping FSTD RECORDS

Subpart AeMC – Aero-medical Centres

SECTION I – GENERAL

AMC1 ORA.AeMC.115 Application GENERAL AMC1 ORA.AeMC.135 Continued validity EXPERIENCE

SECTION II – MANAGEMENT

 GM1 ORA.AeMC.200 Management system RESEARCH
 AMC1 ORA.AeMC.210 Personnel requirements GENERAL
 AMC1 ORA.AeMC.215 Facility requirements MEDICAL-TECHNICAL FACILITIES

AMC and GM to Annex VII ORGANISATION REQUIREMENTS FOR AIRCREW (PART-ORA)

SUBPART GEN – GENERAL REQUIREMENTS SECTION I - GENERAL

GM1 ORA.GEN.005

The following provides a list of acronyms used throughout this Annex:

- (A) aeroplane
- (H) helicopter
- ACAS airborne collision avoidance system
- AD airworthiness directive
- AIS aeronautical information service
- AM accountable manager
- AMC Acceptable Means of Compliance
- ARA authority requirements for aircrew
- ATA Air Transport Association
- ATC air traffic control
- ATO approved training organisation
- ATPL airline transport pilot licence

BITD basic instrument training device

- BPL balloon pilot licence
- CBT computer-based training
- CFI chief flying instructor
- CM compliance monitoring
- CMP compliance monitoring programme
- CMS compliance monitoring system
- COP code of practice
- CRM crew resource management

CS-FSTD (A) Certification Specifications for aeroplane flight simulation training devices

CS-FSTD (H) Certification Specifications for helicopter flight simulation training devices

CTKI chief theoretical knowledge instructor

- EC European Community
- ERP emergency response plan

ETOPS extended range operations with twin-engined aeroplanes

- FATO final approach and take-off area
- FFS full flight simulator
- FMGC flight management and guidance computer
- FMS flight management system
- FNPT flight navigation and procedures trainer
- FSTD flight simulation training device
- FTD flight training device
- FTE full-time equivalent
- FTI flight test instructor

GM Guidance Material

- GMP general medical practitioner
- HEMS helicopter emergency medical service
- HHO helicopter hoist operation
- HT head of training

DG dangerous goods

IFR instrument flight rules IMC instrument meteorological conditions IOS instructor operation station IR Implementing Rule light aircraft pilot licence LAPL LIFUS line flying under supervision LVO low visibility operation MCC multi-crew cooperation MMEL master minimum equipment list MPA multi-pilot aeroplane MPL multi-crew pilot licence NVIS night vision imaging system OPC operator proficiency check ORA organisation requirements for aircrew OSD operational suitability data OTD other training device PBN performance-based navigation PF pilot flying PIC pilot-in-command PPL private pilot licence QTG qualification test guide SMM safety management manual SOP standard operating procedure SPL sailplane pilot licence TAWS terrain awareness warning system TRE type rating examiner TRI type rating instructor VDR validation data roadmap ZFTT zero flight-time training

AMC1 ORA.GEN.120 (a) **Means of compliance** DEMONSTRATION OF COMPLIANCE

In order to demonstrate that the Implementing Rules are met, a risk assessment should be completed and documented. The result of this risk assessment should demonstrate that an equivalent level of safety to that established by the Acceptable Means of Compliance (AMC) adopted by MCAA is reached.

AMC1 ORA.GEN.125 Terms of approval and privileges of an organisation MANAGEMENT SYSTEM DOCUMENTATION

The management system documentation should contain the privileges and detailed scope of activities for which the organisation is certified, as relevant to the applicable requirements. The scope of activities defined in the management system documentation should be consistent with the terms of approval.

AMC1 ORA.GEN.130 Changes to organisations APPLICATION TIME FRAMES

(a) The application for the amendment of an organisation certificate should be submitted at least 30 days before the date of the intended changes.

- (b) In the case of a planned change of a nominated person, the organisation should inform MCAA at least 10 days before the date of the proposed change.
- (c) Unforeseen changes should be notified at the earliest opportunity, in order to enable MCAA to determine continued compliance with the applicable requirements and to amend, if necessary, the organisation certificate and related terms of approval.

GM1 ORA.GEN.130 (a) Changes to organisations GENERAL

- (a) Typical examples of changes that may affect the certificate or the terms of approval are listed below:
 - (1) the name of the organisation;
 - (2) the organisation's principal place of business;
 - (3) the organisation's scope of activities;
 - (4) additional locations of the organisation;
 - (5) the accountable manager;
 - (6) any of the persons referred to in ORA.GEN.210 (a) and (b);
 - (7) the organisation's documentation as required by this Part, safety policy and procedures;
 - (8) the facilities.
- (b) Prior approval by MCAA is required for any changes to the organisation's procedure describing how changes not requiring prior approval will be managed and notified to MCAA.
- (c) Changes requiring prior approval may only be implemented upon receipt of formal approval by MCAA.

GM2 ORA.GEN.130 (a) Changes to organisations CHANGE OF NAME OF THE ORGANISATION

A change of name requires the organisation to submit a new application; as a matter of urgency. Where this is the only change to report, the new application can be accompanied by a copy of the documentation previously submitted to MCAA under the previous name, as a means of demonstrating how the organisation complies with the applicable requirements.

AMC1 ORA.GEN.150 (b) Findings

GENERAL

The corrective action plan defined by the organisation should address the effects of the non-conformity, as well as its root-cause.

GM1 ORA.GEN.150 Findings

GENERAL

- (a) Corrective action is the action to eliminate or mitigate the root cause(s) and prevent recurrence of an existing detected non-compliance or other undesirable condition or situation.
- (b) Proper determination of the root cause is crucial for defining effective corrective actions.

AMC1 ORA.GEN.160 Occurrence reporting GENERAL

- (a) The organisation should report all occurrences defined in AMC 20-8, and as required by the applicable national rules implementing Directive 2003/43/EC1 on occurrence reporting in civil aviation.
- (b) In addition to the reports required by AMC 20-8 and Directive 2003/43/EC, the organisation should report volcanic ash clouds encountered during flight.

SECTION II – MANAGEMENT

AMC1 ORA.GEN.200 (a)(1);(2);(3);(5) Management system NON-COMPLEX ORGANISATIONS - GENERAL

- (a) Safety risk management may be performed using hazard checklists or similar risk management tools or processes, which are integrated into the activities of the organisation.
- (b) The organisation should manage safety risks related to a change. The management of change should be a documented process to identify external and internal change that may have an adverse effect on safety. It should make use of the organisation's existing hazard identification, risk assessment and mitigation processes.
- (c) The organisation should identify a person who fulfils the role of safety manager and who is responsible for coordinating the safety management system. This person may be the accountable manager or a person with an operational role in the organisation.
- (d) Within the organisation, responsibilities should be identified for hazard identification, risk assessment and mitigation.
- (e) The safety policy should include a commitment to improve towards the highest safety standards, comply with all applicable legal requirements, meet all applicable standards, consider best practices and provide appropriate resources.
- (f) The organisation should, in cooperation with other stakeholders, develop, coordinate and maintain an emergency response plan (ERP) that ensures orderly and safe transition from normal to emergency operations and return to normal operations. The ERP should provide the actions to be taken by the organisation or specified individuals in an emergency and reflect the size, nature and complexity of the activities performed by the organisation.

AMC1 ORA.GEN.200 (a)(1) Management system

COMPLEX ORGANISATIONS - ORGANISATION AND ACCOUNTABILITIES

The management system of an organisation should encompass safety by including a safety manager and a safety review board in the organisational structure.

- (a) Safety manager
 - (1) The safety manager should act as the focal point and be responsible for the development, administration and maintenance of an effective safety management system.
 - (2) The functions of the safety manager should be to:
 - (i) facilitate hazard identification, risk analysis and management;
 - (ii) monitor the implementation of actions taken to mitigate risks, as listed in the safety action plan;
 - (iii) provide periodic reports on safety performance;
 - (iv) ensure maintenance of safety management documentation;
 - (v) ensure that there is safety management training available and that it meets acceptable standards;
 - (vi) provide advice on safety matters; and
 - (vii) ensure initiation and follow-up of internal occurrence / accident investigations.
- (b) Safety review board
 - (1) The Safety review board should be a high level committee that considers matters of strategic safety in support of the accountable manager's safety accountability.
 - (2) The board should be chaired by the accountable manager and be composed of heads of functional areas.
 - (3) The safety review board should monitor:
 - (i) safety performance against the safety policy and objectives;
 - (ii) that any safety action is taken in a timely manner; and
 - (iii) the effectiveness of the organisation's safety management processes.
- (c) The safety review board should ensure that appropriate resources are allocated to achieve the established safety performance.

(d) The safety manager or any other relevant person may attend, as appropriate, safety review board meetings. He/she may communicate to the accountable manager all information, as necessary, to allow decision making based on safety data.

GM1 ORA.GEN.200 (a)(1) Management system SAFETY MANAGER

- (a) Depending on the size of the organisation and the nature and complexity of its activities, the safety manager may be assisted by additional safety personnel for the performance of all safety management related tasks.
- (b) Regardless of the organisational set-up it is important that the safety manager remains the unique focal point as regards the development, administration and maintenance of the organisation's safety management system.

GM2 ORA.GEN.200 (a)(1) Management system COMPLEX ORGANISATIONS - SAFETY ACTION GROUP

- (a) A safety action group may be established as a standing group or as an ad-hoc group to assist or act on behalf of the safety review board.
- (b) More than one safety action group may be established depending on the scope of the task and specific expertise required.
- (c) The safety action group should report to and take strategic direction from the safety review board and should be comprised of managers, supervisors and personnel from operational areas.
- (d) The safety action group should:
 - (1) monitor operational safety;
 - (2) resolve identified risks;
 - (3) assess the impact on safety of operational changes; and
 - (4) ensure that safety actions are implemented within agreed timescales.
- (e) The safety action group should review the effectiveness of previous safety recommendations and safety promotion.

AMC1 ORA.GEN.200 (a)(2) Management system COMPLEX ORGANISATIONS - SAFETY POLICY

- (a) The safety policy should:
 - (1) be endorsed by the accountable manager;
 - (2) reflect organisational commitments regarding safety and its proactive and systematic management;
 - (3) be communicated, with visible endorsement, throughout the organisation; and
 - (4) include safety reporting principles.
- (b) The safety policy should include a commitment:
 - (1) to improve towards the highest safety standards;
 - (2) to comply with all applicable legislation, meet all applicable standards and consider best practices;
 - (3) to provide appropriate resources;
 - (4) to enforce safety as one primary responsibility of all managers; and
 - (5) not to blame someone for reporting something which would not have been otherwise detected.
- (c) Senior management should:
 - (1) continually promote the safety policy to all personnel and demonstrate their commitment to it;
 - (2) provide necessary human and financial resources for its implementation; and
 - (3) establish safety objectives and performance standards.

GM1 ORA.GEN.200 (a)(2) Management system SAFETY POLICY

The safety policy is the means whereby the organisation states its intention to maintain and, where practicable, improve safety levels in all its activities and to minimise its contribution to the risk of an aircraft accident as far as is reasonably practicable.

The safety policy should state that the purpose of safety reporting and internal investigations is to improve safety, not to apportion blame to individuals.

AMC1 ORA.GEN.200 (a)(3) Management system COMPLEX ORGANISATIONS - SAFETY RISK MANAGEMENT

- (a) Hazard identification processes
 - (1) Reactive and proactive schemes for hazard identification should be the formal means of collecting, recording, analysing, acting on and generating feedback about hazards and the associated risks that affect the safety of the operational activities of the organisation.
 - (2) All reporting systems, including confidential reporting schemes, should include an effective feedback process.
- (b) Risk assessment and mitigation processes
 - (1) A formal risk management process should be developed and maintained that ensures analysis (in terms of likelihood and severity of occurrence), assessment (in terms of tolerability) and control (in terms of mitigation) of risks to an acceptable level.
 - (2) The levels of management who have the authority to make decisions regarding the tolerability of safety risks, in accordance with (b)(1), should be specified.
- (c) Internal safety investigation
 - (1) The scope of internal safety investigations should extend beyond the scope of occurrences required to be reported to MCAA.
- (d) Safety performance monitoring and measurement
 - (1) Safety performance monitoring and measurement should be the process by which the safety performance of the organisation is verified in comparison to the safety policy and objectives.
 - (2) This process should include:
 - (i) safety reporting;
 - (ii) safety studies, that is, rather large analyses encompassing broad safety concerns;
 - (iii) safety reviews including trends reviews, which would be conducted during introduction and deployment of new technologies, change or implementation of procedures, or in situations of structural change in operations;
 - (iv) safety audits focussing on the integrity of the organisation's management system, and periodically assessing the status of safety risk controls; and
 - (v) safety surveys, examining particular elements or procedures of a specific operation, such as problem areas or bottlenecks in daily operations, perceptions and opinions of operational personnel and areas of dissent or confusion.
- (e) The management of change

The organisation should manage safety risks related to a change. The management of change should be a documented process to identify external and internal change that may have an adverse effect on safety. It should make use of the organisation's existing hazard identification, risk assessment and mitigation processes.

(f) Continuous improvement

The organisation should continuously seek to improve its safety performance. Continuous improvement should be achieved through:

- (1) proactive and reactive evaluations of facilities, equipment, documentation and procedures through safety audits and surveys;
- (2) proactive evaluation of individuals' performance to verify the fulfilment of their safety responsibilities; and
- (3) reactive evaluations in order to verify the effectiveness of the system for control and mitigation of risk.

- (g) The emergency response plan (ERP)
 - (1) An ERP should be established that provides the actions to be taken by the organisation or specified individuals in an emergency. The ERP should reflect the size, nature and complexity of the activities performed by the organisation.
 - (2) The ERP should ensure:
 - (i) an orderly and safe transition from normal to emergency operations;
 - (ii) safe continuation of operations or return to normal operations as soon as practicable; and
 - (iii) coordination with the emergency response plans of other organisations, where appropriate.

GM1 ORA.GEN.200 (a)(3) Management system

INTERNAL OCCURRENCE REPORTING SCHEME

- (a) The overall purpose of the scheme is to use reported information to improve the level of safety performance of the organisation and not to attribute blame.
- (b) The objectives of the scheme are to:
 - (1) enable an assessment to be made of the safety implications of each relevant incident and accident, including previous similar occurrences, so that any necessary action can be initiated; and
 - (2) ensure that knowledge of relevant incidents and accidents is disseminated, so that other persons and organisations may learn from them.
- (c) The scheme is an essential part of the overall monitoring function and it is complementary to the normal day-to-day procedures and 'control' systems and is not intended to duplicate or supersede any of them. The scheme is a tool to identify those instances where routine procedures have failed.
- (d) All occurrence reports judged reportable by the person submitting the report should be retained as the significance of such reports may only become obvious at a later date.

GM3 ORA.GEN.200 (a)(3) Management system

APPROVED TRAINING ORGANISATIONS - RISK MANAGEMENT OF FLIGHT OPERATIONS WITH KNOWN OR FORECAST VOLCANIC ASH CONTAMINATION

(a) Responsibilities

The ATO is responsible for the safety of its operations, including within an area with known or forecast volcanic ash contamination.

The ATO should complete this assessment of safety risks related to known or forecast volcanic ash contamination as part of its management system before initiating operations into airspace forecast to be or aerodromes/operating sites known to be contaminated with volcanic ash.

This process is intended to ensure the ATO takes into account the likely accuracy and quality of the information sources it uses in its management system and to demonstrate its own competence and capability to interpret data from different sources in order to achieve the necessary level of data integrity reliably and correctly resolve any conflicts among data sources that may arise.

In order to decide whether or not to operate into airspace forecast to be or aerodromes/operating sites known to be contaminated with volcanic ash, the ATO should make use of the safety risk assessment within its management system as required by ORA.GEN.200.

The ATO's safety risk assessment should take into account all relevant data including data from the type certificate holders (TCHs) regarding the susceptibility of the aircraft they operate to volcanic cloud-related airworthiness effects, the nature and severity of these effects and the related pre-flight, in-flight and post-flight precautions to be observed by the ATO.

The ATO should ensure that personnel required to be familiar with the details of the safety risk assessments receives all relevant information (both pre-flight and in-flight) in order to be in a position to apply appropriate mitigation measures as specified by the safety risk assessments.

(b) Procedures

The ATO should have documented procedures for the management of operations into airspace forecast to be or aerodromes/operating sites known to be contaminated with volcanic ash.

These procedures should ensure that, at all times, flight operations remain within the accepted safety boundaries as established through the management system allowing for any variations in information sources, equipment, operational experience or organisation. Procedures should include those for flight crew and any other relevant personnel such that they are in a position to evaluate correctly the risk of flights into airspace forecast to be contaminated by volcanic ash and to plan accordingly.

Continuing airworthiness personnel should be provided with procedures allowing them to correctly assess the need for and to execute relevant maintenance or continuing airworthiness interventions.

The ATO should retain sufficient qualified and competent staff to generate well supported operational risk management decisions and ensure that its staff are appropriately trained and current. It is recommended that the ATO make the necessary arrangements for its relevant staff to take up opportunities to be involved in volcanic ash exercises conducted in their areas of operation.

(c) Volcanic activity information and the ATO's potential response

Before and during operations, information valuable to the ATO is generated by various volcano agencies worldwide. The ATO's risk assessment and mitigating actions need to take account of and respond appropriately to the information likely to be available during each phase of the eruptive sequence from preeruption through to end of eruptive activity. It is nevertheless noted that eruptions rarely follow a deterministic pattern of behaviour. A typical ATO's response may consist of the following:

(1) Pre-eruption

The ATO should have in place a robust mechanism for ensuring that it is constantly vigilant for any alerts of pre-eruption volcanic activity relevant to its operations. The staff involved need to understand the threat to safe operations that such alerts represent.

An ATO whose areas of activity include large, active volcanic areas for which immediate International Airways Volcano Watch (IAVW) alerts may not be available, should define its strategy for capturing information about increased volcanic activity before pre-eruption alerts are generated. For example, an ATO may combine elevated activity information with information concerning the profile and history of the volcano to determine an operating policy, which could include re-routing or restrictions at night. This would be useful when dealing with the 60% of volcanoes which are unmonitored.

Such an ATO should also ensure that its crews are aware that they may be the first to observe an eruption and so need to be vigilant and ready to ensure that this information is made available for wider dissemination as quickly as possible.

(2) Start of an eruption

Given the likely uncertainty regarding the status of the eruption during the early stages of an event and regarding the associated volcanic cloud, the ATO's procedures should include a requirement for crews to initiate re-routes to avoid the affected airspace.

The ATO should ensure that flights are planned to remain clear of the affected areas and that consideration is given to available aerodromes/operating sites and fuel requirements.

It is expected that the following initial actions will be taken by the ATO:

- (i) determine if any aircraft in flight could be affected, alert the crew and provide advice on re-routing as required;
- (ii) alert management;
- (iii) for flight departures, brief flight crew and revise flight and fuel planning in accordance with the safety risk assessment;

- (iv) alert flight crew to the need for increased monitoring of information (e.g. special air report (AIREP), volcanic activity report (VAR), significant weather information (SIGMET), NOTAMs and company messages);
- (v) initiate the gathering of all data relevant to determining the risk; and
- (vi) apply mitigations identified in the safety risk assessment.
- (3) On-going eruption

As the eruptive event develops, the ATO can expect the responsible Volcanic Ash Advisory Centre (VAAC) to provide volcanic ash advisory messages (VAA/VAGs) defining, as accurately as possible, the vertical and horizontal extent of areas and layers of volcanic clouds. As a minimum, the ATO should monitor, and take account of, this VAAC information as well as of relevant SIGMETs and NOTAMs.

Other sources of information are likely to be available such as VAR/AIREPs, satellite imagery and a range of other information from State and commercial organisations. The ATO should plan its operations in accordance with its safety risk assessment taking into account the information that it considers accurate and relevant from these additional sources.

The ATO should carefully consider and resolve differences or conflicts among the information sources, notably between published information and observations (pilot reports, airborne measurements, etc.). Given the dynamic nature of the volcanic hazards, the ATO should ensure that the situation is monitored closely and operations adjusted to suit changing conditions.

The ATO should be aware that, depending on the State concerned the affected or danger areas may be established and presented in a different way than the one currently used in Europe as described in EUR Doc 019-NAT Doc 006.

The ATO should require reports from its crews concerning any encounters with volcanic emissions. These reports should be passed immediately to the appropriate air traffic services (ATS) unit and to the ATO's competent authority.

For the purpose of flight planning, the ATO should treat the horizontal and vertical limits of the temporary danger area (TDA) or airspace forecast to be contaminated by volcanic ash as applicable, to be over-flown as it would mountainous terrain, modified in accordance with its safety risk assessment. The ATO should take account of the risk of cabin depressurisation or engine failure resulting in the inability to maintain level flight above a volcanic cloud. Additional minimum Equipment List (MEL) provisions, if applicable, should be considered in consultation with the TCHs.

Flying below a volcanic ash contaminated airspace should be considered on a case by case basis. It should only be planned to reach or leave an aerodrome/operating site close to the boundary of this airspace or where the ash contamination is very high and stable. The establishment of Minimum Sector Altitude (MSA) and the availability of aerodromes/operating sites should be considered.

(d) Safety risk assessment

When directed specifically at the issue of intended flight into airspace forecast to be or aerodromes/operating sites known to be contaminated with volcanic ash, the process should involve the following:

(1) Identifying the hazards

The generic hazard, in the context of this document, is airspace forecast to beor aerodromes/operating sites known to be contaminated with volcanic ash, and whose characteristics are harmful to the airworthiness and operation of the aircraft.

This GM is referring to volcanic ash contamination since it is the most significant hazard for flight operations in the context of a volcanic eruption. Nevertheless, it might not be the only hazard and therefore the operator should consider additional hazards which could have an adverse effect on aircraft structure or passengers safety such as gases.

Within this generic hazard, the ATO should develop its own list of specific hazards taking into account its specific aircraft, experience, knowledge and type of operation, and any other relevant data stemming from previous eruptions.

(2) Considering the severity and consequences of the hazard occurring (i.e. the nature and actual level of damage expected to be inflicted on the particular aircraft from exposure to that volcanic ash cloud).

- (3) Evaluating the likelihood of encountering volcanic ash clouds with characteristics harmful to the safe operation of the aircraft.For each specific hazard within the generic hazard, the likelihood of adverse consequences should be
- assessed, either qualitatively or quantitatively.
 (4) Determining whether the consequent risk is acceptable and within the ATO's risk performance criteria. At this stage of the process, the safety risks should be classified as acceptable or unacceptable. The assessment of tolerability will be subjective, based on qualitative data and expert judgement, until specific quantitative data are available in respect of a range of parameters.
- (5) Taking action to reduce the safety risk to a level that is acceptable to the ATO's management. Appropriate mitigation for each unacceptable risk identified should then be considered in order to reduce the risk to a level acceptable to the ATO's management.
- (e) Procedures to be considered when identifying possible mitigations actions

When conducting a volcanic ash safety risk assessment, the ATO should consider the following non-exhaustive list of procedures and processes as mitigation:

(1) Type certificate holders

Obtaining advice from the TCHs and other engineering sources concerning operations in potentially contaminated airspace and/or aerodromes/operating sites contaminated by volcanic ash. This advice should set out:

- (i) the features of the aircraft that are susceptible to airworthiness effects related to volcanic ash;
- (ii) the nature and severity of these effects;
- (iii) the effect of volcanic ash on operations to/from contaminated aerodromes/operating sites, including the effect on take-off and landing aircraft performance;
- (iv) the related pre-flight, in-flight and post-flight precautions to be observed by the ATO including any necessary amendments to aircraft operating manuals, aircraft maintenance manuals, master minimum equipment list/dispatch deviation or equivalents required to support the ATO; and
- (v) the recommended inspections associated with inadvertent operations in volcanic ash contaminated airspace and operations to/from volcanic ash contaminated aerodromes/operating sites; this may take the form of instructions for continuing airworthiness or other advice.
- (2) ATO/contracted organisations' personnel
 - Definition of procedures for flight planning and operations ensuring that:
 - (i) flight crews are in a position to evaluate correctly the risk of encountering volcanic ash contaminated airspace, or aerodromes/operating sites, and can plan accordingly;
 - (ii) flight planning and operational procedures enable crews to avoid areas and aerodromes/operating sites with unacceptable volcanic ash contamination;
 - (iii) flight crew are aware of the possible signs of entry into a volcanic ash cloud and execute the associated procedures;
 - (iv) continuing airworthiness personnel are able to assess the need for, and to execute, any necessary maintenance or other required interventions; and
 - (v) crews are provided with appropriate aircraft performance data when operating to/from aerodromes/operating sites contaminated with volcanic ash.
- (3) Provision of enhanced flight watch
 - This should ensure:
 - (i) close and continuous monitoring of VAA, VAR/AIREP, SIGMET, NOTAM and ASHTAM and other relevant information, and information from crews, concerning the volcanic ash cloud hazard;
 - (ii) access to plots of the affected areas from SIGMETs, NOTAMs and other relevant information for crews; and
 - (iii) communication of the latest information to crews in a timely fashion.
- (4) Flight planning

Flexibility of the process to allow re-planning at short notice should conditions change.

(5) Departure, destination and alternate aerodromes

For the airspace to be traversed, or the aerodromes/operating sites in use, parameters to evaluate and take account of:

- (i) the probability of contamination;
- (ii) any additional aircraft performance requirements;
- (iii) required maintenance considerations;
- (iv) fuel requirements for re-routeing and extended holding.

- (6) Routing policy
 - Parameters to evaluate and take account of:
 - (i) the shortest period in and over the forecast contaminated area;
 - (ii) the hazards associated with flying over the contaminated area;
 - (iii) drift down and emergency descent considerations;
 - (iv) the policy for flying below the contaminated airspace and the associated hazards.
- (7) Diversion policy
 - Parameters to evaluate and take account of:
 - (i) maximum allowed distance from a suitable aerodrome/operating site;
 - (ii) availability of aerodromes/operating sites outside the forecast contaminated area;
 - (iii) diversion policy after an volcanic ash encounter.
- (8) Minimum equipment list

Additional provisions in the MEL, if applicable, for dispatching aircraft with unserviceabilities that might affect the following non-exhaustive list of systems:

- (i) air conditioning packs;
- (ii) engine bleeds;
- (iii) pressurisation system;
- (iv) electrical power distribution system;
- (v) air data system;
- (vi) standby instruments;
- (vii) navigation systems;
- (viii) de-icing systems;
- (ix) engine driven generators;
- (x) auxiliary power unit (APU);
- (xi) airborne collision avoidance system (ACAS);
- (xii) terrain awareness warning system (TAWS);
- (xiii) autoland systems;

(xiv) provision of crew oxygen; (xv) supplemental oxygen for passengers.

(9) Standard operating procedures

Crew training to ensure they are familiar with normal and abnormal operating procedures and particularly any changes regarding but not limited to:

- (i) pre-flight planning;
- (ii) in-flight monitoring of volcanic ash cloud affected areas and avoidance procedures;
- (iii) diversion;
- (iv) communications with ATC;
- (v) in-flight monitoring of engine and systems potentially affected by volcanic ash cloud contamination;
- (vi) recognition and detection of volcanic ash clouds and reporting procedures;
- (vii) in-flight indications of a volcanic ash cloud encounter;
- (viii) procedures to be followed if a volcanic ash cloud is encountered;
- (ix) unreliable or erroneous airspeed;
- (x) non-normal procedures for engines and systems potentially affected by volcanic ash cloud contamination;
- (xi) engine-out and engine relight;
- (xii) escape routes; and
- (xiii) operations to/from aerodromes/operating sites contaminated with volcanic ash.
- (10) Provision for aircraft technical log
 - This should ensure:
 - (i) Systematic entry in the aircraft continuing airworthiness records or aircraft log if available related to any actual or suspected volcanic ash encounter whether in-flight or at an aerodrome/operating site; and
 - (ii) Checking, prior to flight, of the completion of maintenance actions related to an entry in the continuing airworthiness records or aircraft log if available for a volcanic ash cloud encounter on a previous flight.
- (11) Incident reporting
 - Crew requirements for:
 - (i) reporting an airborne volcanic ash cloud encounter (VAR);
 - (ii) post-flight volcanic ash cloud reporting (VAR);
 - (iii) reporting non encounters in airspace forecast to be contaminated; and
 - (iv) filing a mandatory occurrence report in accordance with ORA.GEN.160.

(12) Continuing airworthiness procedures

- Procedures when operating in or near areas of volcanic ash cloud contamination:
- (i) enhancement of vigilance during inspections and regular maintenance and appropriate adjustments to maintenance practices;
- (ii) definition of a follow-up procedure when a volcanic ash cloud encounter has been reported or suspected;
- (iii) thorough investigation for any sign of unusual or accelerated abrasions or corrosion or of volcanic ash accumulation;
- (iv) reporting to TCHs and the relevant authorities observations and experiences from operations in areas of volcanic ash cloud contamination;
- (v) completion of any additional maintenance recommended by the TCH or by the competent authority.
- (f) Reporting

The ATO should ensure that reports are immediately submitted to the nearest ATS unit using the VAR/AIREP procedures followed up by a more detailed VAR on landing together with, as applicable, a report as defined in Regulation (EU) No 996/2010 and Directive 2003/42/EC, and an aircraft technical log entry for:

- (1) any incident related to volcanic clouds;
- (2) any observation of volcanic ash activity and
- (3) anytime that volcanic ash is not encountered in an area where it was forecast to be.
- (g) Additional guidance

Further guidance on volcanic ash safety risk assessment is given in ICAO Doc. 9974 (Flight safety and volcanic ash – Risk management of flight operations with known or forecast volcanic ash contamination).

GM4 ORA.GEN.200 (a)(3) Management system

SAFETY RISK ASSESSMENT – RISK REGISTER

The results of the assessment of the potential adverse consequences or outcome of each hazard may be recorded by the ATO in a risk register, an example of which is provided below.

AMC1 ORA.GEN.200 (a)(4) Management system

TRAINING AND COMMUNICATION ON SAFETY

- (a) Training
 - (1) All personnel should receive safety training as appropriate for their safety responsibilities.
 - (2) Adequate records of all safety training provided should be kept.

(b) Communication

- (1) The organisation should establish communication about safety matters that:
 - (i) ensures that all personnel are aware of the safety management activities as appropriate for their safety responsibilities;
 - (ii) conveys safety critical information, especially relating to assessed risks and analysed hazards;
 - (iii) explains why particular actions are taken; and
 - (iv) explains why safety procedures are introduced or changed.
- (2) Regular meetings with personnel where information, actions and procedures are discussed may be used to communicate safety matters.

GM1 ORA.GEN.200 (a)(4) Management system

TRAINING AND COMMUNICATION ON SAFETY

The safety training programme may consist of self-instruction via a media (newsletters, flight safety magazines), class-room training, e-learning or similar training provided by training service providers.

AMC1 ORA.GEN.200 (a)(5) Management system

ORGANISATION'S MANAGEMENT SYSTEM DOCUMENTATION

- (a) The organisation's management system documentation should at least include the following information:
 - (1) a statement signed by the accountable manager to confirm that the organisation will continuously work in accordance with the applicable requirements and the organisation's documentation as required by this Part;
 - (2) the organisation's scope of activities;
 - (3) the titles and names of persons referred to in ORA.GEN.210 (a) and (b);
 - (4) an organisation chart showing the lines of responsibility between the persons referred to in ORA.GEN.210;
 - (5) a general description and location of the facilities referred to in ORA.GEN.215;
 - (6) procedures specifying how the organisation ensures compliance with the applicable requirements;
 - (7) the amendment procedure for the organisation's management system documentation.
- (b) The organisation's management system documentation may be included in a separate manual or in (one of) the manual(s) as required by the applicable Subpart(s). A cross reference should be included.

GM1 ORA.GEN.200 (a)(5) Management system

ORGANISATION'S MANAGEMENT SYSTEM DOCUMENTATION

- (a) It is not required to duplicate information in several manuals. The information may be contained in any of the organisation manuals (e.g. operations manual, training manual), which may also be combined.
- (b) The organisation may also choose to document some of the information required to be documented in separate documents (e.g. procedures). In this case, it should ensure that manuals contain adequate references to any document kept separately. Any such documents are then to be considered an integral part of the organisation's management system documentation.

AMC1 ORA.GEN.200 (a)(5) Management system

COMPLEX ORGANISATIONS - ORGANISATION'S SAFETY MANAGEMENT MANUAL

- (a) The safety management manual (SMM) should be the key instrument for communicating the approach to safety for the whole of the organisation. The SMM should document all aspects of safety management, including the safety policy, objectives, procedures and individual safety responsibilities.
- (b) The contents of the safety management manual should include all of the following:
 - (1) scope of the safety management system;
 - (2) safety policy and objectives;
 - (3) safety accountability of the accountable manager;
 - (4) safety responsibilities of key safety personnel;
 - (5) documentation control procedures;
 - (6) hazard identification and risk management schemes;
 - (7) safety action planning;
 - (8) safety performance monitoring;
 - (9) incident investigation and reporting;
 - (10) emergency response planning;
 - (11) management of change (including organisational changes with regard to safety responsibilities);
 - (12) safety promotion.
- (c) The SMM may be contained in (one of) the manual(s) of the organisation.

AMC1 ORA.GEN.200 (a)(6) Management system

COMPLIANCE MONITORING - GENERAL

(a) Compliance monitoring

The implementation and use of a compliance monitoring function should enable the organisation to monitor compliance with the relevant requirements of this Part and other applicable Parts.

(1) The organisation should specify the basic structure of the compliance monitoring function applicable to the activities conducted.

- (2) The compliance monitoring function should be structured according to the size of the organisation and the complexity of the activities to be monitored.
- (b) Organisations should monitor compliance with the procedures they have designed to ensure safe activities. In doing so, they should as a minimum, and where appropriate, monitor:
 - (1) privileges of the organisation;
 - (2) manuals, logs, and records;
 - (3) training standards;
 - (4) management system procedures and manuals.
- (c) Organisational set up
 - (1) To ensure that the organisation continues to meet the requirements of this Part and other applicable Parts, the accountable manager should designate a compliance monitoring manager. The role of the compliance monitoring manager is to ensure that the activities of the organisation are monitored for compliance with the applicable regulatory requirements, and any additional requirements as established by the organisation, and that these activities are being carried out properly under the supervision of the relevant head of functional area.
 - (2) The compliance monitoring manager should be responsible for ensuring that the compliance monitoring programme is properly implemented, maintained and continually reviewed and improved.
 - (3) The compliance monitoring manager should:
 - (i) have direct access to the accountable manager;
 - (ii) not be one of the other persons referred to in ORA.GEN.210 (b);
 - (iii) be able to demonstrate relevant knowledge, background and appropriate experience related to the activities of the organisation; including knowledge and experience in compliance monitoring; and(iv) have access to all parts of the organisation, and as necessary, any contracted organisation.
 - (4) In the case of a non-complex organisation, this task may be exercised by the accountable manager provided he/she has demonstrated having the related competence as defined in (c)(3)(iii).
 - (5) In the case the same person acts as compliance monitoring manager and as safety manager, the accountable manager, with regards to his/her direct accountability for safety, should ensure that sufficient resources are allocated to both functions, taking into account the size of the organisation and the nature and complexity of its activities.
 - (6) The independence of the compliance monitoring function should be established by ensuring that audits and inspections are carried out by personnel not responsible for the function, procedure or products being audited.
- (d) Compliance monitoring documentation
 - (1) Relevant documentation should include the relevant part(s) of the organisation's management system documentation.
 - (2) In addition, relevant documentation should also include the following:
 - (i) terminology;
 - (ii) specified activity standards;
 - (iii) a description of the organisation;
 - (iv) the allocation of duties and responsibilities;
 - (v) procedures to ensure regulatory compliance;
 - (vi) the compliance monitoring programme, reflecting:
 - (A) schedule of the monitoring programme;
 - (B) audit procedures;
 - (C) reporting procedures;
 - (D) follow-up and corrective action procedures; and
 - (E) recording system.
 - (vii) the training syllabus referred to in (e)(2);
 - (viii) document control.
- (e) Training
 - (1) Correct and thorough training is essential to optimise compliance in every organisation. In order to achieve significant outcomes of such training, the organisation should ensure that all personnel understand the objectives as laid down in the organisation's management system documentation.
 - (2) Those responsible for managing the compliance monitoring function should receive training on this task. Such training should cover the requirements of compliance monitoring, manuals and procedures related to the task, audit techniques, reporting and recording.

- (3) Time should be provided to train all personnel involved in compliance management and for briefing the remainder of the personnel.
- (4) The allocation of time and resources should be governed by the volume and complexity of the activities concerned.

GM1 ORA.GEN.200 (a)(6) Management system COMPLIANCE MONITORING - GENERAL

- (a) The organisational set-up of the compliance monitoring function should reflect the size of the organisation and the nature and complexity of its activities. The compliance monitoring manager may perform all audits and inspections himself/herself or appoint one or more auditors by choosing personnel having the related competence as defined in AMC1 ORA.GEN.200(a)(6) point (c)(3)(iii), either from within or outside the organisation.
- (b) Regardless of the option chosen it must be ensured that the independence of the audit function is not affected, in particular in cases where those performing the audit or inspection are also responsible for other functions within the organisation.
- (c) In case external personnel are used to perform compliance audits or inspections:
 - (1) any such audits or inspections are performed under the responsibility of the compliance monitoring manager; and
 - (2) the organisation remains responsible to ensure that the external personnel has relevant knowledge, background and experience as appropriate to the activities being audited or inspected; including knowledge and experience in compliance monitoring.
- (d) The organisation retains the ultimate responsibility for the effectiveness of the compliance monitoring function in particular for the effective implementation and follow-up of all corrective actions.

GM2 ORA.GEN.200 (a)(6) Management system

COMPLEX ORGANISATIONS - COMPLIANCE MONITORING PROGRAMME FOR ATOS

- (a) Typical subject areas for compliance monitoring audits and inspections for approved training organisations (ATOs) should be the following:
 - (1) facilities;
 - (2) actual flight and ground training;
 - (3) technical standards.
- (b) ATOs should monitor compliance with the training and operations manuals they have designed to ensure safe and efficient training. In doing so, they should, where appropriate, additionally monitor the following:
 - (1) training procedures;
 - (2) flight safety;
 - (3) flight and duty time limitations, rest requirements and scheduling;
 - (4) aircraft maintenance/operations interface.

GM3 ORA.GEN.200 (a)(6) Management system

AUDIT AND INSPECTION

- (a) 'Audit' means a systematic, independent and documented process for obtaining evidence and evaluating it objectively to determine the extent to which requirements are complied with.
- (b) '**Inspection**' means an independent documented conformity evaluation by observation and judgement accompanied as appropriate by measurement, testing or gauging, in order to verify compliance with applicable requirements.

AMC1 ORA.GEN.200 (b) Management system SIZE, NATURE AND COMPLEXITY OF THE ACTIVITY

(a) An organisation should be considered as complex when it has a workforce of more than 20 full time equivalents (FTEs) involved in the activity subject to Regulation (EC) No 216/2008 and its Implementing Rules.

- (b) Organisations with up to 20 full time equivalents (FTEs) involved in the activity subject to Regulation (EC) No 216/2008 and its Implementing Rules, may also be considered complex based on an assessment of the following factors:
 - (1) in terms of complexity, the extent and scope of contracted activities subject to the approval;
 - (2) in terms of risk criteria, whether any of the following are present:
 - (i) operations requiring the following specific approvals: performance-based navigation (PBN), low visibility operation (LVO), extended range operations with two-engined aeroplanes (ETOPS), helicopter hoist operation (HHO), helicopter emergency medical service (HEMS), night vision imaging system (NVIS) and dangerous goods (DG);
 - (ii) different types of aircraft used;
 - (iii) the environment (offshore, mountainous area etc.);
- (c) Regardless of the criteria mentioned in (a) and (b), the following organisations should always be considered as non-complex:
 - (1) Approved Training Organisations (ATOs) only providing training for the light aircraft pilot licence (LAPL), private pilot licence (PPL), sailplane pilot licence (SPL) or balloon pilot licence (BPL) and the associated ratings and certificates;
 - (2) Aero-Medical Centres (AeMCs).

AMC1 ORA.GEN.205 Contracted activities RESPONSIBILITY WHEN CONTRACTING ACTIVITIES

- (a) The organisation may decide to contract certain activities to external organisations.
- (b) A written agreement should exist between the organisation and the contracted organisation clearly defining the contracted activities and the applicable requirements.
- (c) The contracted safety related activities relevant to the agreement should be included in the organisation's safety management and compliance monitoring programmes.
- (d) The organisation should ensure that the contracted organisation has the necessary authorisation or approval when required, and commands the resources and competence to undertake the task.

GM1 ORA.GEN.205 Contracted activities

RESPONSIBILITY WHEN CONTRACTING ACTIVITIES

- (a) Regardless of the approval status of the contracted organisation, the contracting organisation is responsible to ensure that all contracted activities are subject to hazard identification and risk management as required by ORA.GEN.200 (a)(3) and to compliance monitoring as required by ORA.GEN.200 (a)(6).
- (b) When the contracted organisation is itself certified to carry out the contracted activities, the organisation's compliance monitoring should at least check that the approval effectively covers the contracted activities and that it is still valid.
- (c) If the organisation requires the contracted organisation to conduct an activity which exceeds the contracted organisation's terms of approval, this will be considered as the contracted organisation working under the approval of the contracting organisation.

AMC1 ORA.GEN.215 Facility requirements

ATOS PROVIDING TRAINING FOR THE CPL, MPL AND ATPL AND THE ASSOCIATED RATINGS AND CERTIFICATES

- (a) For ATOs providing flight training, the following flight operations accommodation should be available:
 - (1) an operations room with facilities to control flying operations;
 - (2) a flight planning room with the following facilities:
 - (i) appropriate current maps and charts;
 - (ii) current aeronautical information service (AIS) information;
 - (iii) current meteorological information;
 - (iv) communications to air traffic control (ATC) and the operations room;
 - (v) any other flight safety related material.

- (3) adequate briefing rooms/cubicles of sufficient size and number;
- (4) suitable offices for the supervisory personnel and room(s) to allow flight instructors to write reports on students, complete records and other related documentation;
- (5) furnished crew-room(s) for instructors and students.
- (b) For ATOs providing theoretical knowledge training, the following facilities for theoretical knowledge instruction should be available:
 - (1) adequate classroom accommodation for the current student population;
 - (2) suitable demonstration equipment to support the theoretical knowledge instruction;
 - (3) a radiotelephony training and testing facility;
 - (4) a reference library containing publications giving coverage of the syllabus;
 - (5) offices for the instructional personnel.

AMC2 ORA.GEN.215 Facility requirements

ATOS PROVIDING TRAINING FOR THE LAPL, PPL, SPL OR BPL AND THE ASSOCIATED RATINGS AND CERTIFICATES

- (a) The following flight operations accommodation should be available:
 - (1) a flight planning room with the following facilities:
 - (i) appropriate current aviation maps and charts;
 - (ii) current AIS information;
 - (iii) current meteorological information;
 - (iv) communications to ATC (if applicable);
 - (v) any other flight safety related material.
 - (2) adequate briefing room(s)/cubicles of sufficient size and number;
 - (3) suitable office(s) to allow flight instructors to write reports on students, complete records and other related documentation;
 - (4) suitable rest areas for instructors and students, where appropriate to the training task;
 - (5) in the case of ATOs providing training for the BPL or LAPL(B) only, the flight operations accommodation listed in (a)(1) to (a)(4) may be replaced by other suitable facilities when operating outside aerodromes.
- (b) The following facilities for theoretical knowledge instruction should be available:
 - (1) adequate classroom accommodation for the current student population;
 - (2) suitable demonstration equipment to support the theoretical knowledge instruction;
 - (3) suitable office(s) for the instructional personnel.
- (c) A single room may be sufficient to provide the functions listed in (a) and (b).

AMC1 ORA.GEN.220 (b) Record-keeping GENERAL

- (a) The record-keeping system should ensure that all records are accessible whenever needed within a reasonable time. These records should be organised in a way that ensures traceability and retrievability throughout the required retention period.
- (b) Records should be kept in paper form or in electronic format or a combination of both. Records stored on microfilm or optical disc format are also acceptable. The records should remain legible throughout the required retention period. The retention period starts when the record has been created or last amended.
- (c) Paper systems should use robust material which can withstand normal handling and filing. Computer systems should have at least one backup system which should be updated within 24 hours of any new entry. Computer systems should include safeguards against the ability of unauthorised personnel to alter the data.
- (d) All computer hardware used to ensure data backup should be stored in a different location from that containing the working data and in an environment that ensures they remain in good condition. When hardware or software changes take place, special care should be taken that all necessary data continues to be accessible at least through the full period specified in the relevant Subpart. In the absence of such indication, all records should be kept for a minimum period of 5 years.

GM1 ORA.GEN.220 (b) **Record-keeping** RECORDS

Microfilming or optical storage of records may be carried out at any time. The records should be as legible as the original record and remain so for the required retention period.

Subpart ATO - Approved Training Organisations

SECTION I – GENERAL

GM1 ORA.ATO.100 Scope

The content of this Section contains the requirements applicable to all ATOs providing training for pilot licences and the associated ratings and certificates. It is applicable to ATOs providing training for:

(a) the LAPL, PPL, SPL and BPL and the associated ratings and certificates; and

(b) the commercial pilot licence (CPL), multi-crew pilot licence (MPL) and airline transport pilot licence (ATPL) and the associated ratings and certificates.

AMC1 ORA.ATO.105 Application APPLICATION FORM

APPLICATION FORM FOR AN ATO CERTIFICATE				
N°	Question	Supplementary information		
1.	Name of training organisation under which the activity is to take place	address, fax number, e-mail, URL		
2.	Training courses offered	theory and/or flight training		
3.	Name of head of training	type and number of licence full/part-time		
4.	Name of chief flight instructor	as (3)		
5.	Name of chief theoretical knowledge instructor	as (3)		
6.	Name of flight instructor(s), where applicable	as (3)		
7.	Aerodrome(s) / operating site(s) to be used	IFR approaches, if applicable night flying, if applicable air traffic control flight testing facilities, if applicable data reply facilities, if applicable		
8.	Flight operations accommodation	location, number and size of rooms		
9.	Theoretical instruction facilities	location, number and size of rooms		
10.	Description of training devices (as applicable)	FFS, FNPT I, II and III, FTD 1, 2 and 3, and 3, and BITD		
11.	Description of aircraft	Class/type(s) of aircraft registration of aircraft IFR equipped, if applicable Flight test instrumentation, if applicable		
12.	Proposed administration and manuals : (submit with application if required)	 (a) course programmes (b) training records (c) operations manual (d) training manual 		
13.	Details of proposed compliance monitoring system			
r	separately. : instrument flight rules (IFR), full flight simulator (FFS), fli (FTD), basic instrument training device (BITD)	the applicant should provide full details of alternative arrangements ight and navigation procedures trainer (FNPT), flight training device at all the above named persons are in compliance with the applicable te and correct.		

AMC1 ORA.ATO.110 (b) **Personnel requirements** HEAD OF TRAINING

The nominated head of training (HT) should have the overall responsibility to ensure that the training is in compliance with the appropriate requirements. In an ATO providing training courses for different aircraft categories, the HT shall be assisted by one or more nominated deputy HT(s) for certain flight training courses.

AMC1 ORA.ATO.110(c) Personnel requirements THEORETICAL KNOWLEDGE INSTRUCTORS

Theoretical knowledge instructors should, before appointment, prove their competency by giving a test lecture based on material they have developed for the subjects they are to teach.

AMC1 ORA.ATO.120 (a);(b) Record-keeping

ATOS PROVIDING TRAINING ONLY FOR THE LAPL, PPL, SPL OR BPL AND THE ASSOCIATED RATINGS AND CERTIFICATES

The details of ground, flight and flight instruction by using FSTD given to a specific individual student and the detailed progress reports from instructors may be kept also in a student's progress card. This progress card should contain all the exercises of the training syllabus. The instructor should sign this card if a certain exercise has been completed or a specific assessment has been conducted.

AMC1 ORA.ATO.125 Training programme

GENERAL

Flight training in an FSTD and theoretical knowledge instruction should be phased in such a manner as to ensure that students are able to apply to flight exercises the knowledge gained on the ground. Arrangements should be made so that problems encountered during instruction can be resolved during subsequent training.

AMC2 ORA.ATO.125 Training programme TYPE RATING COURSES – AEROPLANES

- (a) Introduction
 - (1) When developing the training programme for a type rating course, in addition to complying with the standards included in the operational suitability data (OSD), as established in accordance with Regulation (EC) 1702/2003 for the applicable type, the ATO should also follow any further recommendations contained therein.
 - (2) The type rating course should, as far as possible, provide for a continual process of ground, FSTD and flight training to enable the student to assimilate the knowledge and skills required to operate a specific aircraft type safely and efficiently. The student's ability to do this should be determined by the demonstration of a satisfactory level of theoretical knowledge of the aircraft determined by progressive checking of knowledge and examination, progressive assessment by the ATO during flight training and the successful completion of a practical skill test with an examiner.
 - (3) The type rating course should normally be conducted as a single, full-time course of study and training. However, in the situation where the course is intended to enable a pilot to fly a further aircraft type while continuing to fly a current type, such as to enable mixed fleet flying with the same operator, some elements of the theoretical knowledge course conducted by self-study may be undertaken while the student continues to fly the current type.
- (b) Variants
 - (1) Familiarisation training: Where an aeroplane type rating also includes variants of the same aircraft type requiring familiarisation training, the additional familiarisation training may be included in the theoretical knowledge training of the initial type rating course. Flight training should be conducted on a single variant within the type.
 - (2) Differences training: Where an aeroplane type rating also includes variants of the same aircraft type for which difference training is required, the initial training course should be directed towards a single variant. Additional training to operate other variants within the same type rating should be completed after successful completion of the initial type rating course. However, elements of this differences training may be undertaken at appropriate stages of the initial course, with the agreement of MCAA.
- (c) Programme of theoretical knowledge and flight training
 - (1) The training programme should specify the time allocated to theoretical knowledge training, FSTD training and, if not approved for zero flight-time training (ZFTT), the aeroplane. The initial type rating course should be programmed on the basis that the student has the minimum licensing and experience requirements for entry to the course. For a first type rating on a multi-pilot aeroplane (MPA), the course should also provide for consolidation and type-specific training in those elements of basic multi-crew cooperation (MCC) training relevant to the type or variant.

- (2) If the ATO wishes to provide a training course that includes credit for previous experience on similar types of aircraft, such as those with common systems or operating procedures with the new type, the entry requirements to such courses should be specified by the ATO and should define the minimum level of experience and qualification required of the flight crew member.
- (3) The ATO is permitted to contract elements of training to a third party training provider. In such cases the contracted organisation should normally be approved to conduct such training. When the contracted organisation is not an ATO, MCAA would, within the approval process of the ATO, include the contracted organisation and be satisfied that the standard of training intended to be given meets the requirements. The other obligations of the ATO, such as student progress monitoring and an adequate management system can be exercised by the ATO seeking approval and which retains responsibility for the whole course.

GROUND TRAINING

(d) Syllabus

The ground training syllabus should provide for the student to gain a thorough understanding of the operation, function and, if appropriate, abnormal and emergency operation of all aircraft systems. This training should also include those systems essential to the operation of the aircraft, such as 'fly-by-wire' flight controls systems, even if the flight crew have little or no control of their normal or abnormal operation.

(e) Theoretical knowledge instruction

The theoretical knowledge instruction training should meet the general objectives of (but not be limited to) giving the student:

- (1) a thorough knowledge of the aircraft structure, powerplant and systems, and their associated limitations, including mass and balance, aircraft performance and flight planning considerations;
- (2) a knowledge of the positioning and operation of the cockpit controls and indicators for the aircraft and its systems;
- (3) an understanding of system malfunctions, their effect on aircraft operations and interaction with other systems; and
- (4) the understanding of normal, abnormal and emergency procedures.
- (f) Facilities and training aids

The ATO should provide adequate facilities for classroom instruction and have available appropriately qualified and experienced instructors. Training aids should enable students to gain practical experience of the operation of systems covered by the theoretical knowledge syllabus and, in the case of multi-pilot aeroplanes, enable such practical application of the knowledge to be carried out in a multi-crew environment. Facilities should be made available for student self-study outside the formal training programme.

(g) Computer-based training (CBT)

CBT provides a valuable source of theoretical instruction, enabling the students to progress at their own pace within specified time limits. Many such systems ensure that syllabus subjects are fully covered and progress can be denied until a satisfactory assimilation of knowledge has been demonstrated. Such systems may allow self-study or distance learning, if they incorporate adequate knowledge testing procedures. When CBT is used as part of the theoretical knowledge instruction phase, the student should also have access to a suitably qualified instructor able to assist with areas of difficulty for the student.

(h) Self-study and distance learning

Elements of the theoretical knowledge syllabus may be adequately addressed by distance learning, if approved, or self-study, particularly when utilising CBT. Progress testing, either by self-assessed or instructor-evaluated means should be included in any self-study programme. If self-study or distance learning is included in the theoretical knowledge training, the course should also provide for an adequate period of supervised consolidation and knowledge testing.

- (i) Progress tests and final theoretical knowledge examination
 - (1) The theoretical knowledge training programme should provide for progressive testing of the assimilation of the required knowledge. This testing process should also provide for retesting of syllabus items so that a thorough understanding of the required knowledge is assured. This should be achieved by intervention by a qualified instructor or, if using CBT with a self-testing facility, and by further testing during the supervised consolidation phase of the ground course.

(2) The final theoretical knowledge examination should cover all areas of the theoretical knowledge syllabus. The final examination should be conducted as a supervised written (including computer-based) knowledge test without reference to course material. The pass mark of 75% assumes the achievement of satisfactory levels of knowledge during the progressive phase tests of the course. The student should be advised of any areas of lack of knowledge displayed during the examination and, if necessary, given remedial instruction. A successful pass of the theoretical knowledge course and final examination should be a pre-requisite for progression to the flight training phase of the type rating course, unless otherwise determined in the OSD established in accordance with Regulation (EC) 1702/2003.

FLIGHT TRAINING

- (j) Flight simulation training devices (FSTDs)
 - A type rating course for a multi-pilot aeroplane should include FSTD training.

The amount of training required when using FSTDs will depend on the complexity of the aeroplane concerned, and to some extent on the previous experience of the pilot. Except for those courses giving credit for previous experience (c.2.), a minimum of 32 hours of FSTD training should be programmed for a crew of a multi-pilot aeroplane, of which at least 16 hours should be in an FFS operating as a crew. FFS time may be reduced if other qualified FSTDs used during the flight training programme accurately replicate the cockpit environment, operation and aeroplane response. Such FSTDs may typically include flight management computer (FMC) training devices using hardware and computer programmes identical to those of the aeroplane.

- (k) Aeroplane training with FFS
 - (1) with the exception of courses approved for ZFTT, certain training exercises normally involving take-off and landing in various configurations should be completed in the aeroplane rather than an FFS. For MPAs where the student pilot has more than 500 hours of MPA experience in aeroplanes of similar size and performance, these should include at least four landings of which at least one should be a full-stop landing, unless otherwise specified in the OSD established in accordance with Regulation (EC) 1702/2003, when available. In all other cases the student pilot has completed the FSTD training and has successfully undertaken the type rating skill test, provided it does not exceed 2 hours of the flight training course.
 - (2) courses approved for ZFTT

During the specific simulator session before line flying under supervision (LIFUS), consideration should be given to varying conditions, for example:

- (i) runway surface conditions;
- (ii) runway length;
- (iii) flap setting;
- (iv) power setting;
- (v) crosswind and turbulence conditions; and
- (vi) maximum take-off mass (MTOM) and maximum landing mass (MLM).
- (3) the landings should be conducted as full-stop landings. The session should be flown in normal operation.

Special attention should be given to the taxiing technique:

- (i) a training methodology should be agreed with MCAA that ensures the trainee is fully competent with the exterior inspection of the aeroplane before conducting such an inspection un-supervised;
- (ii) the LIFUS should be performed as soon as possible after the specific FFS session;
- (iii) the licence endorsement should be entered on the licence after the skill test, but before the first four take-offs and landings in the aeroplane. At the discretion of MCAA, provisional or temporary endorsement and any restriction should be entered on the licence.

Where a specific arrangement exists between the ATO and the commercial air transport operator, the operator proficiency check (OPC) and the ZFTT specific details should be conducted using the operator's standard operating procedures (SOPs).

- (l) Aeroplane without FFS
 - (1) Flight training conducted solely in an aeroplane without the use of FSTDs cannot cover the crew resource management (CRM) and multi-crew cockpit (MCC) aspects of MPA flight training, and for safety reasons cannot cover all emergency and abnormal aircraft operation required for the training and skill test. In such cases, the ATO should demonstrate to MCAA that adequate training in these aspects can be achieved by other means. For training conducted solely on an MPA where two pilots are trained

together without the use of an FSTD, a minimum of 8 hours of flight training as pilot flying (PF) for each pilot should normally be required. For training on a single-pilot aeroplane, 10 hours of flight training should normally be required. It is accepted that for some relatively simple single or multiengine aircraft without systems such as pressurisation, flight management system (FMS) or electronic cockpit displays, this minimum may be reduced.

(2) Aeroplane training normally involves an inherent delay in achieving an acceptable flight situation and configuration for training to be carried out in accordance with the agreed syllabus. These could include ATC or other traffic delay on the ground prior to take-off, the necessity to climb to height or transit to suitable training areas and the unavoidable need to physically reposition the aircraft for subsequent or repeat manoeuvres or instrument approaches. In such cases it should be ensured that the training syllabus provides adequate flexibility to enable the minimum amount of required flight training to be carried out.

SKILL TEST

(m) Upon completion of the flight training, the pilot will be required to undergo a skill test with an examiner to demonstrate adequate competency of aircraft operation for issue of the type rating. The skill test should be separate from the flight training syllabus, and provision for it cannot be included in the minimum requirements or training hours of the agreed flight training programme. The skill test may be conducted in an FFS, the aeroplane or, in exceptional circumstances, a combination of both.

COURSE COMPLETION CERTIFICATE

(n) The HT, or a nominated representative, should certify that all training has been carried out before an applicant undertakes a skill test for the type rating to be included in the pilot's licence. If an ATO is unable to provide certain elements of the training that is required to be carried out on an aircraft the ATO may issue such a certificate confirming the completion of the ground training or the training in an FSTD.

AMC3 ORA.ATO.125 Training programme

TYPE RATING COURSES - HELICOPTERS

- (a) Introduction
 - (1) when developing the training programme for a type rating course, in addition to complying with the standards included in the OSD as established in accordance with Regulation (EC) 1702/2003 for the applicable type, the ATO should also follow any further recommendations contained therein.
 - (2) the course should, as far as possible, provide for integrated ground, FSTD and flight training designated to enable the student to operate safely and qualify for the grant of a type rating. The course should be directed towards a helicopter type, but where variants exist, all flying and ground training forming the basis of the course should relate to a single variant.
- (b) Variants
 - (1) Familiarisation training: where a helicopter type rating also includes variants of the same aircraft type requiring familiarisation training, the additional familiarisation training may be included in the theoretical knowledge training of the initial type rating course.
 - (2) Differences training: where a helicopter type rating also includes variants of the same aircraft type for which difference training is required, the initial training course should be directed towards a single variant. Additional training to operate other variants within the same type rating should be completed after successful completion of the initial type rating course, although elements of this differences training may be undertaken at appropriate stages of the initial course, with the agreement of MCAA.
- (c) Training in helicopter and FSTDs

The training programme should specify the amounts of flight training in the helicopter type and in FSTDs (FFSs, flight training devices (FTDs), or other training devices (OTDs)). Where a suitable FFS is geographically remote from the normal training base, MCAA may agree to some additional training being included in the programme at a remote facility.

(d) Skill test

The content of the flight training programme should be directed towards the skill test for that type. The practical training given in Part-FCL should be modified as necessary.

The skill test may be completed in a helicopter, in an FFS or partially in a helicopter and in an FSTD. The use of an FSTD for skill tests is governed by the level of approval of the flight simulator and the previous experience of the candidate. Where an FSTD is not available, abnormal operations of systems should not be practised in a helicopter other than as allowed for in the skill test form for the type.

(e) Phase progress tests and final theoretical knowledge examination

Prior to the final theoretical knowledge examination covering the whole syllabus, the training programme should provide for phase progress tests associated with each phase of theoretical knowledge instruction. The phase progress tests should assess the candidate's knowledge on completion of each phase of the training programme.

(f) Facilities: ground school equipment, training facilities and aids

The ATO should provide, as a minimum, facilities for classroom instruction. Additional classroom training aids and equipment including, where appropriate, computers, should reflect the content of the course and the complexity of the helicopter. For multi-engine and multi-pilot helicopters, the minimum level of ground training aids should include equipment that provides a realistic cockpit working environment. Task analysis and the latest state-of-the-art training technology is encouraged and should be fully incorporated into the training facilities wherever possible. Facilities for self and supervised testing should be available to the student.

(g) Training devices

An FTD or OTD may be provided to supplement classroom training in order to enable students to practice and consolidate theoretical instruction. Where suitable equipment is not available, or is not appropriate, a helicopter or flight simulator of the relevant variant should be available. If an FTD represents a different variant of the same helicopter type for which the student is being trained, then differences or familiarisation training is required.

(h) Computer-based training (CBT)

Where CBT aids are used as a training tool, the ATO should ensure that a fully qualified ground instructor is available at all times when such equipment is being used by course students. Other than for revision periods, CBT lessons should be briefed and debriefed by a qualified ground instructor.

- (i) Theoretical knowledge instruction
 - The theoretical knowledge instruction training should meet the general objectives of giving the student:
 - (1) a thorough knowledge of the helicopter structure, transmissions, rotors and equipment, powerplant and systems, and their associated limitations;
 - (2) a knowledge of the positioning and operation of the cockpit controls and indicators for the helicopter and its systems;
 - (3) a knowledge of performance, flight planning and monitoring, mass and balance, servicing and optional equipment items;
 - (4) an understanding of system malfunctions, their effect on helicopter operations and interaction with other systems; and
 - (5) the understanding of normal, abnormal and emergency procedures and giving the student the understanding of potential control problems near the edge of the handling envelope. In particular, the phenomenon of 'servo transparency' (also known as 'jack stall') should be covered for those helicopter types where it is a known problem.

The amount of time and the contents of the theoretical instruction will depend on the complexity of the helicopter type involved and, to some extent, on the previous experience of the student.

- (j) Flight training
 - (1) FSTDs

The level of qualification and the complexity of the type will determine the amount of practical training that may be accomplished in an FSTD, including completion of the skill test. Prior to undertaking the skill test, a student should demonstrate competency in the skill test items during the practical training.

(2) Helicopter (with FSTD) With the exception of courses approved for ZFTT, the amount of flight time in a helicopter should be adequate for completion of the skill test.

(3) Helicopters (without FSTD)

Whenever a helicopter is used for training, the amount of flight time practical training should be adequate for the completion of the skill test. The amount of flight training will depend on the complexity of the helicopter type involved and, to some extent, on the previous experience of the applicant.

AMC4 ORA.ATO.125 Training programme

FLIGHT TEST TRAINING COURSES – AEROPLANES AND HELICOPTERS

- (a) Introduction
 - (1) The flight test training course should, as far as possible, provide for a continuous process of ground and flight training to enable the student to assimilate the knowledge and skills required to conduct flight testing safely and efficiently. The student's ability to do this should be determined by the demonstration of a satisfactory level of theoretical knowledge of flight testing determined by progressive checking of knowledge and examination and progressive assessment by the ATO during flying training. There should be no difference in the level of knowledge or competency required of the student, irrespective of the intended role of the student as test pilot or other flight test personnel (for example, flight test engineer) within the flight crew.
 - (2) The flight test training course should normally be conducted as a single, full-time course of study and training.
- (b) Programme of theoretical knowledge and flight training
 - (1) The training programme should specify the time allocated to theoretical knowledge training and flying training.
 - (2) If the ATO wishes to provide a flight test training course that includes credit for previous experience on flight testing activity, the entry requirements to such courses should be specified by the ATO and should define the minimum level of experience and qualification required of the flight test crew member.

GROUND TRAINING

- (c) Syllabus
 - (1) The ground training syllabus should provide for the student to gain a thorough understanding of flight testing techniques.
- (d) Theoretical knowledge instruction
 - (1) The theoretical knowledge instruction training should give the student a thorough knowledge of the academic requirements of flight testing.
- (e) Facilities and training aids
 - (1) The ATO should provide adequate facilities for classroom instruction and have available appropriately qualified and experienced instructors. Training aids should enable students to gain practical experience of flight testing covered by the theoretical knowledge syllabus and enable such practical application of the knowledge to be carried out in a multi-crew environment. Facilities should be made available for student self-study outside the formal training programme.
- (f) Computer-based training (CBT)
 - (1) CBT provides a valuable source of theoretical instruction, enabling the student to progress at his/her own pace within specified time limits. Many such systems ensure that syllabus subjects are fully covered and progress can be denied until a satisfactory assimilation of knowledge has been demonstrated. Such systems may allow self-study or distance learning, if they incorporate adequate knowledge testing procedures. When CBT is used as part of the theoretical knowledge instruction phase, the student should also have access to a suitably qualified instructor able to assist with areas of difficulty for the student.
- (g) Self-study and distance learning
 - (1) Elements of the theoretical knowledge syllabus may be adequately addressed by distance learning, if approved, or self-study, particularly when utilising CBT. Progress testing, either by self-assessed or instructor-evaluated means, should be included in any self-study programme. If self-study or distance learning is included in the theoretical knowledge training, the course should also provide for an adequate period of supervised consolidation and knowledge testing prior to the commencement of flight training.

- (h) Progress tests and final theoretical knowledge examination
 - (1) The theoretical knowledge training programme should provide for progressive testing of the assimilation of the required knowledge. This testing process should also provide for retesting of syllabus items so that a thorough understanding of the required knowledge is assured. This should be achieved by intervention by a qualified instructor or, if using CBT with a self-testing facility, and by further testing during the supervised consolidation phase of the ground course.
 - (2) The theoretical knowledge examinations should cover all areas of the theoretical knowledge syllabus. The examinations should be conducted as supervised written or oral knowledge tests without reference to course material. The pass mark (as defined by the ATO) assumes the achievement of satisfactory levels of knowledge during the progressive phase tests of the course. The student should be advised of any areas of lack of knowledge displayed during the examination and, if necessary, given remedial instruction.

FLIGHT TRAINING

- (i) Aeroplane and helicopter training
 - (1) It is widely accepted that flying training normally involves inherent delay in achieving an acceptable flight situation and configuration for training to be carried out in accordance with the agreed syllabus. These could include ATC or other traffic delay on the ground prior to take off, the necessity to climb to height or transit to suitable training areas and the unavoidable need to physically reposition the aircraft for subsequent or repeat manoeuvres or instrument approaches. In such cases it should be ensured that the training syllabus provides adequate flexibility to enable the minimum amount of required flight training to be carried out.

FINAL IN-FLIGHT EXERCISE

(j) Upon completion of the flight test training, the test pilot or flight test engineer will be required to undergo in-flight exercise with a flight test instructor (FTI) to demonstrate adequate competency of flight testing for issue of the flight test rating. The final in-flight exercise must be conducted in an appropriate aeroplane or helicopter (as applicable).

COURSE COMPLETION CERTIFICATE

(k) The HT is required to certify that the applicant has successfully completed the training course.

AMC1 ORA.ATO.135 Training aircraft and FSTDs

ALL ATOS, EXCEPT THOSE PROVIDING FLIGHT TEST TRAINING

- (a) The number of training aircraft may be affected by the availability of FSTDs.
- (b) Each training aircraft should be:
 - (1) equipped as required in the training specifications concerning the course in which it is used;
 - (2) except in the case of balloons or single-seat aircraft, fitted with primary flight controls that are instantly accessible by both the student and the instructor (for example dual flight controls or a centre control stick). Swing-over flight controls should not be used.
- (c) The fleet should include, as appropriate to the courses of training:
 - (1) aircraft suitably equipped to simulate instrument meteorological conditions (IMC) and for the instrument flight training required. For flight training and testing for the instrument rating, and the en route instrument rating (EIR), an adequate number of IFR-certificated aircraft should be available;
 - (2) in the case of aeroplanes and sailplanes, aircraft suitable for demonstrating stalling and spin avoidance;
 - (3) for the flight instructor (FI) training courses on aeroplanes and sailplanes, aircraft suitable for spin recovery at the developed stage;
 - (4) in the case of helicopters, helicopters suitable for autorotation demonstration;
 - (5) in the case of a non-complex ATO, one aircraft fulfilling all the required characteristics for a training aircraft might be sufficient;
 - (6) each FSTD should be equipped as required in the training specifications concerning the course in which it is used.

AMC1 ORA.ATO.140 Aerodromes and operating sites GENERAL

- (a) Except in the case of balloons, the base aerodrome or operating site and any alternative base aerodromes at which flight training is being conducted should have at least the following facilities:
 - (1) at least one runway or final approach and take-off area (FATO) that allows training aircraft to make a normal take-off or landing within the performance limits of all the aircraft used for the training flights.
 - (2) a wind direction indicator that is visible at ground level from the ends of each runway or at the appropriate holding points;
 - (3) adequate runway electrical lighting if used for night training;
 - (4) an air traffic service, except for uncontrolled aerodromes or operating sites where the training requirements may be satisfied safely by another acceptable means of air-to-ground communication.
- (b) Except in the case of ATOs providing flight test training, in addition to (a), for helicopters, training sites should be available for:
 - (1) confined area operation training;
 - (2) simulated engine off autorotation; and
 - (3) sloping ground operation.
- (c) In the case of balloons, the take-off sites used by the ATO should allow a normal take-off and clearing of all obstacles in the take-off flight path by at least 50 ft.

AMC1 ORA.ATO.145 Pre-requisites for training ENTRANCE REQUIREMENTS

ATOs providing training for other than the LAPL, PPL, SPL or BPL and the associated ratings and certificates should establish entrance requirements for students in their procedures. The entrance requirements should ensure that the students have enough knowledge, particularly of physics and mathematics, to be able to follow the courses.

SECTION II - ADDITIONAL REQUIREMENTS FOR ATOs PROVIDING TRAINING FOR CPL, MPL AND ATPL AND THE ASSOCIATED RATINGS AND CERTIFICATES

AMC1 ORA.ATO.210 Personnel requirements GENERAL

- (a) The management structure should ensure supervision of all grades of personnel by persons having the experience and qualities necessary to ensure the maintenance of high standards. Details of the management structure, indicating individual responsibilities, should be included in the ATOs operations manual.
- (b) The ATO should demonstrate to MCAA that an adequate number of qualified, competent staff is employed.
- (c) In the case of an ATO offering integrated courses, the HT, the chief flying instructor (CFI) and the chief theoretical knowledge instructor (CTKI) should be employed full-time or part-time, depending upon the scope of training offered.
- (d) In the case of an ATO offering only one of the following:
 - (1) modular courses,
 - (2) type rating courses,
 - (3) theoretical knowledge instruction,

the positions of HT, CFI and CTKI may be combined and filled by one or two persons with extensive experience in the training conducted by the training organisation, full-time or part-time, depending upon the scope of training offered.

- (e) The ratio of all students to flight instructors, excluding the HT, should not exceed 6:1.
- (f) Class numbers in ground subjects involving a high degree of supervision or practical work should not exceed 28 students.

THEORETICAL KNOWLEDGE INSTRUCTORS

- (g) The theoretical knowledge instruction for type or class ratings should be conducted by instructors holding the appropriate type or class rating, or having appropriate experience in aviation and knowledge of the aircraft concerned.
- (h) For this purpose, a flight engineer, a maintenance engineer or a flight operations officer should be considered as having appropriate experience in aviation and knowledge of the aircraft concerned.

AMC2 ORA.ATO.210 Personnel requirements

QUALIFICATION OF HEAD OF TRAINING AND CHIEF FLIGHT INSTRUCTOR

(a) Head of training (HT)

The nominated HT should hold or have held in the 3 years prior to first appointment as HT, a professional pilot licence and associated ratings or certificates issued in accordance with Part-FCL, related to the flight training courses provided.

- (b) Chief flight instructor (CFI)
 - (1) The CFI may delegate standardisation and supervision to the flight instructors. In all cases it is the CFI who is ultimately responsible for ensuring quality and standards.
 - (2) The CFI should, except in the case of ATOs providing flight test training, have completed 1 000 hours of flight time as pilot-in-command (PIC). At least 500 of those hours should be on flying instructional duties related to the flying courses provided, of which 200 hours may be instrument ground time.

AMC1 ORA.ATO.230 (a) Training manual and operations manual TRAINING MANUAL

Training manuals for use at an ATO conducting integrated or modular flight training courses should include the following:

(a) The training plan:

(1) The aim of the course (ATP, CPL/IR, CPL, etc. as applicable)	A statement of what the student is expected to do as a result of the training, the level of performance, and the training constraints to be observed.
(2) Pre-entry requirements	 (i) Minimum age, educational requirements (including language), medical requirements; (ii) Any individual State requirements.
(3) Credits for previous experience	To be obtained from MCAA before training begins.
(4) Training syllabi	As applicable, the flying syllabus (single-engine or multi-engine, as applicable), the flight simulation training syllabus and the theoretical knowledge training syllabus.
(5) The time scale and scale, in weeks, for each syllabus	Arrangements of the course and the integration of syllabi time.
(6) Training programme	 (i) The general arrangements of daily and weekly programmes for flying, theoretical knowledge training and training in FSTDs, if applicable; (ii) Bad weather constraints; (iii) Programme constraints in terms of maximum student training times, (flying, theoretical knowledge, on FSTDs), for example per day, week or month; (iv) Restrictions in respect of duty periods for students; (v) Duration of dual and solo flights at various stages; (vi) Maximum number of training flights in any day or night; (vii) Minimum rest period between duty periods.
(7) Training records	 (i) Rules for security of records and documents; (ii) Attendance records; (iii) The form of training records to be kept; (iv) Persons responsible for checking records and students' log books; (v) The nature and frequency of record checks; (vi) Standardisation of entries in training records; (vii) Rules concerning log book entries.
(8) Safety training	 (i) Individual responsibilities; (ii) Essential exercises; (iii) Emergency drills (frequency); (iv) Dual checks (frequency at various stages); (v) Requirement before first solo day, night or navigation etc. if applicable.
(9) Tests and examinations	 (i) Flying: (A) progress checks; (B) skill tests. (ii) Theoretical knowledge: (A) progress tests; (B) theoretical knowledge examinations. (iii) Authorisation for test; (iv) Rules concerning refresher training before retest; (v) Test reports and records; (vi) Procedures for examination paper preparation, type of question and assessment, standard required for 'pass'; (vii) Procedure for question analysis and review and for raising replacement papers; (viii) Examination resit procedures.
(10) Training effectiveness	 (viii) Examination rest procedures. (i) Individual responsibilities; (ii) General assessment; (iii) Liaison between departments; (iv) Identification of unsatisfactory progress (individual students); (v) Actions to correct unsatisfactory progress; (vi) Procedure for changing instructors;

	(vii) Maximum number of instructor changes per student;
	(viii) Internal feedback system for detecting training deficiencies;
	(ix) Procedure for suspending a student from training;
	(x) Discipline;
	(xi) Reporting and documentation.
	(i) Individual responsibilities;
(11) Standards and level of	(ii) Standardisation;
performance at various stages	(iii) Standardisation requirements and procedures;
	(iv) Application of test criteria.

(b) Briefing and air exercises:

(1) Air exercise	A detailed statement of the content specification of all the air exercises to be taught, arranged in the sequence to be flown with main and subtitles.
(2) Air exercise reference list	An abbreviated list of the above exercises giving only main and subtitles for quick reference, and preferably in flip-card form to facilitate daily use by instructors.
(3) Course structure: phase of training	A statement of how the course will be divided into phases, indication of how the above air exercises will be divided between the phases and how they will be arranged to ensure that they are completed in the most suitable learning sequence and that essential (emergency) exercises are repeated at the correct frequency. Also, the syllabus hours for each phase and for groups of exercises within each phase should be stated and when progress tests are to be conducted, etc.
(4) Course structure: integration of syllabi	The manner in which theoretical knowledge and flight training in an aircraft or an FSTD will be integrated so that as the flying training exercises are carried out students will be able to apply the knowledge gained from the associated theoretical knowledge instruction and flight training.
(5) Student progress	The requirement for student progress and include a brief but specific statement of what a student is expected to be able to do and the standard of proficiency he/she must achieve before progressing from one phase of air exercise training to the next. Include minimum experience requirements in terms of hours, satisfactory exercise completion, etc. as necessary before significant exercises, for example night flying.
(6) Instructional methods	The ATO requirements, particularly in respect of pre- and post-flying briefing, adherence to syllabi and training specifications, authorisation of solo flights, etc.
(7) Progress tests	The instructions given to examining staff in respect of the conduct and documentation of all progress tests.
(8) Glossary of terms	Definition of significant terms as necessary.
(9) Appendices	(i) Progress test report forms;(ii) Skill test report forms;(iii) ATO certificates of experience, competence, etc. as required.

- (c) Flight training in an FSTD, if applicable: Structure generally as for (b)
- (d) Theoretical knowledge instruction:

(1) Structure of the theoretical knowledge course	A statement of the structure of the course, including the general sequence of the topics to be taught in each subject, the time allocated to each topic, the breakdown per subject and an example of a course schedule. Distance learning courses should include instructions of the material to be studied for individual elements of the course.
(2) Lesson plans	A description of each lesson or group of lessons including teaching materials, training aids, progress test organisation and inter-connection

	of topics with other subjects.	
	Specification of the training aids to be used (for example study	
(3) Teaching materials	materials, course manual references, exercises, self-study materials,	
	demonstration equipment).	
	The requirement for student progress, including a brief but specific	
(4) Student prograss	statement of the standard that must be achieved and the mechanism for	
(4) Student progress	achieving this, before application for theoretical knowledge	
	examinations.	
(5) Progress testing	The organisation of progress testing in each subject, including topics	
(3) Flogress testing	covered, evaluation methods and documentation.	
	The procedure to be followed if the standard required at any stage of	
(6) Review procedure	the course is not achieved, including an agreed action plan with	
	remedial training if required.	

AMC1 ORA.ATO.230 (b) Training manual and operations manual

ALL ATOS, EXCEPT THOSE PROVIDING FLIGHT TEST TRAINING OPERATIONS MANUAL

The operations manual for use at an ATO conducting integrated or modular flight training courses should include the following:

- (a) General:
 - (1) a list and description of all volumes in the operations manual;
 - (2) administration (function and management);
 - (3) responsibilities (all management and administrative staff);
 - (4) student discipline and disciplinary action;
 - (5) approval or authorisation of flights;
 - (6) preparation of flying programme (restriction of numbers of aircraft in poor weather);
 - (7) command of aircraft;
 - (8) responsibilities of the PIC;
 - (9) carriage of passengers;
 - (10) aircraft documentation;
 - (11) retention of documents;
 - (12) flight crew qualification records (licences and ratings);
 - (13) revalidation (medical certificates and ratings);
 - (14) flight duty period and flight time limitations (flying instructors);
 - (15) flight duty period and flight time limitations (students);
 - (16) rest periods (flight instructors);
 - (17) rest periods (students);
 - (18) pilots' log books;
 - (19) flight planning (general);
 - (20) safety (general): equipment, radio listening watch, hazards, accidents and incidents (including reports), safety pilots etc..

(b) Technical:

- (1) aircraft descriptive notes;
- (2) aircraft handling (including checklists, limitations, maintenance and technical logs, in accordance with relevant requirements, etc.);
- (3) emergency procedures;
- (4) radio and radio navigation aids;
- (5) allowable deficiencies (based on the master minimum equipment list (MMEL), if available).
- (c) Route:
 - (1) performance (legislation, take-off, route, landing etc.);
 - (2) flight planning (fuel, oil, minimum safe altitude, navigation equipment etc.);
 - (3) loading (load sheets, mass, balance and limitations);
 - (4) weather minima (flying instructors);
 - (5) weather minima (students at various stages of training);
 - (6) training routes or areas.

(d) Personnel training

- (1) appointments of persons responsible for standards/competence of flight personnel;
- (2) initial training;
- (3) refresher training;
- (4) standardisation training;
- (5) proficiency checks;
- (6) upgrading training;
- (7) ATO personnel standards evaluation.

SECTION III - ADDITIONAL REQUIREMENTS FOR ATOS PROVIDING SPECIFIC TYPES OF TRAINING

Chapter 1 – Distance Learning Course

AMC1 ORA.ATO.300 General

DISTANCE LEARNING

- (a) A variety of methods is open to ATOs to present course material. It is, however, necessary for ATOs to maintain comprehensive records in order to ensure that students make satisfactory academic progress and meet the time constraints laid down in Part-FCL for the completion of modular courses.
- (b) The following are given as planning guidelines for ATOs developing the distance learning element of modular courses:
 - (1) an assumption that a student will study for at least 15 hours per week;
 - (2) an indication throughout the course material of what constitutes a week's study;
 - (3) a recommended course structure and order of teaching;
 - (4) one progress test for each subject for every 15 hours of study, which should be submitted to the ATO for assessment. Additional self-assessed progress tests should be completed at intervals of five to 10 study hours;
 - (5) appropriate contact times throughout the course when a student can have access to an instructor by telephone, fax, email or the Internet;
 - (6) measurement criteria to determine whether a student has satisfactorily completed the appropriate elements of the course to a standard that, in the judgement of the HT, or CGI, will enable them to be entered for the Part-FCL theoretical examinations with a good prospect of success;
 - (7) if the ATO provides the distance learning by help of IT solutions, for example the Internet, instructors should monitor students' progress by appropriate means.

Chapter 2 - Zero Flight-Time Training (ZFTT)

AMC1 ORA.ATO.330 General INITIAL APPROVAL

For an initial approval to conduct ZFTT, the operator should have held an air operator's certificate for commercial air transport for at least 1 year. This period may be reduced where the operator and the ATO have experience of type rating training.

SUBPART FSTD –REQUIREMENTS FOR ORGANISATIONS OPERATING FLIGHT SIMULATION TRAINING DEVICES (FSTDS) AND THE QUALIFICATION OF FSTDS

SECTION I - REQUIREMENTS FOR ORGANISATIONS OPERATING FSTDS

AMC1 ORA.FSTD.100 General

COMPLIANCE MONITORING PROGRAMME – ORGANISATIONS OPERATING FSTDS

- (a) Introduction.
 - (1) The purpose of this AMC is to provide additional and specific information to an organisation operating FSTDs on how to establish a compliance monitoring programme (CMP) that enables compliance with the applicable requirements.
- (b) Compliance monitoring programme
 - (1) Typical subject areas for inspections are the following:
 - (i) actual FSTD operation;
 - (ii) maintenance;
 - (iii) technical Standards;
 - (iv) FSTD safety features.
- (c) Audit scope
 - (1) Organisations operating FSTDs are required to monitor compliance with the procedures they have designed to ensure specified performance and functions. In doing so they should as a minimum, and where appropriate, monitor the following:
 - (i) organisation;
 - (ii) plans and objectives;
 - (iii) maintenance procedures;
 - (iv) FSTD qualification level;
 - (v) supervision;
 - (vi) FSTD technical status;
 - (vii) manuals, logs and records;
 - (viii) defect deferral;
 - (ix) personnel training;
 - (x) aircraft modifications;
 - (xi) FSTD configuration management.

AMC2 ORA.FSTD.100 General

COMPLIANCE MONITORING PROGRAMME –ORGANISATIONS OPERATING FSTDS

One acceptable means of measuring FSTD performance is contained in ARINC report 433-1 (December 14th, 2007 or as amended) Standard Measurements for Flight Simulation Quality.

AMC3 ORA.FSTD.100 General

COMPLIANCE MONITORING PROGRAMME – ORGANISATIONS OPERATING BASIC INSTRUMENT TRAINING DEVICES (BITDs)

- (a) The compliance monitoring programme together with a statement acknowledging completion of a periodic review by the accountable manager should include the following:
 - (1) a maintenance facility that provides suitable BITD hardware and software test and maintenance capability;
 - (2) a recording system in the form of a technical log in which defects, deferred defects and development work are listed, interpreted, actioned and reviewed within a specified time scale; and
 - (3) planned routine maintenance of the BITD and periodic running of the qualification test guide (QTG) with adequate manning to cover BITD operating periods and routine maintenance work.
- (b) A planned audit schedule and a periodic review should be used to verify that corrective action was carried out and that it was effective. The auditor should have adequate knowledge of BITDs.

GM1 ORA.FSTD.100 General

COMPLIANCE MONITORING – ORGANISATIONS OPERATING FSTDS – GENERAL

- (a) The concept of compliance monitoring (CM) is a fundamental requirement for organisations operating FSTDs. An effective CM function is vitally important in supporting operation of the devices, in a structured way, to ensure they remain in compliance with the technical standards of CS-FSTD (A) and CS-FSTD (H) and continue to be effective training tools. An effective CM function is also essential to support any level of extended recurrent evaluation period as permitted by ORA.FSTD.225 (b).
- (b) The following guidance has been developed to provide additional material to help both organisations operating FSTDs and competent authorities in developing effective CM that satisfy the applicable requirements and ensure the highest standards of training are maintained.
- (c) Additional GM provide a compliance checklist for organisations operating FSTDs (GM2 ORA.FSTD.100) and guidance detailing the preparation for an evaluation by MCAA (GM3 ORA.FSTD.100). The compliance checklist should be used by the competent authorities as a standardised checklist for the elements that are expected in the CM function of an organisation operating FSTDs. The organisation should complete as a minimum the second column of the checklist by providing appropriate manual or procedure references for each of the identified elements of the CM function. Additional information can be provided in the third column to aid assessment of the checklist as appropriate. This would then be provided to MCAA. Use of this checklist should assist in ensuring a consistent approach by the competent authorities and also provide organisations operating FSTDs with additional guidance on all the elements of a CM function that the competent authorities will expect. The guidance is provided to help organisations operating FSTDs to prepare for authority visits.
- (d) The documentation of the CM may be electronic, provided the necessary controls can be demonstrated. This should include control of any paper copies that may be downloaded for use by individuals. It is recommended that any such copies are automatically designated as uncontrolled as part of the download process. Whilst electronic signatures on master documents may be accepted, with appropriate protections, a hardcopy master of the CM manual should be provided, with wet-ink signatures to be held by the applicant.
- (e) It should be recognised that whatever CM is developed, it will not be effective unless it becomes an integral part of the way in which the organisation works. It includes both the necessary procedures for maintaining compliance with all the applicable requirements and a compliance monitoring programme (CMP) to monitor the execution of these procedures. A successful CM will ensure that the highest training tool is available at all times. If the CM is viewed as an add-on to existing processes it will become a burden and it will never be wholly effective. It should also be noted that compliance control or inspection is only a small part of a CM. If the CM is working effectively, inspections such as fly-outs should become routine revealing little beyond day-to-day unserviceabilities. Systematic defects should be captured by the CMP.
- (f) MCAA should be satisfied that the accountable manager is able to adequately provide the required level of resources to properly support the FSTD. Detailed knowledge of FSTD requirement standards are not necessary, only sufficient to understand his/her responsibility for ensuring the FSTD is properly supported. The assessment of the compliance monitoring manager should concentrate on establishing that the nominee has sufficient knowledge and experience of both CM management and FSTD operations to operate a compliance monitoring system (CMS) within an organisation operating FSTDs. This is likely to require experience of working in the compliance monitoring field and sufficient knowledge of FSTDs and the technical standards with which they should comply.
- (g) If an organisation operating FSTDs is certified under any international quality standard it should assure that it fully covers the applicable organisation requirements of Part-ORA and the qualification basis.
- (h) For small organisations, it is perfectly acceptable to combine the roles of compliance monitoring manager and accountable manager. For other organisations that hold multiple certificates and may cover multiple sites, it is advantageous to have a common CM function with an overall compliance monitoring manager. However, it is essential, particularly where sites may be significantly separated geographically, that there is a nominated representative at each site and possibly for each certificate. These representatives should hold the delegated responsibility of the CM manager for the day-to-day CM role at their site and in their function and have the necessary direct reporting line to the overall CM manager. It will also be necessary to ensure that local representatives are also acceptable to MCAA. In many cases the local representatives may perform other functions in addition to this role. This is acceptable provided the necessary independence of any compliance monitoring activity is maintained.

- (i) CM, as a whole, begins with the requirements with which the system seeks to comply. These include both the technical standards, in this case the relevant parts of CS-FSTD (A)/ (H) plus any other specific standards, for example health and safety regulations, and the compliance monitoring objectives, such as defect rates and rectification intervals and FSTD reliability targets. The CM should define the process by which these standards are made available to those who require them.
- (j) The next part of CM is that part which defines the day-to-day procedures or working practices by which the standards will be achieved. These procedures should include as a minimum defect reporting systems, defect rectification processes, tracking mechanisms, preventative maintenance programmes, spares handling, equipment calibration and configuration management of the device. They should include checks to assess the compliance of the performed actions. These procedures and standards should be made readily available to anybody involved in the maintenance and day-to-day operation of the FSTD.
- (k) The third part of CM is the method by which the organisation operating an FSTD confirms the device is maintained in compliance with the defined standards and is being operated in accordance with the defined procedures. This is the compliance monitoring programme (CMP) and includes the audit methods, reporting and corrective action procedures and feedback, management reviews and schedules for audits of all aspects of the FSTD operation.
- (1) Across all aspects of CM, and most important to it, are the people. CM includes the definition of the responsibilities of all staff and should include a declaration of the minimum levels of resource proposed for the direct support of the FSTD plus the levels of support and managerial staff proposed. The levels of resource can be affected by factors such as local health and safety regulations, existence of weekend and/or night usage of the device(s), etc. CM also includes definition of the skills and experience required for staff and leads to definition of any required training programmes. Training needs cover both technical training and audit training, including QTG running and checking and fly-out techniques for flight crew.
- (m) The documentation of CM may be provided in any number of documents provided there are appropriate cross-references in all documents such that the system is fully traceable in both directions from end to end. For all but small organisations at least two documents would be expected:
 - (1) Firstly, a CM manual containing the policy, terminology, organisational charts and responsibilities, an overview of all processes, within the system, including those for maintaining regulatory compliance such as QTG running and fly-outs (function and subjective testing), CMP including the audit schedule and audit procedures including reporting and corrective action procedures. In addition, the CM manual should include, either directly or by reference, the identification of skills and experience and associated training.
 - (2) Secondly, a procedures manual containing, as a minimum, software and hardware control procedures, configuration control procedures including, for example, control of training loads, updates to visual models, navigation and instructor operation station (IOS) databases, QTG running and checking procedures, fly-out procedures, maintenance procedures including both defect rectification and preventative maintenance processes. Any standard forms and checklists should also be included.
- (n) The CM documentation also includes all records such as technical logs, QTG runs, fly-out reports and maintenance job cards.
- (o) For organisations with several certificates, separate and modular procedures manuals with a single CM manual covering all approvals, may be acceptable.
- (p) It is important to understand the difference between compliance assurance and compliance control. An effective CM will contain elements of both. Compliance control is normally done by inspection of the product; it provides confirmation at the time of the inspection that the product conforms to a defined standard.
- (q) The compliance assurance element is essential to ensure the standard is maintained throughout the periods between product (FSTD) inspections. Within a CMP, the processes are defined that are necessary to provide confidence that the FSTD(s) is/are being supported and maintained to the highest possible standard and in compliance with the relevant requirements. A programme of internal audits is then set in place to confirm that the processes are being followed and are effective. MCAA would normally oversee a certified organisation by process and system audit, however, in the case of FSTDs; authority oversight includes an inspection element in the form of the recurrent FSTD evaluation.

- (r) In addition to the normal process and system audits, the compliance assurance audit schedule should include the schedule for each FSTD for fly-outs and QTG running through the audit year.
- (s) The audit procedure should include, at least, the following: statement of scope, planning, initiation of audit, collection of evidence, analysis, reporting of findings, identification and agreement of corrective actions and feedback, including reporting significant findings to MCAA, where appropriate. The review of published material could include, in addition to the CM and procedures manuals, QTG records, fly-out reports, technical log sheets, maintenance records and configuration control records.
- (t) In addition to basic knowledge of FSTD requirements and operation, it is expected that auditors have received training in CM and audit techniques.
- (u) The routine fly-outs of the device are a specialised part of the audit programme. It is essential that the pilots tasked with carrying out these fly-outs are adequately experienced. They would be expected to be type rating instructor/examiner (TRI/TRE) qualified on the type, and should have experience of simulator evaluations carried out by MCAA. The assignment of such pilots can present difficulties, particularly for the independent organisation operating FSTDs not directly associated with an airline. It is vital for the organisation to ensure their users are aware of the importance of the fly-outs as part of the continued qualification of the device and the need to assist in the provision of suitably qualified pilots to carry them out. It is worth noting that simulator users are required to satisfy themselves that the training devices they use are assessed for continued suitability, as part of their own CMP. Involvement in fly-outs assists in meeting this need.
- (v) Whilst it is accepted that the number of audits required in an organisation with a single device will be significantly less than those in larger organisations with multiple devices, the CMP should still meet the same criteria, and cover all aspects of the operation within a 12 month period. The independence of the audit personnel should be maintained at all times. The audit programme, whether by full audit or by using a checklist system should still be sufficiently comprehensive to provide the necessary level of confidence that the device is maintained and operated to the highest possible standard. This includes monitoring and review of corrective actions and feedback processes.
- (w) The successful use of sub-contractors who play a significant role in the provision of services, such as maintenance or engineering services, to an organisation operating FSTDs is reliant on the sub-contractor operating under the CM of the organisation. All requirements that an organisation is expected to meet are equally applicable to his/her sub-contractor. It is the organisation's responsibility to ensure that the sub-contractor complies with its CM.
- (x) It is essential that a proper understanding of the CM and how it applies to each and every staff member is provided by appropriate training to all, not just those directly involved in operating the CM, such as the accountable manager, the CM manager, representatives and the auditors. The training given to those directly involved in CM should cover the CM, audit techniques and applicable technical standards. CM familiarisation training should be an integral part of any induction training and recurrent training. Update training on technical standards for audit personnel, is also of particular importance.
- (y) Any effective CM will include measurement of its effectiveness. The organisation should develop performance measures that can be monitored against objectives. Such measures, often referred to as metrics, should be reviewed by MCAA as part of its oversight of the CM within the organisation and during recurrent evaluations. In addition they should form part of the data reviewed during scheduled management reviews as part of the CM.
- (z) ARINC 433 provides good guidance on FSTD compliance measurement. Metrics should monitor not only individual FSTD performance but, for larger organisations, how each FSTD is performing within the fleet. It is also recommended that metrics data be shared, regularly, with the FSTD manufacturers to allow monitoring for generic problems such as design issues, which may be best addressed with a fleet-wide solution.

GM2 ORA.FSTD.100 General

COMPLIANCE MONITORING – ASSESSMENT FOR ORGANISATIONS OPERATING FSTDs

COMPLIANCE MONITORING ASSESSMENT FOR ORGANISATIONS OPERATING FSTDs				
Organisation:				
Site Assessed:				
Date of Assessment:				
Accountable Manager:				
Compliance Monitoring Manager:				
Number and Type of FSTDs:				
CM Manual Reference:		1		
Audit Area	CM/Proc Ref	Comments	Satisfactory Y/N	
1. ACCOUNTABLE MANAGER				
Has an accountable manager (AM) with overall responsibility				
for compliance monitoring (CM) been nominated?				
Does the accountable manager have corporate authority to				
ensure all necessary activities can be financed and carried out to				
the standard required by MCAA?				
Has a formal written compliance policy statement been				
established, included in the CM manual and signed by the				
accountable manager?				
2. COMPLIANCE MONITORING MANAGER				
Has a compliance monitoring manager (CM manager) been				
nominated?				
Are the posts of CM manager and AM combined? If so, is the				
independence of compliance audits assured?				
Does the CM manager have overall responsibility and authority				
to:				
a) verify that standards are met; and				
b) ensure that the compliance monitoring programme is				
established, implemented and maintained?				
Does the CM manager have direct access to the AM?				
Does the CM manager have access to all parts of the				
organisation operating an FSTD and as necessary any sub-				
contractor's organisation?				
3. COMPLIANCE MONITORING (CM)				
Has CM been established by the operator?				
Is CM properly documented? (see Section 4)				
Is the CM structured according to the size and complexity of the				
operator?				
Does the CM include the following as a minimum:		a)		
a) monitoring of compliance with required technical standards;		1		
b) identification of corrective actions and person responsible for		b)		
rectification;		```		
c) a feedback system to accountable manager to ensure		c)		
corrective action are promptly addressed;				
d) reporting of significant non-compliances to MCAA;		d)		
e) a compliance monitoring programme to verify continued				
compliance with applicable requirements, standards and		e)		
procedures.				
Are the responsibilities of the CM manager defined to include,		a)		
as a minimum:				
a) monitoring of corrective action programme;		b)		
b) ensuring that the corrective actions contain the necessary				
elements; c)				
c) providing management with an independent assessment of				
corrective action, implementation and completion;		d)		

d) evaluation of the effectiveness of the corrective action		
·		
programme.	e)	
Are adequate financial, material and human resources in place to		
support CM?		
Are management evaluations/reviews of CM held at least		
quarterly?		
Does the management evaluation ensure that the CMS is		
working effectively and is it comprehensive and well		
documented?		
Does the compliance monitoring programme identify the		
processes necessary and the persons within the organisation who	a)	
have the training, experience, responsibility and authority to		
carry out the following:	b)	
a) schedule and perform quality inspections and audits,		
including unscheduled audits when required;	c)	
b) identify and record any concerns or findings, and the		
evidence necessary to substantiate such concerns or findings;	d)	
c) initiate or recommend solutions to concerns or findings		
through designated reporting channels;	e)	
d) verify the implementation of solutions within specific	()	
timescales.		
Is there sufficient auditor resource available and can their		
required level of independence be demonstrated?		
Do the auditors report directly to the compliance monitoring		
manager?		
Does the defined audit schedule cover the following areas,		
within each 12 month period?		
a) organisation	a)	
b) plans and objectives	b)	
	· · · · · · · · · · · · · · · · · · ·	
c) maintenance procedures	c)	
d) FSTD qualification level;	d)	
e) supervision	e)	
f) FSTD technical status	f)	
g) manuals, logs and records	g)	
h) defect deferral	h)	
i) personnel training	i)	
j) aircraft and simulator configuration management, including	j)	
Airworthiness Directives	57	
How are audit non-compliances recorded?		
Are procedures in place to ensure that corrective actions are		
1 1		
taken in response to findings?		
Are records of the compliance monitoring programme:	a)	
a) accurate	b)	
b) complete and	c)	
c) readily accessible?		
Is there an acceptable and effective procedure for providing a		
briefing on the CM to all personnel?		
Is there an acceptable and effective procedure for ensuring that		
all those responsible for managing the CM receive training		
covering:	a)	
a) an introduction to the concept of the CM;	b)	
b) compliance management;	c)	
c) the concept of compliance assurance;	d)	
d) CM manuals;	e)	
e) audit techniques;	f)	
		1
f) reporting and recording;		
	g)	
g) how the CM supports continuous improvement within the		

		· · · · · · · · · · · · · · · · · · ·
Are activities within the CM sub-contracted out to external		
agencies?		
Do written agreements exist between the organisation and the		
sub-contractor clearly defining the services and standard to be		
provided?		
Are the procedures in place to ensure that the necessary		
authorisations/approval when required are held by a sub-		
contractor?		
Are the procedures in place to establish that the sub-contractor		
has the necessary technical competence?		
4. CM MANUAL		
What is the current status of the CM manual – amendment and		
issue date?		
Is there a procedure in place to control copies and the		
distribution of the CM manual?		
Is the CM manual signed by the accountable manager and the		
compliance monitoring manager?		
Does the CM manual include, either directly or by reference to		
other documents, the following:	a)	
a) a description of the organisation;	b)	
b) reference to appropriate FSTD technical standards;	c)	
c) allocation of duties and responsibilities;	d)	
d) audit procedures;	e)	
e) reporting procedures;	f)	
f) ollow-up and corrective action procedures;	· ·	
g) document retention policy;	g) h)	
	11)	
h) training records		
Is there a document retention policy covering:	a)	
a) audit schedules;	b)	
b) inspection and audit reports;	c)	
c) responses to findings;	d)	
d) corrective action reports;	e)	
e) follow-up and closure reports;		
f) management evaluation reports.	f)	
Does the CM manual include, either directly or by reference to		
other documents, the following procedures for day to day		
operation of the FSTD:		
a) defect reporting systems;	a)	
b) defect rectification processes;	b)	
c) tracking mechanisms;	c)	
d) preventative maintenance programmes;	d)	
e) spares handling;	e)	
	f)	
f) equipment calibration;	g)	
g) configuration management of the device including visual,	h)	
IOS and navigation databases;	i)	
h) configuration control system to ensure the continued integrity	,	
of the hardware and software qualified;		
i) QTG running and function and subjective tests.		
Does the CM manual include, either directly or by reference to		
other documents, procedures for notification of the competent		
authorities of the following:	a)	
a) any change in the organisation including company name,	b)	
location, management;	c)	
b) major changes to a qualified device;	d)	
c) deactivation or relocation of a qualified device;	e)	
d) major failures of a qualified device;		
e) major safety issue associated with the installation.		
Does the CM manual define acceptable and effective procedures	a)	
to ensure compliance with applicable health and safety	b)	
regulations, including:	c)	

a) safety briefings;	d)	
b) fire/smoke detection and suppression;		
c) protection against electrical, mechanical, hydraulic and		
pneumatic hazards;		
d) other items as defined in AMC1 ORA.FSTD.115		
Does the CM manual include acceptable and effective		
procedures for regularly checking FSTD safety features such as		
emergency stops and emergency lighting, and are such tests		
recorded?		
5. COMPLIANCE MEASURES		
Have compliance monitoring objectives been developed from		
the policy statement, and included either directly or by reference		
in the CMS manual?		
Does the CMS include processes to produce and review		
appropriate metrics data?		
Do these compliance measures track the following:	a)	
a) FSTD availability;	a) b)	
b) numbers of defects;	c)	
c) open defects;	d)	
d) defect closure rates;		
e) training session interrupt rates;	e) f)	
f) training session compliance rating.	1)	
Do the compliance measures support the compliance objectives?		
Required actions/Comments		
Signature:		
Date:		

GM3 ORA.FSTD.100 General

COMPLIANCE MONITORING SYSTEM – GUIDANCE FOR ORGANISATIONS OPERATING FSTDS TO PREPARE FOR AN MCAA EVALUATION

(a) Introduction

The following material provides guidance on what is expected by the competent authorities to support the discussion during the preliminary briefing, which is a first step of any initial or recurrent evaluation of an FSTD carried out by a competent authority.

This document has been developed as well to standardise working methods and to develop effective CM spot checks to satisfy the applicable requirements and therefore to ensure the highest standards of training are attained.

(b) Document form

Different document forms can be considered. Nevertheless, it appears that the best solution is a dossier, which includes all the information required by MCAA to perform an evaluation.

- (c) Contents of the dossier for an initial evaluation:
 - (1) type of FSTD and qualification level requested;
 - (2) evaluation agenda: including date of evaluation, name of people involved for MCAA, contact details for the FSTD operator, schedules for the subjective flight profile, QTG rerun;
 - (3) FSTD identification and detailed technical specification including, type of FSTD, manufacturer, registration number, date of entry into service, host computer, visual system, motion system, type of IOS, simulated version(s), standards of all the aircraft computers, if applicable. Manuals needed for an evaluation (e.g. flight manuals, system manuals, acceptance test manual, IOS user manual etc. if applicable) could already be provided as part of the dossier in an electronic format;
 - (4) planned modifications;
 - (5) subjective open defect(s);
 - (6) airport visual databases including for each visual scene, name of the airport, IATA and ICAO codes, type of visual scene (specific or generic), additional capabilities (e.g. snow model, WGS 84 compliance, enhanced ground proximity warning system (EGPWS)); and
 - (7) QTG status: the list should include for each QTG test available the status of the tests following the FSTD operator and MCAA reviews.

- (d) Contents of the dossier for a recurrent evaluation:
 - (1) type of FSTD and qualification level requested;
 - (2) evaluation agenda, including date of evaluation, name of people involved for MCAA, contact details for the operator, schedules for the subjective flight profile, QTG rerun and QTG review;
 - (3) FSTD identification, including type of FSTD, manufacturer, registration number, date of entry into service, host computer, visual system, motion system, type of IOS, simulated version(s), standards of all the aircraft computers, if applicable;
 - (4) status of items raised during the last evaluation and date of closure;
 - (5) reliability data: training hours month by month during the past year, numbers of complaints mentioned in the technical log, training hours lost, availability rate;
 - (6) operational data: a list of FSTD users over the previous 12 months should be provided, with number of training hours;
 - (7) failure tabulation including categorisation of failures (by ATA chapter and Pareto diagram, ARINC classification);
 - (8) details of main failures leading to training interruption or multiple occurrences of some failures;
 - (9) hardware and/or software updates or changes since last evaluation and planned hardware and/or software updates or changes;
 - (10) subjective open defect(s);
 - (11) airport visual databases including for each visual scene, name of the airport, ATA and ICAO codes, type of visual scene (specific or generic), additional capabilities (snow model, WGS 84 compliance, EGPWS);
 - (12) QTG status: the list should include for each QTG test available, the date of run during the past year, any comment, and the status of the tests; and
 - (13) results of scheduled internal audits and additional quality inspections (if any) since last evaluation and a summary of actions taken.

AMC1 ORA.FSTD.110 Modifications

GENERAL

- (a) The FSTD, where applicable, should be maintained in a configuration that accurately represents the aircraft being simulated. This may be a specific aircraft tail number or may be a representation of a common standard.
- (b) Users of the device should always establish a differences list for any device they intend to use, and to identify how any differences should be covered in training. In order to ensure each device is maintained in the appropriate configuration, the organisation operating an FSTD should have a system that ensures that all relevant airworthiness directives (ADs) are introduced where applicable on affected FSTDs.
- (c) ADs from both the State of Design of the aircraft and the State where the FSTD is located should be monitored. ADs from the State of Design of an aircraft are usually automatically applicable, unless specifically varied by the aircraft's State of Registry.
- (d) Where appropriate, ADs issued by States where users of the device have aircraft registered should also be monitored. In addition to ADs, the FSTD operator should also put in place processes that ensure all aircraft modifications are reviewed for any effect on training, testing and checking. This can be achieved by reviewing the aircraft manufacturer's service bulletins and may require a specific link to the aircraft manufacturer to be developed. In practice this link is often established through aircraft operators who use the device.
- (e) Organisations operating FSTDs should notify MCAA of major changes.
- (f) This does not imply that MCAA will always wish to directly evaluate the change. MCAA would be mindful of the potential burden placed on the organisation by a special evaluation and should always consider that burden when deciding if such an evaluation is necessary.
- (g) The organisation operating FSTDs should have an internal acceptance process for modifications, to be used when implementing all modifications, even if MCAA has made a decision to carry out an evaluation.

GM1 ORA.FSTD.110 Modifications

EXAMPLES OF MAJOR MODIFICATIONS

The following are examples of modifications that should be considered as major. This list is not exhaustive and modifications need to be classified on a case-by-case basis:

- (a) any change that affects the QTG;
- (b) introduction of new standards of equipment such as flight management and guidance computer (FMGC) and updated aerodynamic data packages;
- (c) re-hosting of the FSTD software;
- (d) introduction of features that model new training scenarios; e.g. airborne collision avoidance system (ACAS), EGPWS;
- (e) aircraft modifications that could affect the FSTD qualification; and
- (f) FSTD hardware or software modifications that could affect the handling qualities, performance or system representation.

AMC1 ORA.FSTD.115 Installations

MINIMUM ELEMENTS FOR SAFE OPERATION

- (a) Introduction
 - (1) This AMC identifies those elements that are expected to be addressed, as a minimum, to ensure that the FSTD installation provides a safe environment for the users and operators of the FSTD under all circumstances.
- (b) Expected elements
 - (1) Adequate fire/smoke detection, warning and suppression arrangements should be provided to ensure safe passage of personnel from the FSTD.
 - (2) Adequate protection should be provided against electrical, mechanical, hydraulic and pneumatic hazards, including those arising from the control loading and motion systems, to ensure maximum safety of all persons in the vicinity of the FSTD.
 - (3) Other areas that should be addressed include the following:
 - (i) a two-way communication system that remains operational in the event of a total power failure;
 - (ii) emergency lighting;
 - (iii) escape exits and escape routes;
 - (iv) occupant restraints (seats, seat belts etc.);
 - (v) external warning of motion and access ramp or stairs activity;
 - (vi) danger area markings;
 - (vii) guard rails and gates;
 - (viii) motion and control loading emergency stop controls accessible from either pilot or instructor seats;
 - (ix) a manual or automatic electrical power isolation switch.

GM1 ORA.FSTD.115 Installations

GENERAL

- (a) The intent of ORA.FSTD.115 is to establish that the organisation operating an FSTD has all the necessary procedures in place to ensure that the FSTD installation remains in compliance with all requirements affecting the safety of the device and its users.
- (b) Based on experience, MCAA would pay particular attention to the quality of safety briefings on the FSTD provided to users and instructors, and to the execution of regular checks on the FSTD safety features.
- (c) It is recognised that certain checks, such as that of the emergency stop, can have adverse impact on the FSTD if carried out in full.

(d) It is acceptable to develop a procedure that protects elements of the device by shutting them down in advance, in a more controlled manner, provided it can be shown that the procedure still demonstrates the whole device can be shut down by the operation of a single emergency stop button, when required.

SECTION II - REQUIREMENTS FOR THE QUALIFICATION OF FSTDs

AMC1 ORA.FSTD.200 Application for FSTD qualification

LETTER OF APPLICATION FOR INITIAL QUALIFICATION OF AN FSTD; EXCEPT BASIC INSTRUMENT TRAINING DEVICE (BITD)

A sample of letter of application is provided overleaf.

Type of FSTD	Aircraft Type/class	Qualification Level Sought				
Full Flight Simulator FFS		А	В	С	D	Sp./Cat
Flight Training Device FTD		1	2	3		
Flight and Navigation Procedures Trainer FNPT		Ι	П	III	II MCC	III MCC

Interim Qualification Level requested: YES/NO

Dear,

<Name of Applicant> requests the evaluation of its flight simulation training device*<operator's identification of the FSTD>* for qualification. The *<FSTD* manufacturer's name> FSTD with its *<visual system and* manufacturer's name, if applicable>visual system.

Evaluation is requested for the following configurations and engine fits as applicable:

The objective tests of the QTG will be submitted by *<date>* and in any event not less than 30 days before the requested evaluation date unless otherwise agreed with MCAA.

Comments:

igned
Print name:
Position/appointment held:
Email address:
elephone number:

Part B

To be completed with attached QTG results

(Date)

We have completed tests of the FSTD and declare that it meets all applicable requirements except as noted below.

The following QTG tests still have to be provided:

Tests	Comments

(Add boxes as required)

It is expected that they will be completed and submitted 3 weeks prior to the evaluation date. Signed

Print name:
Position/appointment held:
E-mail address:
Telephone number:
1

Part C

To be completed not less than 7 days prior to initial evaluation									
(Date)									
The FSTD has been asse	essed by the following evaluation team:								
(Name)	Qualification								
(Name)	Qualification								
(Name)	Qualification								
(Name)	Pilot's Licence Nr								
(Name) Flig	ht Engineer's Licence Nr (if applicable)								

 \Box FFS/FTD: This team attests that the *<type of FSTD>* conforms to the aeroplane flight deck/helicopter cockpit configuration of *<name of aircraft operator (if applicable), type of aeroplane/helicopter>* aeroplane/helicopter within the requirements for *<type of FSTD and level>* and that the simulated systems and subsystems function equivalently to those in that aeroplane/helicopter. The pilot of this evaluation team has also assessed the performance and the flying qualities of the FSTD and finds that it represents the designated aeroplane/helicopter.

□ FNPT: This team attest(s) that the <type of FSTD> represents the flight deck or cockpit environment of a <*aeroplane/helicopter or class of aeroplane/type of helicopter*> within the requirements for <*type of FSTD and level*> and that the simulated systems appear to function as in the class of aeroplane/type of helicopter. The pilot of this evaluation team has also assessed the performance and the flying qualities of the FSTD and finds that it represents the designated class of aeroplane/type of helicopter.

(Additional comments as required)

• • • •	•••		• •	 •••	•••	••	• •	• •	•	• •	•	• •	•	••	• •	• •	• •	•	 • •	•	••	•	• •	•	 • •	•	• •	•	• •	• •	• •	•	• •	•	••
	•••		•••	 •••	•••	••	• •	• •	•		•		•	• •	• •	•••	• •	•	 	•	• •	•		•	 • •	•		•	• •	• •		•	• •	•	••
 Sig			•••	 	•••	•••			•		•		•	•••	• •			•	 • •	•	• •	•	•••	•	 	•		•			• •	•	• •	•	•••
• • • •	••••	• • •	••	 •••	•••	••	• •	• •	•	• •	•	• •	•	••	• •	• •	• •	•	 • •	•	••	•	• •	•	 • •	•	• •	•		• •	•				

Print name: Position/appointment held: E-mail address: Telephone number:

GM1 ORA.FSTD.200 Application for FSTD qualification

USE OF FOOTPRINT TESTS IN QUALIFICATION TEST SUBMISSION

- (a) Introduction
 - (1) Recent experience during initial qualification of some FFSs has required acceptance of increasing numbers of footprint tests. This is particularly true for FFSs of smaller or older aircraft types, where there may be a lack of aircraft flight test data. However, the large number of footprint tests offered in some QTGs has given rise to concern.
 - (2) This guidance is applicable to FFS aeroplane, FTD aeroplane; FFS helicopter and FTD helicopter qualifications.
- (b) Terminology
 - (1) Footprint test footprint test data are derived from a subjective assessment carried out on the actual FSTD requiring qualification. The assessment and validation of these data are carried out by a pilot appointed by MCAA. The resulting data are the footprint validation data for the FSTD concerned.
- (c) Recommendation
 - (1) It is permitted to use footprint data where flight test data is not available. Only when all other alternative possible sources of data have been thoroughly reviewed without success may a footprint test be acceptable, subject to a case-by-case review with the competent authorities concerned, and taking into consideration the level of qualification sought for the FSTD.
 - (2) Footprint test data should be:
 - (i) constructed with initial conditions and FFS set up in the appropriate configuration (e.g. correct engine rating) for the required validation data;
 - (ii) a manoeuvre representative of the particular aircraft being simulated;
 - (iii) manually flown out by a type rated pilot who has current experience on type* and is deemed acceptable by MCAA**;
 - (iv) constructed from validation data obtained from the footprint test manoeuvre and transformed into an automatic test;
 - (v) an automatic test run as a fully integrated test with pilot control inputs; and
 - (vi) automatically run for the initial qualification and recurrent evaluations.
 - * In this context, 'current' refers to the pilot experience on the aircraft and not to the Part-FCL standards.
 - ** The same pilot should sign off the complete test as being fully representative.
 - (3) A clear rationale should be included in the QTG for each footprint test. These rationales should be added to and clearly recorded within the validation data roadmap (VDR) in accordance with and as defined in Appendix 2 to AMC1-CS-FSTD (A).300.
 - (4) Where the number of footprint tests is deemed by MCAA to be excessive, the maximum level of qualification may be affected. MCAA would review each area of validation test data where the use of footprint tests as the basis for the validation data is proposed. Consideration should be given to the extent to which footprint tests are used in any given area. For example, it would be unacceptable if all or the vast majority of take-off tests were proposed as

footprint tests, with little or no flight test data being presented. It should be recognised, therefore, that it may be necessary for new flight test data to be gathered if the use of footprint tests becomes excessive, not just overall, but also in specific areas.

- (5) For recurrent evaluation purposes an essential match is to be expected. Validation tests using footprint data which do not provide an essential match should be justified to the satisfaction of MCAA.
- (6) MCAA should be consulted at the point of definition of the aircraft data for qualification prior to the procurement of the device if footprint tests need to be used.

AMC1 ORA.FSTD.225 (b)(4) Duration and continued validity

The assigned person should have experience in FSTDs and training. The person may have FSTD experience or training experience with an education in FSTD evaluation procedures only, provided the other element of expertise is available within the organisation and a procedure for undertaking the annual review and reporting to MCAA is documented within the compliance monitoring function.

AMC1 ORA.FSTD.230 (b) Changes to the qualified FSTD UPDATING AND UPGRADING EXISTING FSTDS

- (a) An update is a result of a change to the existing device where it retains its existing qualification level. The change may be certified through a recurrent inspection or an extra inspection if deemed necessary by MCAA according to the applicable requirements in effect at the time of initial qualification.
- (b) If such a change to an existing device would imply that the performance of the device could no longer meet the requirements at the time of initial qualification, but that the result of the change would, in the opinion of MCAA, clearly mean an improvement to the performance and training capabilities of the device altogether, then MCAA might accept the proposed change as an update while allowing the device to retain its original qualification level.
- (c) An upgrade is defined as the raising of the qualification level of a device, or an increase in training credits, which can only be achieved by undergoing an initial qualification according to the latest applicable requirements.
- (d) As long as the qualification level of the device does not change, all changes made to the device should be considered to be updates pending approval by MCAA.
- (e) An upgrade, and consequent initial qualification according to the latest applicable requirements, is only applicable when the organisation requests another qualification level (recategorisation) for the FSTD.

AMC1 ORA.FSTD.240 Record-keeping FSTD RECORDS

- (a) FSTD records to be kept should include the following:
 - (1) for the lifetime of the device:
 - (i) the master QTG (MQTG) of the initial evaluation;
 - (ii) the qualification certificate of the initial evaluation; and
 - (iii) the initial evaluation report;
 - (2) for a period of at least 5 years (in paper or electronic format):
 - (i) recurrent QTG runs;
 - (ii) recurrent evaluation reports;
 - (iii) reports of internal functions and subjective testing;
 - (iv) technical log;
 - (v) CMS report;
 - (vi) audit schedule;
 - (vii) evaluation programme;
 - (viii) management evaluation reports;
 - (ix) obsolete procedures and forms.

Subpart AeMC – Aero-medical Centres

SECTION I – GENERAL

AMC1 ORA.AeMC.115 Application GENERAL

- (a) The documentation for the approval of an AeMC should include the names and qualifications of all medical staff, a list of medical and technical facilities for initial class 1 aero-medical examinations and of supporting specialist consultants.
- (b) The AeMC should provide details of clinical attachments to hospitals, medical institutions and/or specialists.

AMC1 ORA.AeMC.135 Continued validity EXPERIENCE

- (a) At least 200 class 1 aero-medical examinations and assessments should be performed at the AeMC every year.
- (b) Where the number of aero-medical examinations and assessments mentioned in (a) cannot be reached due a low number of professional pilots, a proportionate number of class 1 aero-medical examinations and assessments should be performed.
- (c) In these cases, the continuing experience of the head of the AeMC and aero-medical examiners on staff should also be ensured by them performing aero-medical examinations and assessments for:
 - (1) class 2 medical certificates as established in Part-MED; and/or
 - (2) third country class 1 medical certificates.
- (d) Aero-medical research including publication in peer reviewed journals may also be accepted as contributing to the continued experience of the head of, and aero-medical examiners at, an AeMC.

SECTION II – MANAGEMENT

GM1 ORA.AeMC.200 Management system RESEARCH

If aero-medical research is conducted at an AeMC, its management system should include processes to conduct that research and publish the results.

AMC1 ORA.AeMC.210 Personnel requirements GENERAL

- (a) The aero-medical examiner (AME) should have held class 1 privileges for at least 5 years and have performed at least 200 aero-medical examinations for a class 1 medical certificate before being nominated as head of an AeMC.
- (b) The AeMC may provide practical AME training for persons fully qualified and licensed in medicine.

AMC1 ORA.AeMC.215 Facility requirements MEDICAL-TECHNICAL FACILITIES

The medical-technical facilities of an AeMC should consist of the equipment of a general medical practice and, in addition, of:

- (a) Cardiology
 - Facilities to perform:
 - (1) 12-lead resting ECG;
 - (2) stress ECG;
 - (3) 24-hour blood pressure monitoring; and
 - (4) 24-hour heart rhythm monitoring.
- (b) Ophthalmology
 - Facilities for the examination of:
 - (1) near, intermediate and distant vision;
 - (2) external eye, anatomy, media and fundoscopy;
 - (3) ocular motility;
 - (4) binocular vision;
 - (5) colour vision (anomaloscopy or equivalent);
 - (6) visual fields;
 - (7) refraction; and
 - (8) heterophoria.
- (c) Hearing
 - (1) pure-tone audiometer
- (d) Otorhinolaryngology
 - Facilities for the clinical examination of mouth and throat and:
 - (1) otoscopy;
 - (2) rhinoscopy;
 - (3) tympanometry or equivalent; and
 - (4) clinical assessment of vestibular system.
- (e) Examination of pulmonary function
 - (1) spirometry
- (f) The following facilities should be available at the AeMC or arranged with a service provider:
 - (1) clinical laboratory facilities; and
 - (2) ultrasound of the abdomen.